Conservation tillage as an effective alternative to mitigate soil degradation has attracted worldwide attention,but the influences of conservation tillage on soil microbial community and especially function remain unc...Conservation tillage as an effective alternative to mitigate soil degradation has attracted worldwide attention,but the influences of conservation tillage on soil microbial community and especially function remain unclear.Shotgun metagenomics sequencing was performed to examine the taxonomic and functional community variations of black soils under three tillage regimes,namely no-tillage with residue(maize straw)return(NTS),moldboard plow with residue return(MPS),and moldboard plow without residue return(MPN)in Northeast China.The results revealed:1)Soil bacterial and archaeal communities differed significantly under different tillage regimes in contrast to soil fungal community.2)The overlay of less tillage and residues return under NTS led to unique soil microbial community composition and functional composition.Specifically,in contrast to other treatments,NTS increased the relative abundances of some taxa such as Bradyrhizobium,Candidatus Solibacter,and Reyranella,along with the relative abundances of some taxa such as Sphingomonas,Unclassified Chloroflexi and Nitrososphaera decreased;NTS had a unique advantage of increasing the relative abundances of genes involved in‘ATP-binding cassette(ABC)transporters’and‘quorum sensing(QS)’pathways,while MPN favored the genes involved in‘flagellar assembly’pathway and some metabolic pathways such as‘carbon’and‘glyoxylate and dicarboxylate’and‘selenocompound’metabolisms.3)Significantly different soil bacterial phyla(Acidobacteria,Gemmatimonadetes,and Chloroflexi)and metabolic pathways existed between MPN and another two treatments(NTS and MPS),while did not exist between NTS and MPS.4)Dissolved organic carbon(DOC)and soil bulk density were significantly affected(P<0.05)by tillage and accounted for the variance both in microbial(bacterial)community structure and functional composition.These results indicated that a change in tillage regime from conventional to conservation tillage results in a shift of microbial community and functional genes,and we inferred that residue return played a more prominent role than less tillage in functional shifts in the microbial community of black soils.展开更多
Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen...Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.展开更多
Litter microorganisms play a crucial role in the biological decomposition in forest ecosystems;however,the coupling effect of meteorological and substrate changes on it during the different stages of leaf decompositio...Litter microorganisms play a crucial role in the biological decomposition in forest ecosystems;however,the coupling effect of meteorological and substrate changes on it during the different stages of leaf decomposition in situ remains unclear.Hence,according to meteorological factors dynamics,a one-year field litter of Quercus wutaishanica in situ decomposition experiment was designed for four decay stages in a warm temperate forest.Microbial community composition was characterized using Illumina sequencing of fungal ITS and bacterial 16S genes.Bacterial(6.6)and fungal(3.6)Shannon indexes were the largest after 125 days’litter decomposition(October).The relative abundance of Acidobacteria after 342 days and Bacteroidetes after 125 days were 3 and 24 times higher than after 31 days,respectively.Some non-dominant species(bacteria:Firmicutes,Planctomycotes,and Verrucomicrobia;fungi:Chytridiomycota and Glomeromomycota)may be absent or present at different decomposition stages due to litter properties or meteorological factors.Chemoheterotrophy and aerobic-chemoheterotrophy were the dominant bacterial functional groups,and the dominant fungal functional groups were saprotrophs,pathotrophs,and symbiotrophs.Precipitation and relative humidity significantly affected bacteria.Temperature,sunlight intensity,and net radiation significantly affected fungi.Besides,among the relative contributions of changes in bacterial and fungal community structure,leaf litter properties alone explained the variation of 5.51%and 10.63%.Microbial diversity and decay stage directly affected the litter mass-loss rate,with meteorological factors(precipitation,relative humidity,air temperature,and sunlight intensity)being indirect.Our findings highlight the importance of microbial diversity for leaf litter decomposition and the influence of meteorological factors.展开更多
Background Global climate change has resulted in precipitation regimes exhibiting an increasing trend in rainfall intensity but a reduction in frequency.In addition,nitrogen(N)deposition occurs simultaneously in arid ...Background Global climate change has resulted in precipitation regimes exhibiting an increasing trend in rainfall intensity but a reduction in frequency.In addition,nitrogen(N)deposition occurs simultaneously in arid and semi-arid regions.Microbial biomass,diversity,composition,and species interactions are key determinants of ecological functions.We examined the effects of changes in precipitation intensity and N addition on the soil bacterial and fungal communities in a semi-arid grassland in Inner Mongolia,China.Methods The microbial biomass(bacterial PLFAs and fungal PLFAs)was determined through phospholipid fatty acid(PLFA)analysis,and microbial diversity(Shannon index and evenness index)was determined with high-throughput sequencing(16S and ITS).Species interactions were determined using a molecular ecological network analysis.The relationships between microbial community(bacterial community and fungal community)and environmental variables were examined by Mantel tests.Results We found that N addition decreased fungal PLFA under moderate,high,and extreme precipitation intensity treatments and increased fungal community complexity under the high precipitation intensity treatment.Furthermore,N addition increased bacterial diversity under moderate and high precipitation intensity treatments.N addition caused greater environmental stress to the fungal community,which was dominated by deterministic processes.Conclusions The effects of N deposition on soil bacterial and fungal communities were altered by precipitation intensity.The changes in soil bacterial and fungal communities were different,implying that composition and functional traits adapt differently to projected global changes at a regional scale.展开更多
Greenhouse vegetable production has been characterized by high agricultural inputs, high temperatures, and high cropping indexes. As an intensive form of agriculture, nutrient cycling induced by microbial activities i...Greenhouse vegetable production has been characterized by high agricultural inputs, high temperatures, and high cropping indexes. As an intensive form of agriculture, nutrient cycling induced by microbial activities in the greenhouses is relatively different from open fields in the same region. However, the responses of soil microbial biomass carbon (MBC) and nitrogen (MBN), enzyme activities, microbial community composition, and yield to organic amendment are not well understood. Therefore, a 5-year greenhouse tomato (Solanum lycopersicum Mill.)-cucumber (Cucumis sativus L.) rotation experiment was conducted. The field experiment comprised 5 treatments: 4/4CN (CN, nitrogen in chemical fertilizer), 3/4CN+1/4MN (MN, nitrogen in pig manure), 2/4CN+2/4MN, 2/4CN+1/4 MN+1/4 SN (SN, nitrogen in corn straw) and 2/4CN+2/4SN. The amounts of nitrogen (N), phosphorus (P2O5), and potassium (K2O) were equal in the five treatments. Starting with the fourth growing season, the optimal yield was obtained from soil treated with straw. MBC, MBN, phospholipid fatty acid (PLFA) profiles, and enzyme activities were significantly changed by 5 years of substitution with organic amendments. Redundancy analysis showed that MBC accounts for 89.5 and 52.3% of the total enzyme activity and total community variability, respectively. The activities of phosphomonoesterase, N-acetyl-glucosaminidase, and urease, and the relative abundances of fungi, actinomycetes, and Gram-negative bacteria were significantly and positively related to vegetable yields. Considering the effects of organic amendments on soil microbial characteristics and vegetable yield, 2/4CN+1/4MN+1/4SN can improve soil quality and maintain sustainable high yield in greenhouse vegetable production.展开更多
As widespread wetland plants,Phragmites play a vital role in water purification and are widely utilized in constructed wetlands(accounting for 15.5%of applied wetland plants)as a natural alternative to wastewater trea...As widespread wetland plants,Phragmites play a vital role in water purification and are widely utilized in constructed wetlands(accounting for 15.5%of applied wetland plants)as a natural alternative to wastewater treatment.However,despite such common applications,current understanding of the basic composition of the Phragmites root-inhabiting microbiome and the complex functions of each member of this microbiome remains incomplete,especially regarding pollution remediation.This review summa-rizes the advances that have been made in ecological and biochemical research on the Phragmites root microbiome,including bacteria,archaea,and fungi.Based on next-generation sequencing,microbial com-munity compositions have been profiled under various environmental conditions.Furthermore,culture-based methods have helped to clarify the functions of the microbiome,such as metal iron stabilization,organic matter degradation,and nutrient element transformation.The unique community structure and functions are highly impacted by Phragmites lineages and environmental factors such as salinity.Based on the current understanding of the Phragmites root microbiome,we propose that synthetic microbial com-munities and iron–manganese plaque could be applied and intensified in constructed wetlands to help promote their water purification performance.展开更多
Soil erosion is a serious issue in the sandy-hilly region of Shanxi Province,Northwest China.There has been gradual improvement due to vegetation restoration,but soil microbial community characteristics in different v...Soil erosion is a serious issue in the sandy-hilly region of Shanxi Province,Northwest China.There has been gradual improvement due to vegetation restoration,but soil microbial community characteristics in different vegetation plantation types have not been widely investigated.To address this,we analyzed soil bacterial and fungal community structures,diversity,and microbial and soil environmental factors in Caragana korshinskii Kom.,Populus tomentosa Carr.,Populus simonii Carr.,Salix matsudana Koidz,and Pinus tabulaeformis Carr.forests.There were no significant differences in the dominant bacterial community compositions among the five forest types.The alpha diversity of the bacteria and fungi communities showed that ACE(abundance-based coverage estimator),Chao1,and Shannon indices in C.korshinskii forest were significantly higher than those in the other four forest types(P<0.05).Soil organic matter,total nitrogen,and urease had a greater impact on bacterial community composition,while total nitrogen,β-glucosidase,and urease had a greater impact on fungal community composition.The relative abundance of beneficial and pathogenic microorganisms was similar across all forest types.Based on microbial community composition,diversity,and soil fertility,we ranked the plantations from most to least suitable as follows:C.korshinskii,S.matsudana,P.tabulaeformis,P.tomentosa,and P.simonii.展开更多
Background:Nitrogen(N)and phosphorus(P)deposition have largely affected soil respiration(Rs)in forest ecosystems.However,few studies have explored how N and P individually or in combination to influence Rs and its com...Background:Nitrogen(N)and phosphorus(P)deposition have largely affected soil respiration(Rs)in forest ecosystems.However,few studies have explored how N and P individually or in combination to influence Rs and its components(autotrophic respiration,Ra;heterotrophic respiration,Rh),especially in highly P-limited subtropical forests.To address this question,we conducted a field manipulation experiment with N and/or P addition in a 50-year-old subtropical secondary forest.Results:We found that N addition on average reduced Rs,Ra,and Rh by 15.2%,15%,and 11.7%,respectively during 2-year field study.P addition had an inconsistent effect on Ra,with Ra increasing by 50.5%in the first year but reducing by 26.6%in the second year.Moreover,P addition on average decreased Rh by 8.9%–30.9%and Rs by 6.7%–15.6%across 2 years.In contrast,N and P co-addition on average increased Rs,Ra,and Rh by 1.9%,7.9%,and 2.1%during the experimental period.Though Rs and Rh were significantly correlated with soil temperature,their temperature sensitivities were not significantly changed by fertilization.Ra was predominantly regulated by soil nitrogen availability(NH4+and NO3−),soil dissolved organic carbon(DOC),and enzyme activities,while the variation in Rh was mainly attributable to changes in soil microbial community composition and soilβ-D-Cellubiosidase(CB)andβ-Xylosidase(XYL)activities.Conclusion:Our findings highlight the contrasting responses of Rs and its components to N or P addition against N and P co-addition,which should be differentially considered in biogeochemical models in order to improve prediction of forest carbon dynamics in the context of N and P enrichment in terrestrial ecosystems.展开更多
The Loess Plateau,located in Gansu Province,is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province.In the last 40 a,ecological environment in this region has b...The Loess Plateau,located in Gansu Province,is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province.In the last 40 a,ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources.Remediation of crude-oil contaminated soil in this area remains to be a challenging task.In this study,in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil(20 g/kg)by Calendula officinalis,we designed five treatments,i.e.,natural attenuation(CK),planted C.officinalis only(P),planted C.officinalis with biochar amendment(PB),planted C.officinalis with organic compost amendment(PC),and planted C.officinalis with co-amendment of biochar and organic compost(PBC).After 152 d of cultivation,total petroleum hydrocarbons(TPH)removal rates of CK,P,PB,PC and PBC were 6.36%,50.08%,39.58%,73.10%and 59.87%,respectively.Shoot and root dry weights of C.officinalis significantly increased by 172.31%and 80.96%under PC and 311.61%and 145.43%under PBC,respectively as compared with P(P<0.05).Total chlorophyll contents in leaves of C.officinalis under P,PC and PBC significantly increased by 77.36%,125.50%and 79.80%,respectively(P<0.05)as compared with PB.Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed.The highest total N,total P,available N,available P and SOM(soil organic matter)occurred in PC,followed by PBC(P<0.05).C.officinalis rhizospheric soil dehydrogenase(DHA)and polyphenol oxidase(PPO)activities in PB were lower than those of other treatments(P<0.05).The values of ACE(abundance-based coverage estimators)and Chao 1 indices for rhizospheric bacteria were the highest under PC followed by PBC,P,PB and CK(P<0.05).However,the Shannon index for bacteria was the highest under PC and PBC,followed by P,PB and CK(P<0.05).In terms of soil microbial community composition,Proteiniphilum,Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC.Relative abundances of Pseudallescheria,Ochroconis,Fusarium,Sarocladium,Podospora,Apodus,Pyrenochaetopsis and Schizothecium under PC and PBC were higher,while relative abundances of Gliomastix,Aspergillus and Alternaria were lower under PC and PBC.As per the nonmetric multidimensional scaling(NMDS)analysis,application of organic compost significantly promoted soil N and P contents,shoot length,root vitality,chlorophyll ratio,total chlorophyll,abundance and diversity of rhizospheric soil microbial community in C.officinalis.A high p H value and lower soil N and P contents induced by biochar,altered C.officinalis rhizospheric soil microbial community composition,which might have restrained its phytoremediation efficiency.The results suggest that organic compost-assisted C.officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau,China.展开更多
The impact of forest microhabitats on physiochemical properties of the soil and that of microbial communities on tropical soils remain poorly understood.To elucidate the effect of tropical forest stand on leaf litter ...The impact of forest microhabitats on physiochemical properties of the soil and that of microbial communities on tropical soils remain poorly understood.To elucidate the effect of tropical forest stand on leaf litter and soil microbial communities,we studied enzyme activities,microbial biomass,and diversity in three distinct microhabitats in terms of plant richness,diameter at breast height(DBH),and physiochemical properties of soil and litter,each associated with a different Vanilla sp.In the soil,positive correlations were found between electrical conductivity(EC)and total organic carbon(TOC)with phosphatase activity,and between nitrogen(N)and water-soluble carbon(WSC)content with urease activity(UA).In the litter,the water content was positively correlated with bacterial and fungal biomass,and N and WSC contents were positively correlated with fungal biomass.Positive correlations were found between plant richness and UA in the soil,plant richness and fungal biomass in the soil and litter,and DBH and fungal biomass in the litter.Amplicon sequencing revealed differences between microhabitats in the relative abundance of some fungal and bacterial taxa and in the bacterial community composition of both litter and soil.Bacterial richness and diversity were different between microhabitats,and,in litter samples,they were negatively correlated with DBH and plant richness,respectively.By contrast,none of the soil and litter physiochemical properties were significantly correlated with microbial diversity.Our results show that significant shifts in enzyme activity,microbial biomass,and diversity in the microhabitats were driven by key abiotic and biotic factors depending on the soil or litter sample type.展开更多
During the past two decades interest in linking soil microbial community composition and activity with ecosystem scale field studies of nutrient cycling or plant community response to disturbances has grown.Despite it...During the past two decades interest in linking soil microbial community composition and activity with ecosystem scale field studies of nutrient cycling or plant community response to disturbances has grown.Despite its importance there are challenges in making this linkage.Foremost is the question of analytical feasibility.In general,microbiological community-level methodologies have not been readily adaptable to the large sample sizes necessary for ecosystem-scale research.As a result,it has been difficult to generate compatible microbial and ecosystem data sets.Soil lipid analysis shows potential as a middle ground between simple biomass measures and molecular profiling.However,the two protocols that have most often been followed are either rapid but indiscriminate(total lipid analysis or fatty acid methyl ester analysis;FAME),or precise but time consuming(phospholipid fatty acid analysis;PLFA).In this paper we report results from a standardized soil used test a modified extraction method(the‘hybrid’method)developed to balance the speed of FAME and the precision of PLFA in order to increase sample throughput.In comparing the three methods,we find that FAME and PLFA are qualitatively and quantitatively distinct.The FAME method yielded the highest fatty acid abundance,but also had high variance resulting in low precision.The PLFA method had precision,but low yield.The‘hybrid’method fell midway between FAME and PLFA for quantitative fatty acid yield.In addition,the hybrid extraction can be completed in a fraction of the time it takes for PLFA.The hybrid protocol appears to provide an optimal balance between effort and accuracy and therefore is a good choice for large-scale ecosystem studies.展开更多
There is limited knowledge about microbial communities and their ecological functions in karst caves with high CO_(2)concentrations.Here,we studied the microbial community compositions and functions in Shuiming Cave( ...There is limited knowledge about microbial communities and their ecological functions in karst caves with high CO_(2)concentrations.Here,we studied the microbial community compositions and functions in Shuiming Cave( "SMC",CO_(2)concentration 3 303 ppm) and Xueyu Cave( "XYC",CO_(2)concentration 8 753 ppm) using Illumina MiSeq high-throughput sequencing in combination with BIOLOG test.The results showed that Proteobacteria,Actinobacteria and Bacteroidetes were dominant phyla in these two caves,and Thaumarchaeota was the most abundant in the rock wall samples of SMC.The microbial diversity in the water samples decreased with increasing HCO_(3)^(-)concentration,and it was higher in XYC than that in SMC.The microbial community structures in the sediment and rock wall samples were quite different between the two caves.High concentrations of CO_(2)can reduce the microbial diversity on the rock walls in karst caves,probably through changing microbial preference for different types of carbon sources and decreasing the microbial utilization rate of carbon sources.These results expanded our understanding of microbial community and its response to environments in karst caves with high CO_(2).展开更多
Nitrogen(N)addition can significantly affect the amount of soil carbon(C)pools through biological routes,and microbial residues are important components of soil carbon pools.However,it remains unclear how N addition a...Nitrogen(N)addition can significantly affect the amount of soil carbon(C)pools through biological routes,and microbial residues are important components of soil carbon pools.However,it remains unclear how N addition affects the accumulation of soil microbial residues in meadow grasslands.This study analyzed the effects of N addition on microbial residues in a meadow grassland soil,and the key factors affecting the accumulation of microbial residues under N addition were analyzed in combination with soil physicochemical properties and microbial community structure.The results showed that N addition significantly changed the structure of the microbial communities and the accumulation of microbial residues,mainly manifested by a significant decrease in fungal biomass and the fungal/bacterial ratio(F/B),but had no significant effect on bacterial or total microbial biomass(PLFAs).N addition significantly increased the accumulation of fungal residues(7.45%),but had no significant effect on the accumulation of bacterial residues or total amino sugar(TAS).We found that fungal residues were more affected by soil environmental factors than bacterial residues.The results of the random forest analysis showed that bacterial biomass under N addition was the most important predictor of soil bacterial residues,whereas total N(TN),pH and F/B were the most important predictors of soil fungal residue.In summary,our results indicate that fungal communities and residues accumulation play important roles in regulating the response of grassland soil C to N addition,further enhancing our understanding of the mechanisms of soil carbon pool to N addition.展开更多
Background:Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly infuenced by climate warming.Soil microorganisms play an important role in maintaining ecosystem stability,but t...Background:Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly infuenced by climate warming.Soil microorganisms play an important role in maintaining ecosystem stability,but their responses to freeze–thaw cycles(FTCs)are poorly understood.We conducted a feld freeze–thaw experiment in a natural Korean pine and broadleaf mixed forest in the Changbai Mountain Nature Reserve,China,to determine the dynamic responses of soil microbial communities to FTCs.Results:Bacteria were more sensitive than fungi to FTCs.Fungal biomass,diversity and community composition were not signifcantly afected by freeze–thaw regardless of the stage.Moderate initial freeze–thaw resulted in increased bacterial biomass,diversity,and copiotrophic taxa abundance.Subsequent FTCs reduced the bacterial biomass and diversity.Compared with the initial FTC,subsequent FTCs exerted an opposite efect on the direction of change in the composition and function of the bacterial community.Soil water content,dissolved organic carbon,ammonium nitrogen,and total dissolved phosphorus were important factors determining bacterial community diversity and composition during FTCs.Moreover,the functional potentials of the microbial community involved in C and N cycling were also afected by FTCs.Conclusions:Diferent stages of FTCs have diferent ecological efects on the soil environment and microbial activities.Soil FTCs changed the soil nutrients and water availability and then mainly infuenced bacterial community composition,diversity,and functional potentials,which may disturb C and N states in this temperate forest soil.This study also improves our understanding of microbial communities regulating their ecological functions in response to climate change.展开更多
In rice-wheat rotation systems, changes in soil phosphorus(P) pools and microorganisms in rice-growing seasons have been studied;however, further investigations are required to test whether these indexes exhibit diffe...In rice-wheat rotation systems, changes in soil phosphorus(P) pools and microorganisms in rice-growing seasons have been studied;however, further investigations are required to test whether these indexes exhibit different responses in wheat-growing seasons. Additionally, such studies need to include potential variations in soil carbon(C) structure and microbial community composition. In this study, a long-term rice-wheat rotation P-input reduction experiment was conducted to observe the variations in soil P pools and C composition in the 7th wheat season and to investigate the responses of soil enzyme activity and microbial communities. Four P fertilization treatments were included in the experiment, i.e., P application for rice season only(PR), for wheat season only(PW), and for both rice and wheat seasons(PR+W) and no P application in either season(Pzero). Compared with PR+W treatment, Pzero treatment significantly decreased(P < 0.05) labile and stable P pools. Different P fertilization regimes altered soil microbial community composition and enzyme activity, whereas C composition did not vary. However, PW treatment resulted in relatively more O-alkyl-C than PR treatment and the highest number of microorganisms. Besides, the higher ratios of fungi/bacteria and Gram-positive bactetia/Gram-negative bactetia were related to labile C pools, particularly O-alkyl-C, as opposed to recalcitrant C. Our results clarified the status of soil P pools, C chemistry, and the response of microorganisms under dry-farming conditions in the P input-reduced rice-wheat rotation system.展开更多
Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms,but little is known about their biodegradation in river sediments and their impact on microo...Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms,but little is known about their biodegradation in river sediments and their impact on microorganisms.We have set up the sterile and microbiological systems in the laboratory,adding 2-ethylhexyl-4-methoxycinnamate(EHMC),one of organic UV filters included in the list of high yield chemicals,at concentrations of 2,20 and 200μg/L,and characterized the microbial community composition and diversity in sediments.Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system(3.49 days)was much shorter than that in the sterile system(7.55 days).Two potential degradation products,4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system.Furthermore,high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi,Acidobacteria,Bacteroidetes and Nitrospirae;Eukaryota_uncultured fungus dominated the sediment fungal assemblages.Correlation analysis demonstrated that two bacterium genera(Anaerolineaceae_uncultured and Burkholderiaceae_uncultured)were significantly correlated with the biodegradation of EHMC.These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities,which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.展开更多
Assembly processes of prokaryotic and microeukaryotic community is an important issue in microbial ecology.However,unclear remains about the relative contribution of deterministic and stochastic processes to the shapi...Assembly processes of prokaryotic and microeukaryotic community is an important issue in microbial ecology.However,unclear remains about the relative contribution of deterministic and stochastic processes to the shaping of prokaryotic and microeukaryotic communities in saline lake water.Here,we systematically investigated the assembly processes governing the prokaryotic and microeukaryotic communities in Qinghai Lake with the use of Illumina sequencing and a null model.The results showed that both deterministic and stochastic processes play vital roles in shaping the assemblies of prokaryotic and microeukaryotic communities,in which stochastic processes appeared to dominate(> 70%).Prokaryotic communities were mainly governed by non-dominant processes(60.4%),followed by homogeneous selection(15.8%),variable selection(13.6%) and dispersal limitation(10.2%),whereas microeukaryotes were strongly driven by non-dominant processes(68.9%),followed by variable selection(23.6%) and homogenizing dispersal(6.3%).In terms of variable selection,nutrients(e.g.,ammonium,dissolved inorganic carbon,dissolved organic carbon and total nitrogen) were the major factors influencing prokaryotic and microeukaryotic community structures.In summary,prokaryotes and microeukaryotes can be predominantly structured by different assembly mechanisms,in which stochasticity is stronger than deterministic processes.This finding helps to better comprehend the assembly of prokaryotic and eukaryotic communities in saline lakes.展开更多
Aims Plants generally respond to nitrogen(N)fertilization with increased growth,but N addition can also suppress rhizosphere effects,which consequently alters soil processes.We quantified the influence of N addition o...Aims Plants generally respond to nitrogen(N)fertilization with increased growth,but N addition can also suppress rhizosphere effects,which consequently alters soil processes.We quantified the influence of N addition on rhizosphere effects of two C4 grasses:smooth crabgrass(Digitaria ischaemum)and bermudagrass(Cynodon dactylon).Methods Plants were grown in nutrient-poor soil for 80 days with either 20 or 120μg NH4No3-N g dry soil−1.N mineralization rates,microbial biomass,extracellular enzyme activities and bacterial community structure were measured on both rhizosphere and bulk(unplanted)soils after plant harvest.Important Findings Fertilization showed nominal differences in net N mineralization,extracellular enzyme activity and microbial biomass between the rhizosphere and bulk soils,indicating minimal influence of N on rhizosphere effects.Instead,the presence of plant roots showed the strongest impact(up to 80%)on rates of net N mineralization and activities of three soil enzymes indicative of N release from organic matter.Principal component analysis of terminal restriction fragment length polymorphism(t-rFlP)also reflected these trends by highlighting the importance of plant roots in structuring the soil bacterial community,followed by plant species and N fertilization(to a minor extent).overall,the results indicate minor contributions of short-term N fertilization to changes in the magnitude of rhizos-phere effects for both grass species.展开更多
Land use changes affect belowground ecosystems.During the past few decades,land use in Northeast China has changed considerably,and the area of paddy fields has increased rapidly from upland.In this study,soil charact...Land use changes affect belowground ecosystems.During the past few decades,land use in Northeast China has changed considerably,and the area of paddy fields has increased rapidly from upland.In this study,soil characteristics and soil biotic community in paddy fields with different years of rice cultivation were measured to examine the effects of land use change from upland to paddy fields on soil micro-food web.The upland maize fields were selected as control and the microbial community composition was characterized using phospholipid fatty acids(PLFAs) analysis.The microbial biomass(total PLFA),bacteria biomass,and fungi biomass were higher in the 20-40-year(late-stage) than 1-10-year(early-stage) paddy fields.The abundances of total nematodes and bacterivores were lower in the early-stage than late-stage paddy fields.The abundance of herbivores was the highest in the early-stage paddy fields but that of omnivore-predators was the highest in the late-stage paddy fields.Structural equation model indicated that soil food web was developed and structured after 20 years of paddy cultivation.Our results suggested that soil micro-food web may be a good indicator for soil development and stabilization of paddy fields following land use change.展开更多
The rhizosphere priming effect(RPE)is increasingly being considered to be an important regulator of soil organic matter(SOM)decomposition and nutrient turnover,with potential importance for the global CO_(2) budget.As...The rhizosphere priming effect(RPE)is increasingly being considered to be an important regulator of soil organic matter(SOM)decomposition and nutrient turnover,with potential importance for the global CO_(2) budget.As a result,studies on the RPE have rapidly increased in number over the last few years.Most of these experiments have been performed using unplanted soil as the control,which could potentially lead to incorrect assessment of the RPE.Therefore,we performed a greenhouse experiment to investigate how the choice of control(i.e.,unplanted control and planted control)influenced the quantification of RPE on SOM decomposition and gross nitrogen(N)mineralization,and to link this to differences in microbial and abiotic soil properties between the two controls.In the planted control,planted seedlings were cut at soil surface 5 d before measurement of the RPE.The RPE on SOM decomposition was positive in pine soil and almost 2-fold higher when calculated from the planted control than from the unplanted control.In spruce soil,a negative RPE on SOM decomposition was found when calculated from the planted control,while the RPE was positive when calculated from the unplanted control.No RPE on gross N mineralization was found when calculated from the planted control,while a positive RPE of more than 100%was found when calculated from the unplanted control.The microbial biomass and growth rate were lower,while the inorganic N content was higher in the unplanted control than in the planted control.The microbial community composition and potential enzyme activity in the planted treatment and planted control were similar,but they differed significantly from those in the unplanted control.The results showed that the RPE varied widely depending on the choice of control;thus,we suggest that a planted control,in which the aboveground plant parts are removed only a few days before the measurement of RPE,should be used as the control when elucidating the RPE on belowground C and N cycling responses to environmental change.展开更多
基金Under the auspices of the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA2307050103)National Natural Science Foundation of China(No.42071064,41877095)the Project of Changchun Science and Technology Plan(No.19SS019)。
文摘Conservation tillage as an effective alternative to mitigate soil degradation has attracted worldwide attention,but the influences of conservation tillage on soil microbial community and especially function remain unclear.Shotgun metagenomics sequencing was performed to examine the taxonomic and functional community variations of black soils under three tillage regimes,namely no-tillage with residue(maize straw)return(NTS),moldboard plow with residue return(MPS),and moldboard plow without residue return(MPN)in Northeast China.The results revealed:1)Soil bacterial and archaeal communities differed significantly under different tillage regimes in contrast to soil fungal community.2)The overlay of less tillage and residues return under NTS led to unique soil microbial community composition and functional composition.Specifically,in contrast to other treatments,NTS increased the relative abundances of some taxa such as Bradyrhizobium,Candidatus Solibacter,and Reyranella,along with the relative abundances of some taxa such as Sphingomonas,Unclassified Chloroflexi and Nitrososphaera decreased;NTS had a unique advantage of increasing the relative abundances of genes involved in‘ATP-binding cassette(ABC)transporters’and‘quorum sensing(QS)’pathways,while MPN favored the genes involved in‘flagellar assembly’pathway and some metabolic pathways such as‘carbon’and‘glyoxylate and dicarboxylate’and‘selenocompound’metabolisms.3)Significantly different soil bacterial phyla(Acidobacteria,Gemmatimonadetes,and Chloroflexi)and metabolic pathways existed between MPN and another two treatments(NTS and MPS),while did not exist between NTS and MPS.4)Dissolved organic carbon(DOC)and soil bulk density were significantly affected(P<0.05)by tillage and accounted for the variance both in microbial(bacterial)community structure and functional composition.These results indicated that a change in tillage regime from conventional to conservation tillage results in a shift of microbial community and functional genes,and we inferred that residue return played a more prominent role than less tillage in functional shifts in the microbial community of black soils.
基金supported by the earmarked fund for China Agriculture Research System(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)HAAFS Science and Technology Innovation Special Project,China(2022KJCXZX-ZHS-2).
文摘Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.41877074 and 42077072).
文摘Litter microorganisms play a crucial role in the biological decomposition in forest ecosystems;however,the coupling effect of meteorological and substrate changes on it during the different stages of leaf decomposition in situ remains unclear.Hence,according to meteorological factors dynamics,a one-year field litter of Quercus wutaishanica in situ decomposition experiment was designed for four decay stages in a warm temperate forest.Microbial community composition was characterized using Illumina sequencing of fungal ITS and bacterial 16S genes.Bacterial(6.6)and fungal(3.6)Shannon indexes were the largest after 125 days’litter decomposition(October).The relative abundance of Acidobacteria after 342 days and Bacteroidetes after 125 days were 3 and 24 times higher than after 31 days,respectively.Some non-dominant species(bacteria:Firmicutes,Planctomycotes,and Verrucomicrobia;fungi:Chytridiomycota and Glomeromomycota)may be absent or present at different decomposition stages due to litter properties or meteorological factors.Chemoheterotrophy and aerobic-chemoheterotrophy were the dominant bacterial functional groups,and the dominant fungal functional groups were saprotrophs,pathotrophs,and symbiotrophs.Precipitation and relative humidity significantly affected bacteria.Temperature,sunlight intensity,and net radiation significantly affected fungi.Besides,among the relative contributions of changes in bacterial and fungal community structure,leaf litter properties alone explained the variation of 5.51%and 10.63%.Microbial diversity and decay stage directly affected the litter mass-loss rate,with meteorological factors(precipitation,relative humidity,air temperature,and sunlight intensity)being indirect.Our findings highlight the importance of microbial diversity for leaf litter decomposition and the influence of meteorological factors.
基金supported by the National Natural Science Foundation of China(NSFC-31970410)Liaoning Revitalization Talents Program(XLYC2002083)+1 种基金Liaoning Province Science and Technology Plan Project(2018103004)Department of Science and Technology of Liaoning Province(2022JH5/10400111).
文摘Background Global climate change has resulted in precipitation regimes exhibiting an increasing trend in rainfall intensity but a reduction in frequency.In addition,nitrogen(N)deposition occurs simultaneously in arid and semi-arid regions.Microbial biomass,diversity,composition,and species interactions are key determinants of ecological functions.We examined the effects of changes in precipitation intensity and N addition on the soil bacterial and fungal communities in a semi-arid grassland in Inner Mongolia,China.Methods The microbial biomass(bacterial PLFAs and fungal PLFAs)was determined through phospholipid fatty acid(PLFA)analysis,and microbial diversity(Shannon index and evenness index)was determined with high-throughput sequencing(16S and ITS).Species interactions were determined using a molecular ecological network analysis.The relationships between microbial community(bacterial community and fungal community)and environmental variables were examined by Mantel tests.Results We found that N addition decreased fungal PLFA under moderate,high,and extreme precipitation intensity treatments and increased fungal community complexity under the high precipitation intensity treatment.Furthermore,N addition increased bacterial diversity under moderate and high precipitation intensity treatments.N addition caused greater environmental stress to the fungal community,which was dominated by deterministic processes.Conclusions The effects of N deposition on soil bacterial and fungal communities were altered by precipitation intensity.The changes in soil bacterial and fungal communities were different,implying that composition and functional traits adapt differently to projected global changes at a regional scale.
基金supported by the National Key Research and Development Program of China (2016YFD0201001)the earmarked fund for China Agriculture Research System (CARS-23-B02)the Key Research and Development Program of Shandong Province,China (2017CXGC0206)
文摘Greenhouse vegetable production has been characterized by high agricultural inputs, high temperatures, and high cropping indexes. As an intensive form of agriculture, nutrient cycling induced by microbial activities in the greenhouses is relatively different from open fields in the same region. However, the responses of soil microbial biomass carbon (MBC) and nitrogen (MBN), enzyme activities, microbial community composition, and yield to organic amendment are not well understood. Therefore, a 5-year greenhouse tomato (Solanum lycopersicum Mill.)-cucumber (Cucumis sativus L.) rotation experiment was conducted. The field experiment comprised 5 treatments: 4/4CN (CN, nitrogen in chemical fertilizer), 3/4CN+1/4MN (MN, nitrogen in pig manure), 2/4CN+2/4MN, 2/4CN+1/4 MN+1/4 SN (SN, nitrogen in corn straw) and 2/4CN+2/4SN. The amounts of nitrogen (N), phosphorus (P2O5), and potassium (K2O) were equal in the five treatments. Starting with the fourth growing season, the optimal yield was obtained from soil treated with straw. MBC, MBN, phospholipid fatty acid (PLFA) profiles, and enzyme activities were significantly changed by 5 years of substitution with organic amendments. Redundancy analysis showed that MBC accounts for 89.5 and 52.3% of the total enzyme activity and total community variability, respectively. The activities of phosphomonoesterase, N-acetyl-glucosaminidase, and urease, and the relative abundances of fungi, actinomycetes, and Gram-negative bacteria were significantly and positively related to vegetable yields. Considering the effects of organic amendments on soil microbial characteristics and vegetable yield, 2/4CN+1/4MN+1/4SN can improve soil quality and maintain sustainable high yield in greenhouse vegetable production.
基金supported by the National Natural Science Foundation of China (51778603)the Chinese Academy of Sciences(QYZDY-SSW-DQC004)
文摘As widespread wetland plants,Phragmites play a vital role in water purification and are widely utilized in constructed wetlands(accounting for 15.5%of applied wetland plants)as a natural alternative to wastewater treatment.However,despite such common applications,current understanding of the basic composition of the Phragmites root-inhabiting microbiome and the complex functions of each member of this microbiome remains incomplete,especially regarding pollution remediation.This review summa-rizes the advances that have been made in ecological and biochemical research on the Phragmites root microbiome,including bacteria,archaea,and fungi.Based on next-generation sequencing,microbial com-munity compositions have been profiled under various environmental conditions.Furthermore,culture-based methods have helped to clarify the functions of the microbiome,such as metal iron stabilization,organic matter degradation,and nutrient element transformation.The unique community structure and functions are highly impacted by Phragmites lineages and environmental factors such as salinity.Based on the current understanding of the Phragmites root microbiome,we propose that synthetic microbial com-munities and iron–manganese plaque could be applied and intensified in constructed wetlands to help promote their water purification performance.
基金This research was funded by the National Natural Science Foundation of China(42171033,41807518,41701045)the Shanxi Provincial Natural Science Foundation of China(201801D221336)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi Province,China(2019L0457,2019L0463).
文摘Soil erosion is a serious issue in the sandy-hilly region of Shanxi Province,Northwest China.There has been gradual improvement due to vegetation restoration,but soil microbial community characteristics in different vegetation plantation types have not been widely investigated.To address this,we analyzed soil bacterial and fungal community structures,diversity,and microbial and soil environmental factors in Caragana korshinskii Kom.,Populus tomentosa Carr.,Populus simonii Carr.,Salix matsudana Koidz,and Pinus tabulaeformis Carr.forests.There were no significant differences in the dominant bacterial community compositions among the five forest types.The alpha diversity of the bacteria and fungi communities showed that ACE(abundance-based coverage estimator),Chao1,and Shannon indices in C.korshinskii forest were significantly higher than those in the other four forest types(P<0.05).Soil organic matter,total nitrogen,and urease had a greater impact on bacterial community composition,while total nitrogen,β-glucosidase,and urease had a greater impact on fungal community composition.The relative abundance of beneficial and pathogenic microorganisms was similar across all forest types.Based on microbial community composition,diversity,and soil fertility,we ranked the plantations from most to least suitable as follows:C.korshinskii,S.matsudana,P.tabulaeformis,P.tomentosa,and P.simonii.
基金supported by National Natural Science Foundation of China(31625006,31988102 and 32001133)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23080302).
文摘Background:Nitrogen(N)and phosphorus(P)deposition have largely affected soil respiration(Rs)in forest ecosystems.However,few studies have explored how N and P individually or in combination to influence Rs and its components(autotrophic respiration,Ra;heterotrophic respiration,Rh),especially in highly P-limited subtropical forests.To address this question,we conducted a field manipulation experiment with N and/or P addition in a 50-year-old subtropical secondary forest.Results:We found that N addition on average reduced Rs,Ra,and Rh by 15.2%,15%,and 11.7%,respectively during 2-year field study.P addition had an inconsistent effect on Ra,with Ra increasing by 50.5%in the first year but reducing by 26.6%in the second year.Moreover,P addition on average decreased Rh by 8.9%–30.9%and Rs by 6.7%–15.6%across 2 years.In contrast,N and P co-addition on average increased Rs,Ra,and Rh by 1.9%,7.9%,and 2.1%during the experimental period.Though Rs and Rh were significantly correlated with soil temperature,their temperature sensitivities were not significantly changed by fertilization.Ra was predominantly regulated by soil nitrogen availability(NH4+and NO3−),soil dissolved organic carbon(DOC),and enzyme activities,while the variation in Rh was mainly attributable to changes in soil microbial community composition and soilβ-D-Cellubiosidase(CB)andβ-Xylosidase(XYL)activities.Conclusion:Our findings highlight the contrasting responses of Rs and its components to N or P addition against N and P co-addition,which should be differentially considered in biogeochemical models in order to improve prediction of forest carbon dynamics in the context of N and P enrichment in terrestrial ecosystems.
基金funded by the Scientific Project of Gansu Province,China(20JR5RA548)the National Natural Science Foundation of China(31860148)+1 种基金the Natural Science Foundation of Gansu Province,China(21JR1RM333)the Doctoral Program of Longdong University,China(XYBY1909)。
文摘The Loess Plateau,located in Gansu Province,is an important energy base in China because most of the oil and gas resources are distributed in Gansu Province.In the last 40 a,ecological environment in this region has been extremely destroyed due to the over-exploitation of crude-oil resources.Remediation of crude-oil contaminated soil in this area remains to be a challenging task.In this study,in order to elucidate the effects of organic compost and biochar on phytoremediation of crude-oil contaminated soil(20 g/kg)by Calendula officinalis,we designed five treatments,i.e.,natural attenuation(CK),planted C.officinalis only(P),planted C.officinalis with biochar amendment(PB),planted C.officinalis with organic compost amendment(PC),and planted C.officinalis with co-amendment of biochar and organic compost(PBC).After 152 d of cultivation,total petroleum hydrocarbons(TPH)removal rates of CK,P,PB,PC and PBC were 6.36%,50.08%,39.58%,73.10%and 59.87%,respectively.Shoot and root dry weights of C.officinalis significantly increased by 172.31%and 80.96%under PC and 311.61%and 145.43%under PBC,respectively as compared with P(P<0.05).Total chlorophyll contents in leaves of C.officinalis under P,PC and PBC significantly increased by 77.36%,125.50%and 79.80%,respectively(P<0.05)as compared with PB.Physical-chemical characteristics and enzymatic activity of soil in different treatments were also assessed.The highest total N,total P,available N,available P and SOM(soil organic matter)occurred in PC,followed by PBC(P<0.05).C.officinalis rhizospheric soil dehydrogenase(DHA)and polyphenol oxidase(PPO)activities in PB were lower than those of other treatments(P<0.05).The values of ACE(abundance-based coverage estimators)and Chao 1 indices for rhizospheric bacteria were the highest under PC followed by PBC,P,PB and CK(P<0.05).However,the Shannon index for bacteria was the highest under PC and PBC,followed by P,PB and CK(P<0.05).In terms of soil microbial community composition,Proteiniphilum,Immundisolibacteraceae and Solimonadaceae were relatively more abundant under PC and PBC.Relative abundances of Pseudallescheria,Ochroconis,Fusarium,Sarocladium,Podospora,Apodus,Pyrenochaetopsis and Schizothecium under PC and PBC were higher,while relative abundances of Gliomastix,Aspergillus and Alternaria were lower under PC and PBC.As per the nonmetric multidimensional scaling(NMDS)analysis,application of organic compost significantly promoted soil N and P contents,shoot length,root vitality,chlorophyll ratio,total chlorophyll,abundance and diversity of rhizospheric soil microbial community in C.officinalis.A high p H value and lower soil N and P contents induced by biochar,altered C.officinalis rhizospheric soil microbial community composition,which might have restrained its phytoremediation efficiency.The results suggest that organic compost-assisted C.officinalis phytoremediation for crude-oil contaminated soil was highly effective in the Loess Plateau,China.
基金the Spanish Ministry of Science and the Spanish Research Council(CSIC)call“I-COOP Suelos y Legumbres 2016”for the funded project(2016SU0013)supported by the Universidad Nacional,Costa Rica(grant number SIA-0249-18)。
文摘The impact of forest microhabitats on physiochemical properties of the soil and that of microbial communities on tropical soils remain poorly understood.To elucidate the effect of tropical forest stand on leaf litter and soil microbial communities,we studied enzyme activities,microbial biomass,and diversity in three distinct microhabitats in terms of plant richness,diameter at breast height(DBH),and physiochemical properties of soil and litter,each associated with a different Vanilla sp.In the soil,positive correlations were found between electrical conductivity(EC)and total organic carbon(TOC)with phosphatase activity,and between nitrogen(N)and water-soluble carbon(WSC)content with urease activity(UA).In the litter,the water content was positively correlated with bacterial and fungal biomass,and N and WSC contents were positively correlated with fungal biomass.Positive correlations were found between plant richness and UA in the soil,plant richness and fungal biomass in the soil and litter,and DBH and fungal biomass in the litter.Amplicon sequencing revealed differences between microhabitats in the relative abundance of some fungal and bacterial taxa and in the bacterial community composition of both litter and soil.Bacterial richness and diversity were different between microhabitats,and,in litter samples,they were negatively correlated with DBH and plant richness,respectively.By contrast,none of the soil and litter physiochemical properties were significantly correlated with microbial diversity.Our results show that significant shifts in enzyme activity,microbial biomass,and diversity in the microhabitats were driven by key abiotic and biotic factors depending on the soil or litter sample type.
基金supported by grants from the Kearney Foundationthe Andrew W.Mellon Foundationthe Department of Energy-Great Lakes Bioenergy Research Center(DOE-GLBRC)funding.
文摘During the past two decades interest in linking soil microbial community composition and activity with ecosystem scale field studies of nutrient cycling or plant community response to disturbances has grown.Despite its importance there are challenges in making this linkage.Foremost is the question of analytical feasibility.In general,microbiological community-level methodologies have not been readily adaptable to the large sample sizes necessary for ecosystem-scale research.As a result,it has been difficult to generate compatible microbial and ecosystem data sets.Soil lipid analysis shows potential as a middle ground between simple biomass measures and molecular profiling.However,the two protocols that have most often been followed are either rapid but indiscriminate(total lipid analysis or fatty acid methyl ester analysis;FAME),or precise but time consuming(phospholipid fatty acid analysis;PLFA).In this paper we report results from a standardized soil used test a modified extraction method(the‘hybrid’method)developed to balance the speed of FAME and the precision of PLFA in order to increase sample throughput.In comparing the three methods,we find that FAME and PLFA are qualitatively and quantitatively distinct.The FAME method yielded the highest fatty acid abundance,but also had high variance resulting in low precision.The PLFA method had precision,but low yield.The‘hybrid’method fell midway between FAME and PLFA for quantitative fatty acid yield.In addition,the hybrid extraction can be completed in a fraction of the time it takes for PLFA.The hybrid protocol appears to provide an optimal balance between effort and accuracy and therefore is a good choice for large-scale ecosystem studies.
基金supported by the National Key Research and Development Program of China (No. 2016YFC0502501)the Special Funds for Local Science and Technology Development Guided by the Central Government, China (No. Guike ZY20198009)+2 种基金the Natural Science Foundation of Guangxi (Nos. 2015GXNSFGA139010 and 2017GXNSFBA198204)the Science and Technology Development Fund of Guangxi Academy of Agricultural Sciences (No. 2018YT07)the Fundamental Research Funds of CAGS (No. 2020022)。
文摘There is limited knowledge about microbial communities and their ecological functions in karst caves with high CO_(2)concentrations.Here,we studied the microbial community compositions and functions in Shuiming Cave( "SMC",CO_(2)concentration 3 303 ppm) and Xueyu Cave( "XYC",CO_(2)concentration 8 753 ppm) using Illumina MiSeq high-throughput sequencing in combination with BIOLOG test.The results showed that Proteobacteria,Actinobacteria and Bacteroidetes were dominant phyla in these two caves,and Thaumarchaeota was the most abundant in the rock wall samples of SMC.The microbial diversity in the water samples decreased with increasing HCO_(3)^(-)concentration,and it was higher in XYC than that in SMC.The microbial community structures in the sediment and rock wall samples were quite different between the two caves.High concentrations of CO_(2)can reduce the microbial diversity on the rock walls in karst caves,probably through changing microbial preference for different types of carbon sources and decreasing the microbial utilization rate of carbon sources.These results expanded our understanding of microbial community and its response to environments in karst caves with high CO_(2).
基金funded by the High-End Foreign Expert Introduction Program of the Natural Science Foundation of the Inner MongoliaAutonomous Region.
文摘Nitrogen(N)addition can significantly affect the amount of soil carbon(C)pools through biological routes,and microbial residues are important components of soil carbon pools.However,it remains unclear how N addition affects the accumulation of soil microbial residues in meadow grasslands.This study analyzed the effects of N addition on microbial residues in a meadow grassland soil,and the key factors affecting the accumulation of microbial residues under N addition were analyzed in combination with soil physicochemical properties and microbial community structure.The results showed that N addition significantly changed the structure of the microbial communities and the accumulation of microbial residues,mainly manifested by a significant decrease in fungal biomass and the fungal/bacterial ratio(F/B),but had no significant effect on bacterial or total microbial biomass(PLFAs).N addition significantly increased the accumulation of fungal residues(7.45%),but had no significant effect on the accumulation of bacterial residues or total amino sugar(TAS).We found that fungal residues were more affected by soil environmental factors than bacterial residues.The results of the random forest analysis showed that bacterial biomass under N addition was the most important predictor of soil bacterial residues,whereas total N(TN),pH and F/B were the most important predictors of soil fungal residue.In summary,our results indicate that fungal communities and residues accumulation play important roles in regulating the response of grassland soil C to N addition,further enhancing our understanding of the mechanisms of soil carbon pool to N addition.
基金The National Natural Science Foundation of China(31770531,32001174)the Key Research Program of Frontier Sciences,CAS(QYZDB-SSW-DQC006)+1 种基金the Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains,Ministry of Education(GPES201902)the Youth Innovation Promotion Association CAS to Chao Wang(2018231).
文摘Background:Freeze–thaw events are common in boreal and temperate forest ecosystems and are increasingly infuenced by climate warming.Soil microorganisms play an important role in maintaining ecosystem stability,but their responses to freeze–thaw cycles(FTCs)are poorly understood.We conducted a feld freeze–thaw experiment in a natural Korean pine and broadleaf mixed forest in the Changbai Mountain Nature Reserve,China,to determine the dynamic responses of soil microbial communities to FTCs.Results:Bacteria were more sensitive than fungi to FTCs.Fungal biomass,diversity and community composition were not signifcantly afected by freeze–thaw regardless of the stage.Moderate initial freeze–thaw resulted in increased bacterial biomass,diversity,and copiotrophic taxa abundance.Subsequent FTCs reduced the bacterial biomass and diversity.Compared with the initial FTC,subsequent FTCs exerted an opposite efect on the direction of change in the composition and function of the bacterial community.Soil water content,dissolved organic carbon,ammonium nitrogen,and total dissolved phosphorus were important factors determining bacterial community diversity and composition during FTCs.Moreover,the functional potentials of the microbial community involved in C and N cycling were also afected by FTCs.Conclusions:Diferent stages of FTCs have diferent ecological efects on the soil environment and microbial activities.Soil FTCs changed the soil nutrients and water availability and then mainly infuenced bacterial community composition,diversity,and functional potentials,which may disturb C and N states in this temperate forest soil.This study also improves our understanding of microbial communities regulating their ecological functions in response to climate change.
基金funded by the National Natural Science Foundation of China (No. 41671304)the National Key Research and Development Program of China (No. 2017YFD0200206)。
文摘In rice-wheat rotation systems, changes in soil phosphorus(P) pools and microorganisms in rice-growing seasons have been studied;however, further investigations are required to test whether these indexes exhibit different responses in wheat-growing seasons. Additionally, such studies need to include potential variations in soil carbon(C) structure and microbial community composition. In this study, a long-term rice-wheat rotation P-input reduction experiment was conducted to observe the variations in soil P pools and C composition in the 7th wheat season and to investigate the responses of soil enzyme activity and microbial communities. Four P fertilization treatments were included in the experiment, i.e., P application for rice season only(PR), for wheat season only(PW), and for both rice and wheat seasons(PR+W) and no P application in either season(Pzero). Compared with PR+W treatment, Pzero treatment significantly decreased(P < 0.05) labile and stable P pools. Different P fertilization regimes altered soil microbial community composition and enzyme activity, whereas C composition did not vary. However, PW treatment resulted in relatively more O-alkyl-C than PR treatment and the highest number of microorganisms. Besides, the higher ratios of fungi/bacteria and Gram-positive bactetia/Gram-negative bactetia were related to labile C pools, particularly O-alkyl-C, as opposed to recalcitrant C. Our results clarified the status of soil P pools, C chemistry, and the response of microorganisms under dry-farming conditions in the P input-reduced rice-wheat rotation system.
基金supported by the National Natural Science Foundation of China(Nos.51879228,51769034)the National Science Funds for Creative Research Groups of China(No.51421006)the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Numerous studies have evaluated the toxicity and endocrine disrupting properties of organic UV filters for aquatic organisms,but little is known about their biodegradation in river sediments and their impact on microorganisms.We have set up the sterile and microbiological systems in the laboratory,adding 2-ethylhexyl-4-methoxycinnamate(EHMC),one of organic UV filters included in the list of high yield chemicals,at concentrations of 2,20 and 200μg/L,and characterized the microbial community composition and diversity in sediments.Monitoring of EHMC degradation within 30 days revealed that the half-life in the microbial system(3.49 days)was much shorter than that in the sterile system(7.55 days).Two potential degradation products,4-mercaptobenzoic acid and 3-methoxyphenol were identified in the microbial system.Furthermore,high-throughput 16s and 18s rRNA gene sequencing showed that Proteobacteria dominated the sediment bacterial assemblages followed by Chloroflexi,Acidobacteria,Bacteroidetes and Nitrospirae;Eukaryota_uncultured fungus dominated the sediment fungal assemblages.Correlation analysis demonstrated that two bacterium genera(Anaerolineaceae_uncultured and Burkholderiaceae_uncultured)were significantly correlated with the biodegradation of EHMC.These results illustrate the biodegradability of EHMC in river sediments and its potential impact on microbial communities,which can provide useful information for eliminating the pollution of organic UV filters in natural river systems and assessing their potential ecological risks.
基金supported by grants from the National Natural Science Foundation of China (Nos.92251304 and 41972317)the 111 Program (State Administration of Foreign Experts Affairs&the Ministry of Education of China,No.B18049)+2 种基金the Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(No.2019QZKK0805)the Science and Technology Plan Project of Qinghai Province (No.2022-ZJ-Y08)State Key Laboratory of Biogeology and Environmental Geology,CUG (No.GBL11805)。
文摘Assembly processes of prokaryotic and microeukaryotic community is an important issue in microbial ecology.However,unclear remains about the relative contribution of deterministic and stochastic processes to the shaping of prokaryotic and microeukaryotic communities in saline lake water.Here,we systematically investigated the assembly processes governing the prokaryotic and microeukaryotic communities in Qinghai Lake with the use of Illumina sequencing and a null model.The results showed that both deterministic and stochastic processes play vital roles in shaping the assemblies of prokaryotic and microeukaryotic communities,in which stochastic processes appeared to dominate(> 70%).Prokaryotic communities were mainly governed by non-dominant processes(60.4%),followed by homogeneous selection(15.8%),variable selection(13.6%) and dispersal limitation(10.2%),whereas microeukaryotes were strongly driven by non-dominant processes(68.9%),followed by variable selection(23.6%) and homogenizing dispersal(6.3%).In terms of variable selection,nutrients(e.g.,ammonium,dissolved inorganic carbon,dissolved organic carbon and total nitrogen) were the major factors influencing prokaryotic and microeukaryotic community structures.In summary,prokaryotes and microeukaryotes can be predominantly structured by different assembly mechanisms,in which stochasticity is stronger than deterministic processes.This finding helps to better comprehend the assembly of prokaryotic and eukaryotic communities in saline lakes.
基金United States Department of Agriculture National Institute of Food and Agriculture Hatch program(NYC-145403)the New York State Turfgrass Association and the US Department of Energy,Office of Science,Office of Biological and Environmental Research Terrestrial Ecosystem Science Program(DE-AC02-05CH11231).
文摘Aims Plants generally respond to nitrogen(N)fertilization with increased growth,but N addition can also suppress rhizosphere effects,which consequently alters soil processes.We quantified the influence of N addition on rhizosphere effects of two C4 grasses:smooth crabgrass(Digitaria ischaemum)and bermudagrass(Cynodon dactylon).Methods Plants were grown in nutrient-poor soil for 80 days with either 20 or 120μg NH4No3-N g dry soil−1.N mineralization rates,microbial biomass,extracellular enzyme activities and bacterial community structure were measured on both rhizosphere and bulk(unplanted)soils after plant harvest.Important Findings Fertilization showed nominal differences in net N mineralization,extracellular enzyme activity and microbial biomass between the rhizosphere and bulk soils,indicating minimal influence of N on rhizosphere effects.Instead,the presence of plant roots showed the strongest impact(up to 80%)on rates of net N mineralization and activities of three soil enzymes indicative of N release from organic matter.Principal component analysis of terminal restriction fragment length polymorphism(t-rFlP)also reflected these trends by highlighting the importance of plant roots in structuring the soil bacterial community,followed by plant species and N fertilization(to a minor extent).overall,the results indicate minor contributions of short-term N fertilization to changes in the magnitude of rhizos-phere effects for both grass species.
基金supported by the National Key Research & Development(R&D) Plan of China(No. 2016YFD0300204)the National Basic Research Program(973 Program) of China(No.2011CB100504)
文摘Land use changes affect belowground ecosystems.During the past few decades,land use in Northeast China has changed considerably,and the area of paddy fields has increased rapidly from upland.In this study,soil characteristics and soil biotic community in paddy fields with different years of rice cultivation were measured to examine the effects of land use change from upland to paddy fields on soil micro-food web.The upland maize fields were selected as control and the microbial community composition was characterized using phospholipid fatty acids(PLFAs) analysis.The microbial biomass(total PLFA),bacteria biomass,and fungi biomass were higher in the 20-40-year(late-stage) than 1-10-year(early-stage) paddy fields.The abundances of total nematodes and bacterivores were lower in the early-stage than late-stage paddy fields.The abundance of herbivores was the highest in the early-stage paddy fields but that of omnivore-predators was the highest in the late-stage paddy fields.Structural equation model indicated that soil food web was developed and structured after 20 years of paddy cultivation.Our results suggested that soil micro-food web may be a good indicator for soil development and stabilization of paddy fields following land use change.
基金funded by the Swedish Research Council(No.2016-04710,2016)the Knut and Alice Wallenberg Foundation,Sweden(No.2013.0073)+1 种基金China Postdoctoral Science Foundation(No.2021M703135)supported by the Chinese Scholarship Council。
文摘The rhizosphere priming effect(RPE)is increasingly being considered to be an important regulator of soil organic matter(SOM)decomposition and nutrient turnover,with potential importance for the global CO_(2) budget.As a result,studies on the RPE have rapidly increased in number over the last few years.Most of these experiments have been performed using unplanted soil as the control,which could potentially lead to incorrect assessment of the RPE.Therefore,we performed a greenhouse experiment to investigate how the choice of control(i.e.,unplanted control and planted control)influenced the quantification of RPE on SOM decomposition and gross nitrogen(N)mineralization,and to link this to differences in microbial and abiotic soil properties between the two controls.In the planted control,planted seedlings were cut at soil surface 5 d before measurement of the RPE.The RPE on SOM decomposition was positive in pine soil and almost 2-fold higher when calculated from the planted control than from the unplanted control.In spruce soil,a negative RPE on SOM decomposition was found when calculated from the planted control,while the RPE was positive when calculated from the unplanted control.No RPE on gross N mineralization was found when calculated from the planted control,while a positive RPE of more than 100%was found when calculated from the unplanted control.The microbial biomass and growth rate were lower,while the inorganic N content was higher in the unplanted control than in the planted control.The microbial community composition and potential enzyme activity in the planted treatment and planted control were similar,but they differed significantly from those in the unplanted control.The results showed that the RPE varied widely depending on the choice of control;thus,we suggest that a planted control,in which the aboveground plant parts are removed only a few days before the measurement of RPE,should be used as the control when elucidating the RPE on belowground C and N cycling responses to environmental change.