A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H,S and NH3 were 1.6-3...A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H,S and NH3 were 1.6-38.6 mg.m-3 and 0.1 6.7 mg.m-3 respectively, while the steady-state outlet concentrations were reduced to 0-2.8mg.m - for H2S and 0-0.5mg.m for NH3. BothH2SandNH3 were eliminated effectively by the integrated-bioreactor. The removal efficiencies of H2S and NH3 differed between the two zones. Four species of microorganisms related to the degradation of H2S and NH3 were isolated. The characteristics and distributions of the microbes in the bioreactor depended on the inlet concentration of substrates and the micro-environmental conditions in the individual zones. Product analysis indicated that most of the H2S was oxidized into sulfate in the immobilized zone but was dissolved into the liquid phase in the suspended zone. A large amount of NH3 was converted into nitrate and nitrite by nitration in the suspended zone, whereas only a small amount of NH3 was transferred to the aqueous phase mainly by absorption or chemical neutralization in the immobilized zone. Different microbial populations dominated the individual zones, and the major biodegradation products varied accordingly.展开更多
基金The authors express their sincerely Acknowledgments to ShineWrite and Editage services center of professional editing support for the English revision of the manuscript. This work was financially supported by the National Nature Science Foundation of China (Grant No. 51478456), Scientific Research Foundation of Beijing University of Civil Engineering and Architecture (No. 00331615020) and Beijing Municipal Science and Technology Commission (D 151100005115002).
文摘A full-scale integrated-bioreactor consisting of a suspended zone and an immobilized zone was employed to treat the ordours emitted from a wastewater treatment plant. The inlet concentrations of H,S and NH3 were 1.6-38.6 mg.m-3 and 0.1 6.7 mg.m-3 respectively, while the steady-state outlet concentrations were reduced to 0-2.8mg.m - for H2S and 0-0.5mg.m for NH3. BothH2SandNH3 were eliminated effectively by the integrated-bioreactor. The removal efficiencies of H2S and NH3 differed between the two zones. Four species of microorganisms related to the degradation of H2S and NH3 were isolated. The characteristics and distributions of the microbes in the bioreactor depended on the inlet concentration of substrates and the micro-environmental conditions in the individual zones. Product analysis indicated that most of the H2S was oxidized into sulfate in the immobilized zone but was dissolved into the liquid phase in the suspended zone. A large amount of NH3 was converted into nitrate and nitrite by nitration in the suspended zone, whereas only a small amount of NH3 was transferred to the aqueous phase mainly by absorption or chemical neutralization in the immobilized zone. Different microbial populations dominated the individual zones, and the major biodegradation products varied accordingly.