Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic netw...Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.展开更多
The performance of a biofilter for off-gas treatment relies on the activity of microorganisms and adequate O_2 and H_2O. In present study, a microelectrode was applied to analyze O_2 in polyurethane foam cubes(PUFCs...The performance of a biofilter for off-gas treatment relies on the activity of microorganisms and adequate O_2 and H_2O. In present study, a microelectrode was applied to analyze O_2 in polyurethane foam cubes(PUFCs) packed in a biofilter for SO_2 removal. The O_2 distribution varied with the density and water-containing rate(WCR) of PUFCs. The O_2 concentration dropped sharply from 10.2 to 0.8 mg/L from the surface to the center of a PUFC with 97.20%of WCR. The PUFCs with high WCR presented aerobic–anoxic–aerobic areas.Three-dimensional simulated images demonstrated that the structure of PUFCs with high WCR consisted of an aerobic "shell" and an anoxic "core", with high-density PUFCs featuring a larger anoxic area than low-density PUFCs. Moreover, the H_2O distribution in the PUFC was uneven and affected the O_2 concentration. Whereas aerobic bacteria were observed in the PUFC surface, facultative anaerobic microorganisms were found at the PUFC core, where the O_2 concentration was relatively low. O_2 and H_2O distributions differed in the PUFCs, and the distribution of microorganisms varied accordingly.展开更多
Although the microbial diversity of the Indian Ocean has been extensively investigated,little is known about the community composition of microbes in the Southern Indian Ocean.In the present study,we divided 60 water ...Although the microbial diversity of the Indian Ocean has been extensively investigated,little is known about the community composition of microbes in the Southern Indian Ocean.In the present study,we divided 60 water column samples on the Ninety-East Ridge(NER)into fi ve water masses according to the temperature-salinity curves.We presented,for the fi rst time,a full description of the microbial biodiversity on NER through high-throughput amplicon sequencing approach,including bacteria,archaea,and fungi.We found that bacteria exhibited higher richness and diversity than archaea and fungi across the water masses on NER.More importantly,each water mass on NER featured distinct prokaryotic microbial communities,as indicated by the results of non-metric multidimensional scaling.In contrast,fungi were eurybathic across the water masses.Redundancy analysis results demonstrated that environmental factors might play a pivotal role in the formation and stability of prokaryotic communities in each water mass,especially that of archaea.In addition,indicator species might be used as fi ngerprints to identify corresponding water masses on NER.These results provide new insights into the vertical distribution,structure,and diversity of microorganisms on NER from the perspective of water mass.展开更多
Anammox (ANaerobic AMMonia OXidation) is a newly discovered pathway in the nitrogen cycle. This discovery has increased our knowledge of the global nitrogen cycle and triggered intense interest for anammox-based app...Anammox (ANaerobic AMMonia OXidation) is a newly discovered pathway in the nitrogen cycle. This discovery has increased our knowledge of the global nitrogen cycle and triggered intense interest for anammox-based applications. Anammox bacteria are almost ubiquitous in the suboxic zones of almost all types of natural ecosystems and contribute significant to the global total nitrogen loss. In this paper, their ecological distributions and contributions to the nitrogen loss in marine, wetland, terrestrial ecosystems, and even extreme environments were reviewed. The unique metabolic mechanism of anammox bacteria was well described, including the particular cellular structures and genome compositions, which indicate the special evolutionary status of anammox bacteria. Finally, the ecological interactions among anammox bacteria and other organisms were discussed based on substrate availability and spatial organizations. This review attempts to summarize the fundamental understanding of anammox, provide an up-to-date summary of the knowledge of the overall anammox status, and propose future prospects for anammox. Based on novel findings, the metagenome has become a powerful tool for the genomic analysis of communities containing anammox bacteria; the metabolic diversity and biogeochemistry in the global nitrogen budget require more comprehensive studies.展开更多
The microbial molecular ecology techniques, which were developed on the basis of molecular, were applied in studying the bacteria in Constructed Rapid Infiltration (CRI) system. These techniques are very efficient i...The microbial molecular ecology techniques, which were developed on the basis of molecular, were applied in studying the bacteria in Constructed Rapid Infiltration (CRI) system. These techniques are very efficient in better describing the bacterial diversity, microbial community distribution, and relations between microbial group structure and nitrogen contamination through the analysis of microbial nucleic acid sequence fragment in CRI. The results further revealed the removal mechanism of contamination, which is essential for the improvement of wastewater treatment in CRI.展开更多
The performance of a biofilter relies on the activity of microorganisms during the gas contaminant treatment process. In this study, SO2 was treated using a laboratory-scale biofilter packed with polyurethane foam cu...The performance of a biofilter relies on the activity of microorganisms during the gas contaminant treatment process. In this study, SO2 was treated using a laboratory-scale biofilter packed with polyurethane foam cubes(PUFC), on which thermophilic desulfurization bacteria were attached. The thermophilic biofilter effectively reduced SO2 within 10 months of operation time, with a maximum elimination capacity of 48.29 g/m^3/hr.Temporal shifts in the microbial population in the thermophilic biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and deoxyribonucleic acid(DNA) sequence analysis. The substrate species and environmental conditions in the biofilter influenced the microbial population. Oxygen distribution in the PUFC was analyzed using a microelectrode. When the water-containing rate in PUFC was over 98%, the oxygen distribution presented aerobic–anoxic–aerobic states along the test route on the PUFC. The appearance of sulfate-reducing bacteria was caused by the anaerobic conditions and sulfate formation after 4 months of operation.展开更多
Extracellular polymeric substances(EPS) are organic metabolic compounds excreted by microorganisms. They largely impact microbial aggregate structures and functions.Extracellular polysaccharides(EP) in EPS are res...Extracellular polymeric substances(EPS) are organic metabolic compounds excreted by microorganisms. They largely impact microbial aggregate structures and functions.Extracellular polysaccharides(EP) in EPS are responsible for the formation of microbial aggregates. In this work, we successfully separated and characterized EP from EPS of the bacterium Bacillus megaterium TF10. Extraction of EP from EPS was optimized using Sevag's reagent. Chemical characteristics, functional groups, and molecular weight(MW) distribution of EP were compared with the harvested EPS and soluble microbial products(SMP). We found that the polymers of lower MW and free proteins were successfully removed by Sevag's reagent. The higher MW components of EPS were predominantly polysaccharides,while the polymers of lower MW tended to secrete to the supernatant and were described as SMP. A part of the proteins in the EP was polysaccharide-bonded. Our results can be further used in elucidating the complex flocculation mechanisms in which EP play a major role.展开更多
Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. T...Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants(chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiS eq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.展开更多
Delivery of safe and pathogen-free drinking water is crucial to public health.However,there exist challenges to the maintenance of the sterility of drinking water throughout the drinking water distribution systems(D...Delivery of safe and pathogen-free drinking water is crucial to public health.However,there exist challenges to the maintenance of the sterility of drinking water throughout the drinking water distribution systems(DWDS).Microbial growth in DWDS,such as growth of opportunistic pathogenic microorganisms,can lead to severe health problems in consumers(Berry et al.,2006;Brettar and Hofle,2006;Lu et al.,2014;Zhang et al.,2015).展开更多
基金The authors are grateful for the financial support from National Natural Science Foundation of China(32001728).
文摘Free amino acid(FAA)is the important component of vinegar that infl uences quality perception and consumer acceptance.FAA is one of the major metabolites produced by microorganisms;however,the microbial metabolic network on FAA biosynthesis remains unclear.Through metagenomic analysis,this work aimed to elucidate the roles of microbes in FAA biosynthesis during Monascus rice vinegar fermentation.Taxonomic profiles from functional analyses showed 14 dominant genera with high contributions to the metabolism pathways.The metabolic network for FAA biosynthesis was then constructed,and the microbial distribution in different metabolic pathways was illuminated.The results revealed that 5 functional genera were closely involved in FAA biosynthesis.This study illuminated the metabolic roles of microorganisms in FAA biosynthesis and provided crucial insights into the functional attributes of microbiota in vinegar fermentation.
基金financially supported by the Major Science and Technology Program for Water Pollution Control and Treatment(No.2010ZX07319-001-03)the National Natural Science Foundation of China(No.51221892)
文摘The performance of a biofilter for off-gas treatment relies on the activity of microorganisms and adequate O_2 and H_2O. In present study, a microelectrode was applied to analyze O_2 in polyurethane foam cubes(PUFCs) packed in a biofilter for SO_2 removal. The O_2 distribution varied with the density and water-containing rate(WCR) of PUFCs. The O_2 concentration dropped sharply from 10.2 to 0.8 mg/L from the surface to the center of a PUFC with 97.20%of WCR. The PUFCs with high WCR presented aerobic–anoxic–aerobic areas.Three-dimensional simulated images demonstrated that the structure of PUFCs with high WCR consisted of an aerobic "shell" and an anoxic "core", with high-density PUFCs featuring a larger anoxic area than low-density PUFCs. Moreover, the H_2O distribution in the PUFC was uneven and affected the O_2 concentration. Whereas aerobic bacteria were observed in the PUFC surface, facultative anaerobic microorganisms were found at the PUFC core, where the O_2 concentration was relatively low. O_2 and H_2O distributions differed in the PUFCs, and the distribution of microorganisms varied accordingly.
基金Supported by the China Ocean Mineral Resources R&D Association(Nos.DY135-B2-11,DY135-E2-4)the National Natural Science Foundation of China(No.42076165)+2 种基金the Natural Science Foundation of Shandong Province(No.ZR2018MD017)the National Key Research and Development Program(No.2016YFC1402301)the Fundamental Research Funds for the Central Universities(No.201822009)。
文摘Although the microbial diversity of the Indian Ocean has been extensively investigated,little is known about the community composition of microbes in the Southern Indian Ocean.In the present study,we divided 60 water column samples on the Ninety-East Ridge(NER)into fi ve water masses according to the temperature-salinity curves.We presented,for the fi rst time,a full description of the microbial biodiversity on NER through high-throughput amplicon sequencing approach,including bacteria,archaea,and fungi.We found that bacteria exhibited higher richness and diversity than archaea and fungi across the water masses on NER.More importantly,each water mass on NER featured distinct prokaryotic microbial communities,as indicated by the results of non-metric multidimensional scaling.In contrast,fungi were eurybathic across the water masses.Redundancy analysis results demonstrated that environmental factors might play a pivotal role in the formation and stability of prokaryotic communities in each water mass,especially that of archaea.In addition,indicator species might be used as fi ngerprints to identify corresponding water masses on NER.These results provide new insights into the vertical distribution,structure,and diversity of microorganisms on NER from the perspective of water mass.
文摘Anammox (ANaerobic AMMonia OXidation) is a newly discovered pathway in the nitrogen cycle. This discovery has increased our knowledge of the global nitrogen cycle and triggered intense interest for anammox-based applications. Anammox bacteria are almost ubiquitous in the suboxic zones of almost all types of natural ecosystems and contribute significant to the global total nitrogen loss. In this paper, their ecological distributions and contributions to the nitrogen loss in marine, wetland, terrestrial ecosystems, and even extreme environments were reviewed. The unique metabolic mechanism of anammox bacteria was well described, including the particular cellular structures and genome compositions, which indicate the special evolutionary status of anammox bacteria. Finally, the ecological interactions among anammox bacteria and other organisms were discussed based on substrate availability and spatial organizations. This review attempts to summarize the fundamental understanding of anammox, provide an up-to-date summary of the knowledge of the overall anammox status, and propose future prospects for anammox. Based on novel findings, the metagenome has become a powerful tool for the genomic analysis of communities containing anammox bacteria; the metabolic diversity and biogeochemistry in the global nitrogen budget require more comprehensive studies.
基金supported by the National Key Project for Basic Research (No. 2007CB815600)the Project of the Ministry of Science and Technology of China (No. 2006BAD25B04)
文摘The microbial molecular ecology techniques, which were developed on the basis of molecular, were applied in studying the bacteria in Constructed Rapid Infiltration (CRI) system. These techniques are very efficient in better describing the bacterial diversity, microbial community distribution, and relations between microbial group structure and nitrogen contamination through the analysis of microbial nucleic acid sequence fragment in CRI. The results further revealed the removal mechanism of contamination, which is essential for the improvement of wastewater treatment in CRI.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No.2010ZX07319-001-03)the National Natural Science Foundation of China (No.51221892)
文摘The performance of a biofilter relies on the activity of microorganisms during the gas contaminant treatment process. In this study, SO2 was treated using a laboratory-scale biofilter packed with polyurethane foam cubes(PUFC), on which thermophilic desulfurization bacteria were attached. The thermophilic biofilter effectively reduced SO2 within 10 months of operation time, with a maximum elimination capacity of 48.29 g/m^3/hr.Temporal shifts in the microbial population in the thermophilic biofilter were determined through polymerase chain reaction-denaturing gradient gel electrophoresis and deoxyribonucleic acid(DNA) sequence analysis. The substrate species and environmental conditions in the biofilter influenced the microbial population. Oxygen distribution in the PUFC was analyzed using a microelectrode. When the water-containing rate in PUFC was over 98%, the oxygen distribution presented aerobic–anoxic–aerobic states along the test route on the PUFC. The appearance of sulfate-reducing bacteria was caused by the anaerobic conditions and sulfate formation after 4 months of operation.
基金supported by the National Natural Science Foundation of China (No. 21607031)Science and Technology Planning Project of Guangdong Province, China (Nos. 2014A010107023, 2015B020230002, and 2016A010103020)
文摘Extracellular polymeric substances(EPS) are organic metabolic compounds excreted by microorganisms. They largely impact microbial aggregate structures and functions.Extracellular polysaccharides(EP) in EPS are responsible for the formation of microbial aggregates. In this work, we successfully separated and characterized EP from EPS of the bacterium Bacillus megaterium TF10. Extraction of EP from EPS was optimized using Sevag's reagent. Chemical characteristics, functional groups, and molecular weight(MW) distribution of EP were compared with the harvested EPS and soluble microbial products(SMP). We found that the polymers of lower MW and free proteins were successfully removed by Sevag's reagent. The higher MW components of EPS were predominantly polysaccharides,while the polymers of lower MW tended to secrete to the supernatant and were described as SMP. A part of the proteins in the EP was polysaccharide-bonded. Our results can be further used in elucidating the complex flocculation mechanisms in which EP play a major role.
基金financially supported by the State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (No. MARC2012D010)the National Water Special Program (No. 2012ZX07404-002)the International Science & Technology Cooperation Program of China (No. 2010DFA91830)
文摘Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants(chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiS eq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination.
文摘Delivery of safe and pathogen-free drinking water is crucial to public health.However,there exist challenges to the maintenance of the sterility of drinking water throughout the drinking water distribution systems(DWDS).Microbial growth in DWDS,such as growth of opportunistic pathogenic microorganisms,can lead to severe health problems in consumers(Berry et al.,2006;Brettar and Hofle,2006;Lu et al.,2014;Zhang et al.,2015).