期刊文献+
共找到470篇文章
< 1 2 24 >
每页显示 20 50 100
Seasonal variation in soil microbial biomass carbon and nitrogen in an artificial sand-binding vegetation area in Shapotou, northern China 被引量:2
1
作者 YuYan Zhou XuanMing Zhang +2 位作者 XiaoHong Jia JinQin Ma YanHong Gao 《Research in Cold and Arid Regions》 CSCD 2013年第6期733-738,共6页
In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time pe... In this study, seasonal variation characteristics of surface soil microbial biomass carbon (MBC) and soil microbial biomass nitrogen (MBN) of an artificial vegetation area located in Shapotou for different time periods were studied using the chloroform fumigation method, and the results were compared with those of near-natural vegetation areas and mobile dunes. Results showed that the MBC and MBN levels in the 0-5 cm soil layer were higher in autumn than in summer and spring. As the prolongation of vegetation restoration raised the MBC and MBN levels in summer and autumn, no clear variation was found in spring. However, the MBC and MBN in 5-20 cm had no obvious seasonal variation. During summer and autumn, the variation trend of MBC and MBN in the vertical direction was shown to be 0-5 〉 5-10 〉 10-20 cm in the vegetation area, while for mobile dunes, the MBC and MBN levels increased as the depth increased. The natural vegetation area was shown to possess the highest MBC and MBN levels, and yet mobile dunes have the lowest MBC and MBN levels. MBC and MBN levels in artificial sand-binding vegetation increased with the prolongation of vegetation restoration, indicating that the succession of sand-binding vegetation will result in the ac- cumulation of soil carbon and nitrogen, as well as the restoration of soil fertility. 展开更多
关键词 re-vegetation area soil microbial biomass carbon soil microbial biomass nitrogen
下载PDF
Effects of Carbon and Nitrogen Additions on Soil Microbial Biomass Carbon and Enzyme Activities Under Rice Straw Returning 被引量:1
2
作者 Dai Jian-jun Liu Li-zhi +4 位作者 Wang Xiao-chun Fang Qiu-na Cheng Ye-ru Wang Dan-ni Peng Xian-long 《Journal of Northeast Agricultural University(English Edition)》 CAS 2021年第3期21-30,共10页
The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw retur... The effects of different amounts of carbon and nitrogen sources on the soil microbial biomass carbon,dissolved organic carbon and related enzyme activities were studied by the simulation experiment of rice straw returning to the field,and the mechanism of the decomposition of rice straw returning to the field was discussed.Completely randomized experiment of the two factors of the three levels was designed,and a total of nine treatments of indoor soil incubation tests were conducted.Full amount of rice straw was applied to the soil in this simulation experiment and different amounts of brown sugar and urea were added in the three levels of 0(no carbon source and nitrogen source),1(low levels of carbon and nitrogen sources)and 2(high levels of carbon and nitrogen sources),respectively.The results showed that the addition of different amounts of carbon and nitrogen sources to the rice straw could increase the soil carbon content.Compared with T0N0,the microbial biomass carbon of T2N2 was increased significantly by 170.48%;the dissolved organic carbon content of T1N2 was significantly increased by 58.14%and the free humic acid carbon contents of T0N2,T1N1 and T2N0 were significantly increased by 56.16%and 45.55%and 47.80%,respectively;however,there were no significant differences among those of treatments at later incubation periods.The addition of different carbon and nitrogen sources could promote the soil enzyme activities.During the incubation period,all of the soil enzyme activities of adding sugar and urea were higher than those of T0N0 treatment.Therefore,the addition of different amounts of carbon and nitrogen sources to rice straw returning could improve soil microbial biomass carbon content,dissolved organic carbon and soil enzyme activities. 展开更多
关键词 rice straw returning carbon and nitrogen sources microbial biomass carbon dissolved organic carbon soil enzyme activity
下载PDF
Effects of Different Land Cover Types on Soil Microbial Biomass Carbon and Nitrogen in the Lower Reaches of Niyang River
3
作者 Heping MA Wenyin ZHAO 《Asian Agricultural Research》 2022年第1期41-45,共5页
[Objectives]To comprehensively and deeply explore the effects of different land cover types in the lower reaches of Niyang River on soil microbial biomass carbon and nitrogen,and to provide a scientific basis for the ... [Objectives]To comprehensively and deeply explore the effects of different land cover types in the lower reaches of Niyang River on soil microbial biomass carbon and nitrogen,and to provide a scientific basis for the rational use and sustainable management of land resources in this area.[Methods]Taking the 3 types of land cover(cultivated land,grass land and forest land)in the lower reaches of Niyang River in Tibet as the research object,the contents,distribution characteristics and relationships of soil organic carbon,organic nitrogen,microbial biomass carbon,microbial biomass nitrogen and readily oxidizable organic carbon,and their relationships were studied in 0-10,10-20,20-40,40-60,and 60-100 cm soil depth.[Results]The soil organic carbon content of forest land was higher than that of grass land and cultivated land;the vertical change trend of soil organic carbon content decreased with the increase of depth(P<0.05),and it was mainly concentrated in the soil with a depth of 0-20 cm.The soil organic carbon content was significantly different among forest land,grass land and cultivated land(P<0.05),but there was no significant difference between cultivated land and grass land(P>0.05).The soil organic nitrogen content was significantly different among cultivated land,grass land,and forest land(P<0.05),but there was no significant difference between grass land and forest land(P>0.05).The readily oxidizable organic carbon,microbial biomass carbon and nitrogen in forest land were higher than that in cultivated land and grass land.The change trend of soil readily oxidizable organic carbon,microbial biomass carbon and microbial biomass nitrogen was similar to the change of soil organic carbon content,showing a significant positive correlation.In addition to being subject to land cover,soil microbial biomass carbon and nitrogen content were also subject to the interaction of factors such as soil temperature,humidity,pH and vegetation types.[Conclusions]Changes in land cover significantly affect soil organic carbon and nitrogen,readily oxidizable organic carbon,microbial biomass carbon and nitrogen content. 展开更多
关键词 Soil microbial biomass carbon and nitrogen Land cover Soil depths Canonical correspondence analysis(CCA)
下载PDF
Relationship Between Soil Microbial Biomass C and N and Mineralizable Nitrogen in Some Arable Soils on Loess Plateau 被引量:14
4
作者 ZHOUJIANBIN LISHENGXIU 《Pedosphere》 SCIE CAS CSCD 1998年第4期349-354,共6页
The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in ... The chloroform fumigation-incubation method was used to measure the soil microbial biomass C (SMBC)and N (SMBN) in 16 loessial soils sampled from Ausai, Yongshou and Yangling in Shaanxi Province. The SMBC contents in the soils ranged from 75.9 to 301.0 μg Cg-1 with an average of 206.1 μg C g-1, accounting for 1.36%~6.24% of the total soil organic C with an average of 3.07%, and the SMBN contents from 0.51 to 68.40 μg N g-1 with an average of 29.4 μg N g-1, accounting for 0.20%~5.65% of the total N in the soils with an average of 3.36%. A close relationship was found between SMBC and SMBN, and they both were positively correlated with total organic C, total N, NaOH hydrolizable N and mineralizable N. These results confirmed that soil microbial biomass had a comparative role in nutrient cycles of soils. 展开更多
关键词 矿化作用 土壤微生物 耕地 黄土高原
下载PDF
Soil resource availability impacts microbial response to organic carbon and inorganic nitrogen inputs 被引量:2
5
作者 ZHANG Wei-jian W.ZHU S.HU 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2005年第5期705-710,共6页
Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined mic... Impacts of newly added organic carbon (C) and inorganic nitrogen (N) on the microbial utilization of soil organic matter are important in determining the future C balance of terrestrial ecosystems. We examined microbial responses to cellulose and ammonium nitrate additions in three soils with very different C and N availability. These soils included an organic soil( 14.2% total organic C, with extremely high extractable N and low labile C), a forest soi1(4.7% total organic C, with high labile C and extremely low extractable N), and a grassland soil(1.6% total organic C, with low extractable N and labile C). While cellulose addition alone significantly enhanced microbial respiration and biomass C and N in the organic and grassland soils, it accelerated only the microbial respiration in the highly-N limited forest soil. These results indicated that when N was not limited, C addition enhanced soil respiration by stimulating both microbial growth and their metabolic activity, New C inputs lead to elevated C release in all three soils, and the magnitude of the enhancement was higher in the organic and grassland soils than the forest soil. The addition of cellulose plus N to the forest and grassland soils initially increased the microbial biomass and respiration rates, but decreased the rates as time progressed. Compared to cellulose addition alone, cellulose plus N additions increased the total C-released in the grassland soil, but not in the forest soil. The enhancement of total C- released induced by C and N addition was less than 50% of the added-C in the forest soil after 96 d of incubation, in contrast to 87.5% and 89.0% in the organic and grassland soils. These results indicate that indigenous soil C and N availability substantially impacts the allocation of organic C for microbial biomass growth and/or respiration, potentially regulating the turnover rates of the new organic C inputs. 展开更多
关键词 CELLULOSE inorganic nitrogen microbial biomass microbial activity carbon sequestration
下载PDF
Assessment of soil quality using soil organic carbon and total nitrogen and microbial properties in tropical agroecosystems 被引量:1
6
作者 Maruf Kajogbola Adebayo Adeboye Abdullahi Bala +3 位作者 Akim Oserhien Osunde Anthony Ozoemenam Uzoma Ayo Joshua Odofin Baba Abubakar Lawal 《Agricultural Sciences》 2011年第1期34-40,共7页
Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivati... Assessment of soil quality is an invaluable tool in determining the sustainability and environmental impact of agricultural ecosystems. The study was conducted to assess the quality of the soils under arable cultivation, locally irri-gated and non-irrigated, forestry plantations of teak (Tectona grandis Lin.) and gmelina (Gme- lina arborea Roxb.), and cashew (Anacardium occidentale Lin.) plantation agro ecosystems using soil organic carbon (SOC), soil total ni-trogen (STN) and soil microbial biomass C (SMBC) and N (SMBN) at Minna in the southern Guinea savanna of Nigeria. Soil samples were collected from soil depths of 0-5 cm and 5-10 cm in all the agro ecosystems and analyzed for physical, chemical and biological properties. All the agro ecosystems had similar loamy soil texture at both depths. The soils have high fer-tility status in terms of available phosphorus and exchangeable calcium, magnesium and po- tassium. The irrigated arable land had significantly (P 6.6 suggesting fungal domination in all the agroecosystems. The forestry plantation soils had higher SMBC and SMBN as a per-centage of SOC and STN respectively than the cultivated arable land soils. Burning for clearing vegetation and poor stocking of forestry planta-tions may impair the quality of the soil. The study suggests that the locally irrigated agro- ecosystem soil seems to be of better quality than the other agroecosystem soils. 展开更多
关键词 AGROECOSYSTEMS microbial biomass SOIL Organic carbon SOIL Total nitrogen TROPICAL
下载PDF
Effects of continuous nitrogen addition on microbial properties and soil organic matter in a Larix gmelinii plantation in China 被引量:5
7
作者 Kai Yang Jiaojun Zhu +3 位作者 Jiacun Gu Shuang Xu Lizhong Yu Zhengquan Wang 《Journal of Forestry Research》 SCIE CAS CSCD 2018年第1期85-92,共8页
Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequest... Continuous increases in anthropogenic nitrogen(N) deposition are likely to change soil microbial properties, and ultimately to affect soil carbon(C) storage.Temperate plantation forests play key roles in C sequestration, yet mechanisms underlying the influences of N deposition on soil organic matter accumulation are poorly understood. This study assessed the effect of N addition on soil microbial properties and soil organic matter distribution in a larch(Larix gmelinii) plantation. In a 9-year experiment in the plantation, N was applied at100 kg N ha-1 a-1 to study the effects on soil C and N mineralization, microbial biomass, enzyme activity, and C and N in soil organic matter density fractions, and organic matter chemistry. The results showed that N addition had no influence on C and N contents in whole soil. However,soil C in different fractions responded to N addition differently. Soil C in light fractions did not change with N addition, while soil C in heavy fractions increased significantly. These results suggested that more soil C in heavy fractions was stabilized in the N-treated soils. However,microbial biomass C and N and phenol oxidase activity decreased in the N-treated soils and thus soil C increased in heavy fractions. Although N addition reduced microbial biomass and phenol oxidase activity, it had little effect on soil C mineralization, hydrolytic enzyme activities, d13 C value in soil and C–H stretch, carboxylates and amides, and C–O stretch in soil organic matter chemistry measured by Fourier transform infrared spectra. We conclude that N addition(1) altered microbial biomass and activity without affecting soil C in light fractions and(2) resulted in an increase in soil C in heavy fractions and that this increase was controlled by phenol oxidase activity and soil N availability. 展开更多
关键词 Enzyme activity Larch plantation microbial biomass nitrogen addition Soil carbon accumulation Soil organic matter fractions
下载PDF
Seasonal dynamics of soil microbial biomass C and N of Keteleeria fortunei var. cyclolepis forests with different ages 被引量:7
8
作者 Yong Wang Xiongsheng Liu +3 位作者 Fengfan Chen Ronglin Huang Xiaojun Deng Yi Jiang 《Journal of Forestry Research》 SCIE CAS CSCD 2020年第6期2377-2384,共8页
Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational manageme... Soil microbial biomass is an important indicator to measure the dynamic changes of soil carbon pool.It is of great signifi cance to understand the dynamics of soil microbial biomass in plantation for rational management and cultivation of plantation.In order to explore the temporal dynamics and infl uencing factors of soil microbial biomass of Keteleeria fortunei var.cyclolepis at diff erent stand ages,the plantation of diff erent ages(young forest,5 years;middle-aged forest,22 years;mature forest,40 years)at the Guangxi Daguishan forest station of China were studied to examine the seasonal variation of their microbial biomass carbon(MBC)and microbial biomass nitrogen(MBN)by chloroform fumigation extraction method.It was found that among the forests of diff erent age,MBC and MBN diff ered signifi cantly in the 0–10 cm soil layer,and MBN diff ered signifi cantly in the 10–20 cm soil layer,but there was no signifi cant diff erence in MBC for the 10–20 cm soil layer or in either MBC or MBN for the 20–40 cm soil layer.With increasing maturity of the forest,MBC gradually decreased in the 0–10 cm soil layer and increased fi rstly and then decreased in the 10–20 cm and 20–40 cm soil layers,and MBN increased fi rstly and then decreased in all three soil layers.As the soil depth increased,both MBC and MBN gradually decreased for all three forests.The MBC and MBN basically had the same seasonal variation in all three soil layers of all three forests,i.e.,high in the summer and low in the winter.Correlation analysis showed that MBC was signifi cantly positively correlated with soil organic matter,total nitrogen,and soil moisture,whereas MBN was signifi cantly positively correlated with soil total nitrogen.It showed that soil moisture content was the main factor determining the variation of soil microbial biomass by Redundancy analysis.The results showed that the soil properties changed continuously as the young forest grew into the middle-aged forest,which increased soil microbial biomass and enriched the soil nutrients.However,the soil microbial biomass declined as the middle-age forest continued to grow,and the soil nutrients were reduced in the mature forest. 展开更多
关键词 microbial biomass Soil microbial nitrogen Soil microbial carbon Seasonal variation Artifi cial forest Keteleeria fortunei var.cyclolepis
下载PDF
Soil Microbial Activity During Secondary Vegetation Succession in Semiarid Abandoned Lands of Loess Plateau 被引量:13
9
作者 JIANG Jin-Ping XIONG You-Cai +3 位作者 JIANG Hong-Mei YE De-You SONG Ya-Jie LI Feng-Min 《Pedosphere》 SCIE CAS CSCD 2009年第6期735-747,共13页
To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, ... To show the vegetation succession interaction with soil properties, microbial biomass, basal respiration, and enzyme activities in different soil layers (0-60 cm) were determined in six lands, i.e., 2-, 7-, 11-, 20-, and 43-year-old abandoned lands and one native grassland, in a semiarid hilly area of the Loess Plateau. The results indicated that the successional time and soil depths affected soil microbiological parameters significantly. In 20-cm soil layer, microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), MBC/MBN, MBC to soil organic carbon ratio (MBC/SOC), and soil basal respiration tended to increase with successional stages but decrease with soil depths. In contrast, metabolic quotient (qCO 2 ) tended to decrease with successional stages but increase with soil depths. In addition, the activities of urease, catalase, neutral phosphatase, β-fructofuranosidase, and carboxymethyl cellulose (CMC) enzyme increased with successional stages and soil depths. They were significantly positively correlated with microbial biomass and SOC (P < 0.5), whereas no obvious trend was observed for the polyphenoloxidase activity. The results indicated that natural vegetation succession could improve soil quality and promote ecosystem restoration, but it needed a long time under local climate conditions. 展开更多
关键词 半干旱黄土高原 土壤微生物 植被演替 土地 微生物生物量碳 微生物生物量氮 活动期 Β-呋喃果糖苷酶
下载PDF
Soil carbon and nitrogen dynamics linked to Piliostigma species in ferugino-tropical soils in the Sudano-Sahelian zone of Burkina Faso, West Africa 被引量:1
10
作者 Barthélémy Yélémou Sidzabda Djibril +2 位作者 Dasmane Bambara Georges Yaméogo Salawu Assimi 《Journal of Forestry Research》 SCIE CAS CSCD 2013年第1期99-108,共10页
In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The pr... In the Sudano-Sahelian zone of Burkina Faso, Piliostigma reticulatum (DC) Hochst and Piliostigma thonningii (Schumach) are precursor species of fallow land colonization and they are used by rural villagers. The present study aimed to assess the contribution of Piliostigma species to soil quality improvement. We quantified organic carbon, total nitrogen, soil microbial biomass, soil basal respiration and metabolic quotient from soil samples taken under and outside Piliostigma canopies. We used one-way ANOVA to test for differences in the above parameters between locations (beneath and outside Piliostigma canopies). We recorded increased total organic carbon under Piliostigma from 31%–105% and in total nitrogen from 23%–66%. Microbial biomass was 13%–266% higher beneath canopies as compared to outside canopies. Basal respiration was also higher beneath canopies. The chemical elements varied by class of soil texture. Metabolic quotient (qCO2) was significantly correlated to clay (r = 0.80) and silt (r = 0.79) content. Piliostigma stands produced abundant litter due to their leaf biomass. Thus, they contribute to improved total organic carbon and total nitrogen content in the different phytogeographic zones and improve soil fertility. 展开更多
关键词 Piliostigma phytogeographic zone soil carbon nitrogen microbial biomass
下载PDF
Microbial Activity in a Temperate Forest Soil as Affected by Elevated Atmospheric CO_2 被引量:5
11
作者 ZHENG Jun-Qiang HAN Shi-Jie ZHOU Yu-Mei REN Fei-Rong XIN Li-Hua ZHANG Yan 《Pedosphere》 SCIE CAS CSCD 2010年第4期427-435,共9页
Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on s... Microorganisms play a key role in the response of soil ecosystems to the rising atmospheric carbon dioxide (CO2) as they mineralize organic matter and drive nutrient cycling. To assess the effects of elevated CO2 on soil microbial C and N immobilization and on soil enzyme activities, in years 8 (2006) and 9 (2007) of an open-top chamber experiment that begun in spring of 1999, soil was sampled in summer, and microbial biomass and enzyme activity related to the carbon (C), nitrogen (N) and phosphorus (P) cycling were measured. Although no effects on microbial biomass C were detected, changes in microbial biomass N and metabolic activity involving C, N and P were observed under elevated CO2. Invertase and dehydrogenase activities were significantly enhanced by different degrees of elevated CO2. Nitrifying enzyme activity was significantly (P < 0.01) increased in the August 2006 samples that received the elevated CO2 treatment, as compared to the samples that received the ambient treatment. Denitrifying enzyme activity was significantly (P < 0.04) decreased by elevated CO2 treatments in the August 2006 and June 2007 (P < 0.09) samples. β-N-acetylglucosaminidase activity was increased under elevated CO2 by 7% and 25% in June and August 2006, respectively, compared to those under ambient CO2. The results of June 2006 samples showed that acid phosphatase activity was significantly enhanced under elevated CO2. Overall, these results suggested that elevated CO2 might cause changes in the belowground C, N and P cycling in temperate forest soils. 展开更多
关键词 大气CO2浓度升高 微生物活性 森林土壤 温带
下载PDF
Relationship Between Microbial Community and Soil Properties During Natural Succession of Abandoned Agricultural Land 被引量:3
12
作者 JIA Guo-Mei ZHANG Pei-Dong +3 位作者 WANG Gang CAO Jing HAN Jing-Cheng HUANG Ying-Ping 《Pedosphere》 SCIE CAS CSCD 2010年第3期352-360,共9页
The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were eva... The changes of microbial biomass carbon (MBC) and nitrogen (MBN) and microbial community in the topsoil of the abandoned agricultural land on the semi-arid Loess Plateau in China during the natural succession were evaluated to understand the relationship between microbial community and soil properties. MBC and MBN were measured using fumigation extraction, and microbial community was analyzed by the method of fatty acid methyl ester (FAME). The contents of organic C, total N, MBC, MBN, total FAME, fungal FAME, bacterial FAME and Gram-negative bacterial FAME at the natural succession sites were higher than those of the agricultural land, but lower than those of the natural vegetation sites. The MBC, MBN and total FAME were closely correlated with organic C and total N. Furthermore, organic C and total N were found to be positively correlated with fungal FAME, bacterial FAME, fungal/bacterial and Gram-negative bacterial FAME. Natural succession would be useful for improving soil microbial properties and might be an important alternative for sustaining soil quality on the semi-arid Loess Plateau in China. 展开更多
关键词 微生物群落 自然演替 土壤理化性质 农地 半干旱黄土高原 微生物生物量碳 革兰阴性菌 FAME
下载PDF
Land use effects on soil organic carbon, nitrogen and salinity in saline-alkaline wetland 被引量:6
13
作者 WenJie Liu YongZhong Su Rong Yang XueFengWang XiaoYang 《Research in Cold and Arid Regions》 2010年第3期263-270,共8页
Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fr... Land-use and soil management affects soil organic carbon (SOC) pools, nitrogen, salinity and the depth distribution. The objective of this study was to estimate land-use effects on the distribution of SOC, labile fractions C, nitrogen (N) and salinity in saline-alkaline wetlands in the middle reaches of the Heihe River Basin. Three land-use types were selected: intact saline-alkaline meadow wetland, artificial shrubbery (planting Tamarix) and farmland (cultivated for 18 years) of soils previously under meadow wetland. SOC, easily oxidized carbon, microbial biomass carbon, total N, NO3--N and salinity concentrations were measured. The results show that SOC and labile fraction carbon contents decreased significantly with increasing soil depth in the three land-use wetlands. The labile fraction carbon contents in the topsoil (0-20cm) in cultivated soils were significantly higher than that in intact meadow wetland and artificial shrubbery soil. The aboveground biomass and soil permeability were the primary influencing factors on the contents of SOC and the labile carbon in the intact meadow wetland and artificial shrubbery soil, however, the farming practice was a factor in cultivated soil. Agricultural measures can effectively reduce the salinity contents; however, it caused a significant increase of NO 3--N concentrations which posed a threat to groundwater quality in the study area. 展开更多
关键词 labile fraction carbon easily oxidized carbon microbial biomass carbon salinity nitrate-nitrogen saline-alkaline wetland
下载PDF
Changes in the activities of key enzymes and the abundance of functional genes involved in nitrogen transformation in rice rhizosphere soil under different aerated conditions 被引量:2
14
作者 XU Chun-mei XIAO De-shun +4 位作者 CHEN Song CHU Guang LIU Yuan-hui ZHANG Xiu-fu WANG Dan-ying 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第3期923-934,共12页
Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in... Soil microorganisms play important roles in nitrogen transformation. The aim of this study was to characterize changes in the activity of nitrogen transformation enzymes and the abundance of nitrogen function genes in rhizosphere soil aerated using three different methods(continuous flooding(CF), continuous flooding and aeration(CFA), and alternate wetting and drying(AWD)). The abundances of amoA ammonia-oxidizing archaea(AOA) and ammonia-oxidizing bacteria(AOB), nirS, nirK, and nifH genes, and the activities of urease, protease, ammonia oxidase, nitrate reductase, and nitrite reductase were measured at the tillering(S1), heading(S2), and ripening(S3) stages. We analyzed the relationships of the aforementioned microbial activity indices, in addition to soil microbial biomass carbon(MBC) and soil microbial biomass nitrogen(MBN), with the concentration of soil nitrate and ammonium nitrogen. The abundance of nitrogen function genes and the activities of nitrogen invertase in rice rhizosphere soil were higher at S2 compared with S1 and S3 in all treatments. AWD and CFA increased the abundance of amoA and nifH genes, and the activities of urease, protease, and ammonia oxidase, and decreased the abundance of nirS and nirK genes and the activities of nitrate reductase and nitrite reductase, with the effect of AWD being particularly strong. During the entire growth period, the mean abundances of the AOA amoA, AOB amoA, and nifH genes were 2.9, 5.8, and 3.0 higher in the AWD treatment than in the CF treatment, respectively, and the activities of urease, protease, and ammonia oxidase were 1.1, 0.5, and 0.7 higher in the AWD treatment than in the CF treatment, respectively. The abundances of the nirS and nirK genes, and the activities of nitrate reductase and nitrite reductase were 73.6, 84.8, 10.3 and 36.5% lower in the AWD treatment than in the CF treatment, respectively. The abundances of the AOA amoA, AOB amoA, and nifH genes were significantly and positively correlated with the activities of urease, protease, and ammonia oxidase, and the abundances of the nirS and nirK genes were significantly positively correlated with the activities of nitrate reductase. All the above indicators were positively correlated with soil MBC and MBN. In sum, microbial activity related to nitrogen transformation in rice rhizosphere soil was highest at S2. Aeration can effectively increase the activity of most nitrogen-converting microorganisms and MBN, and thus promote soil nitrogen transformation. 展开更多
关键词 rhizosphere aeration gene abundance enzyme activities soil microbial biomass carbon soil microbial nitrogen
下载PDF
Effect of vegetation type, wetting intensity, and nitrogen supply on external carbon stimulated heterotrophic respiration and microbial biomass carbon in forest soils 被引量:6
15
作者 WU HaoHao XU XingKai +2 位作者 DUAN CunTao LI TuanSheng CHENG WeiGuo 《Science China Earth Sciences》 SCIE EI CAS CSCD 2015年第8期1446-1456,共11页
By using packed soil-core incubation experiments,we have studied stimulating effects of addition of external carbon(C)(glucose,6.4 g Cm^(-2))on heterotrophic respiration and microbial biomass C of a mature broadleaf a... By using packed soil-core incubation experiments,we have studied stimulating effects of addition of external carbon(C)(glucose,6.4 g Cm^(-2))on heterotrophic respiration and microbial biomass C of a mature broadleaf and Korean pine mixed forest(BKPF)and an adjacent white birch forest(WBF)soil under different wetting intensities(55%and 80%WFPS,water-filled pore space)and nitrogen(N)supply(NH_4C1 and KNO_3,4.5 g Nm^(-2))conditions.The results showed that for the control,the cumulative carbon dioxide(CO_2)flux from WBF soil during the 15-day incubation ranged from 5.44 to 5.82 g CO_2-Cm^(-2),which was significantly larger than that from BKPF soil(2.86 to 3.36 g CO_2-Cm^(-2)).With increasing wetting intensity,the cumulative CO_2 flux from the control was decreased for the WBF soil,whereas an increase in the CO_2 flux was observed in the BKPF soil(P<0.05).The addition of NH_4C1 or KNO_3 alone significantly reduced the cumulative CO_2 fluxes by 9.2%-21.6%from the two soils,especially from WBF soil at low wetting intensity.The addition of glucose alone significantly increased soil heterotrophic respiration,microbial biomass C(MBC),and microbial metabolic quotient.The glucose-induced cumulative CO_2 fluxes and soil MBC during the incubation ranged from 8.7 to 11.7 g CO_2-Cm^(-2)and from 7.4 to 23.9 g Cm^(-2),which are larger than the dose of added C.Hence,the addition of external carbon can increase the decomposition of soil native organic C.The glucose-induced average and maximum rates of CO_2 fluxes during the incubation were significantly influenced by wetting intensity(WI)and vegetation type(VT),and by WI×VT,NH_4Cl×VT and WI×VT×NH_4Cl(P<0.05).The addition of NH_4C1,instead of KNO_3 significantly decreased the glucose-induced MBC of WBF soil(P<0.05),whereas adding NH_4C1 and KNO_3 both significantly increased the glucose-induced MBC of BKPF soil at high moisture(P<0.05).According to the differences in soil labile C pools,MBC and CO_2 fluxes in the presence and absence of glucose,it can be concluded that the stimulating effects of glucose on soil heterotrophic respiration and MBC under temperate forests were dependent on vegetation type,soil moisture,and amount and type of the N added. 展开更多
关键词 土壤异养呼吸 土壤湿润 微生物量碳 植被类型 外加碳源 湿强度 氮源 土壤微生物生物量碳
原文传递
南亚热带常绿阔叶林土壤微生物生物量碳氮年际动态特征及其影响因子 被引量:1
16
作者 付志高 肖以华 +5 位作者 许涵 史欣 余海波 贲春丽 杨紫浓 李明 《生态学报》 CAS CSCD 北大核心 2024年第3期1092-1103,共12页
土壤微生物是土壤有机质和养分循环的主要驱动者,研究土壤微生物生物量碳氮变化、稳态特征及其对环境因子内在的长期响应机理具有重要意义。以南亚热带常绿阔叶林土壤为对象,对土壤微生物生物量碳和氮(MBC和MBN)、土壤有机碳(SOC)、总氮... 土壤微生物是土壤有机质和养分循环的主要驱动者,研究土壤微生物生物量碳氮变化、稳态特征及其对环境因子内在的长期响应机理具有重要意义。以南亚热带常绿阔叶林土壤为对象,对土壤微生物生物量碳和氮(MBC和MBN)、土壤有机碳(SOC)、总氮(TN)、总磷(TP)、可溶性碳(ROC)、速效氮(AN)、pH、土壤温度(ST)和土壤含水量(SWC)进行连续10年监测;应用方差分析、相关性和回归分析及稳态分析等探究MBC和MBN的年际变化和稳态特征及主要影响因素。研究结果表明:(1)旱季MBC和MBN含量分别在171.32—358.45和25.90—54.08 mg/kg区间波动,雨季分别在394.01—507.97和68.40—88.05 mg/kg区间波动;旱、雨季的MBC含量年际间变化显著(P<0.05),但MBN含量仅在旱季变化显著(P<0.05)。雨季MBC和MBN含量均显著高于旱季(P<0.01),且雨季的MBC和MBN含量是旱季的2倍以上。(2)旱、雨季的MBC与MBN之间均呈显著正相关(P<0.05)。在旱季,MBC和MBN均与ROC和AN含量显著正相关(P<0.05),此外,MBN含量也与TP(P<0.05)和SOC(P<0.01)显著正相关。在雨季,仅SOC与MBN呈显著正相关(P<0.05)。(3)在旱季,MBC含量变化主要受ROC(P<0.05)和AN(P<0.001)影响,MBN则受AN控制(P<0.05)。在雨季,AN(P<0.05)主导了MBC的变化,TP(P<0.05)和SOC(P<0.05)是MBN变异的主导因子。AN(P<0.001)和SOC(P<0.001)是旱、雨季土壤MBC和MBN变化的主导因子。(4)土壤MBC和MBC/MBN稳态指数在年际间均为绝对稳态型(P>0.05);雨季的MBN(P=0.685)为绝对稳态型,但旱季为非稳态(P<0.01,H>1)。雨季微生物熵显著高于旱季(P<0.01),表明土壤有机质质量及养分利用效率更高。综上,MBC和MBN含量受季节更替显著影响,且主要受土壤SOC和AN的影响;受旱季水分限制,MBN的稳态更差。 展开更多
关键词 常绿阔叶林 土壤微生物生物量碳氮 年际动态特征 环境因子
下载PDF
不同耕作及秸秆还田方式对土壤养分及微生物生物量碳氮的影响
17
作者 杨冰 孟祥海 +5 位作者 王佰成 王文慧 时新瑞 徐德海 张帅 张星哲 《黑龙江农业科学》 2024年第7期24-29,共6页
为促进作物稳产增产,采用田间定位试验,研究不同耕作[免耕(NT)、浅耕(ST)、深耕(DT)]及秸秆还田方式[秸秆还田(-T)、秸秆离田]下,黑土区土壤剖面(0~10 cm、10~20 cm、20~30 cm、30~40 cm)养分及微生物量碳、微生物量氮的变化。结果表明... 为促进作物稳产增产,采用田间定位试验,研究不同耕作[免耕(NT)、浅耕(ST)、深耕(DT)]及秸秆还田方式[秸秆还田(-T)、秸秆离田]下,黑土区土壤剖面(0~10 cm、10~20 cm、20~30 cm、30~40 cm)养分及微生物量碳、微生物量氮的变化。结果表明,不同耕作方式处理的土壤理化性质存在显著差异,在各耕层中土壤有机质含量最高的处理依次为NT-T、DT、ST-T和DT;全氮含量最高的处理依次为ST-T、DT、NT-T和NT-T;速效氮含量最高的处理依次为DT-T、DT-T、DT和NT;土壤各耕层pH均为ST处理最高;土壤含水率在0~10 cm土层中NT-T处理最高,其他土层中均为ST-T处理显著高于其他处理;土壤微生物生物量碳、氮含量均表现为ST-T处理最高。不同的耕作方式下,土壤有机质、速效氮、含水率在秸秆还田方式下表现最高;而土壤微生物生物量碳氮含量无论在秸秆是否还田下,浅耕和深耕的方式均优于免耕。 展开更多
关键词 耕作方式 秸秆还田 不同耕层 土壤养分 微生物生物量碳 微生物生物量氮
下载PDF
秸秆还田和水旱轮作模式对稻季土壤温室气体排放的影响
18
作者 邓姣 李心雨 +6 位作者 朱杰 杨伟 李成伟 蒋梦蝶 朱波 聂江文 刘章勇 《植物营养与肥料学报》 CAS CSCD 北大核心 2024年第2期268-278,共11页
【目的】探究不同水旱轮作模式下,冬季作物秸秆还田对后茬水稻季作物产量和温室气体排放的影响,为长江中游稻田选择适宜的秸秆还田方式和农业可持续生产提供科学依据。【方法】田间试验在湖北荆州进行,设置水稻–小麦(稻麦)、水稻–油菜... 【目的】探究不同水旱轮作模式下,冬季作物秸秆还田对后茬水稻季作物产量和温室气体排放的影响,为长江中游稻田选择适宜的秸秆还田方式和农业可持续生产提供科学依据。【方法】田间试验在湖北荆州进行,设置水稻–小麦(稻麦)、水稻–油菜(稻油)和水稻–紫云英(稻肥)3种水旱轮作模式,每个模式下设置冬季作物收获后秸秆还田和不还田处理。在秸秆还田后的水稻季,采用静态暗箱—气相色谱法连续监测稻田中甲烷(CH_(4))和氧化亚氮(N_(2)O)排放量,在水稻分蘖期、抽穗期、成熟期采集0—5、5—10、10—20 cm土层样品,测定微生物量碳(MBC)、可溶性有机碳(DOC)、铵态氮(NH_(4)^(+)-N)和硝态氮(NO_(3)^(-)-N)含量,收获期测定水稻产量。【结果】秸秆还田和不同轮作模式对后茬水稻产量均无显著影响。与稻肥轮作相比,在秸秆还田条件下稻油和稻麦轮作水稻季土壤CH_(4)和N_(2)O排放分别高出44%~58%和17%~30%,在秸秆不还田条件下则分别高出58%~72%和15%~22%。与秸秆不还田相比,秸秆还田条件下3种轮作模式平均CH_(4)和N_(2)O排放分别增加26%~39%和20%~29%。秸秆还田条件下,稻油和稻麦轮作稻季土壤全球增温潜势(GWP)和温室气体排放强度(GHGI)分别比稻肥轮作高出14%~19%和12%~19%,秸秆不还田条件下分别高出18%~23%和15%~24%。与秸秆不还田相比,秸秆还田条件下3种轮作模式稻季土壤平均GWP和GHGI高出31%和32%,同时土壤硝态氮、微生物量碳和可溶性有机碳含量均显著提高。此外,稻麦轮作土壤微生物量碳和可溶性有机碳含量显著高于稻肥、稻油轮作。相关性分析表明,秸秆还田条件下,CH_(4)和N_(2)O排放与NO_(3)^(-)-N呈极显著正相关(P<0.01),而秸秆不还田条件下CH_(4)排放与NO_(3)^(-)-N呈极显著正相关(P<0.01),N_(2)O排放与NH_(4)^(+)-N呈极显著正相关(P<0.01)。【结论】水稻季土壤CH_(4)和N_(2)O的排放与土壤可利用性碳氮浓度的升高密切相关。前茬作物秸秆还田导致水稻季温室气体排放显著增加,与稻麦、稻油轮作相比,水稻–紫云英轮作稻季土壤的温室气体排放量最低,是较为生态环境友好型的种植制度。 展开更多
关键词 轮作模式 秸秆还田 增温潜势 排放强度 土壤可溶性有机碳 微生物量碳 有效氮
下载PDF
水肥添加对草田轮作系统土壤呼吸速率的影响
19
作者 巩泽琳 额尔德木图 +4 位作者 苏小港 成蓉蓉 杨鹤明 张晓琳 翟鹏辉 《草地学报》 CAS CSCD 北大核心 2024年第2期562-569,共8页
土壤呼吸是生态系统碳排放最重要的途径,其微小变化将对陆地生态系统碳循环产生深远的影响。为探究不同管理方式对草田轮作系统土壤碳排放的影响,本研究开展水肥添加控制试验,动态监测紫花苜蓿(Medicago sativa L.)-冬小麦(Triticum aes... 土壤呼吸是生态系统碳排放最重要的途径,其微小变化将对陆地生态系统碳循环产生深远的影响。为探究不同管理方式对草田轮作系统土壤碳排放的影响,本研究开展水肥添加控制试验,动态监测紫花苜蓿(Medicago sativa L.)-冬小麦(Triticum aestivum L.)草田轮作系统中冬小麦阶段的土壤呼吸速率、土壤微生物生物量碳/氮含量、土壤温度和土壤含水量等指标。结果显示水分添加使土壤呼吸速率提高28.5%(P<0.05),但肥料添加对其影响不显著。水分添加使土壤含水量提高24.7%,但使土壤温度降低9.7%;肥料添加使土壤温度降低11.0%,使0~10 cm, 10~20 cm土层土壤微生物生物量氮含量提高336%,131%。本研究说明水肥添加通过影响土壤温度、土壤含水量等土壤质量指标,影响植物根系生长发育和微生物活性,最终影响草田轮作系统土壤碳排放。 展开更多
关键词 紫花苜蓿-冬小麦 微生物生物量碳/氮含量 土壤呼吸速率 水肥添加
下载PDF
云南亚热带常绿阔叶林土壤微生物量对大气氮沉降的响应
20
作者 李茂楠 刘宪斌 +3 位作者 杨亚丽 张宝 段恩省 杨应忠 《安徽农业科学》 CAS 2024年第1期39-44,50,共7页
以玉溪市城区生态植物园中结构和功能保护较好的次生常绿阔叶林为研究地点,分别设置0、1、5、10、15和30 g/(m^(2)·a)共6个氮浓度试验处理,采用林冠下喷雾的方式处理2年,采集0~10 cm表层土壤测定土壤全碳和全氮含量、活性有机碳含... 以玉溪市城区生态植物园中结构和功能保护较好的次生常绿阔叶林为研究地点,分别设置0、1、5、10、15和30 g/(m^(2)·a)共6个氮浓度试验处理,采用林冠下喷雾的方式处理2年,采集0~10 cm表层土壤测定土壤全碳和全氮含量、活性有机碳含量及其转化率、微生物量碳和氮含量。研究结果表明:中高浓度大气氮沉降明显增加了土壤全碳和全氮含量,降低了活性有机碳含量及其转化率,减少了微生物量碳和氮含量,说明中高浓度大气氮沉降能够影响亚热带常绿阔叶林土壤碳循环和氮循环进程,增加土壤碳库和氮库,改变土壤碳组分,延缓土壤碳转化过程,减少土壤微生物总量。数据相关分析结果表明:土壤全碳含量与大气氮沉降浓度呈多项式关系,即土壤全碳含量随大气氮沉降浓度升高而增加,在10 g/(m^(2)·a)N水平达到最大值[(31.05±1.94)g/kg],之后随着大气氮沉降浓度的继续升高而降低;土壤全氮含量与大气氮沉降浓度呈线性正相关关系,即土壤全氮含量随着大气氮沉降浓度持续升高而不断增加;土壤活性有机碳含量及其转化率、微生物量碳和氮含量与大气氮沉降浓度呈线性负相关关系,即随着大气氮沉降浓度持续升高而不断降低。 展开更多
关键词 大气氮沉降 土壤微生物量碳 土壤微生物量氮 土壤全碳 云南亚热带常绿阔叶林
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部