Soil microbes play critical roles in soil biogeochemistry, soil biological health and crop productivity. The current study evaluated the effects of tillage and residue management on changes in soil biochemical indicat...Soil microbes play critical roles in soil biogeochemistry, soil biological health and crop productivity. The current study evaluated the effects of tillage and residue management on changes in soil biochemical indicators at different growth stages of wheat after 5 years of rice-wheat system. Nine treatment combinations of tillage, crop establishment and crop residue management included three main plot treatments applied to rice:(1) conventional till direct dry seeded rice(CTDSR),(2) zero till direct dry seeded rice(ZTDSR), and(3) conventional puddled manual transplanted rice(CTPTR) and three subplot treatments in subsequent wheat:(1) conventional tillage with rice residue removed(CTW-R),(2) zero tillage with rice residue removed(ZTW-R) and(3) zero tillage with rice residue retained as surface mulch(ZTW+R). Irrespective of rice treatments, ZTW+R treatment had higher soil biochemical indicators compared with ZTW-R and CTW-R at all the growth stages of wheat. Generally, all the biochemical indicators were the highest at the flowering stage of wheat. Residual effect of rice treatments was also significant on biochemical quotients in wheat, which were the highest under ZTDSR followed by CTDSR and CTPTR. The present study provided three sensitive and reliable biochemical indicators(microbial biomass, basal soil respiration and microbial quotient) which respond rapidly to change in tillage and residue management practices in RWS of South Asia.展开更多
Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies hav...Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs.展开更多
基金financial as well technical support of International Maize and Wheat Improvement Center (CIMMYT) through USAID and BMGF funded Cereal System Initiative for South Asia (CSISA) ProjectConsultative Group of International Agriculture Research (CGIAR) Program on wheat (CRP 3.1)
文摘Soil microbes play critical roles in soil biogeochemistry, soil biological health and crop productivity. The current study evaluated the effects of tillage and residue management on changes in soil biochemical indicators at different growth stages of wheat after 5 years of rice-wheat system. Nine treatment combinations of tillage, crop establishment and crop residue management included three main plot treatments applied to rice:(1) conventional till direct dry seeded rice(CTDSR),(2) zero till direct dry seeded rice(ZTDSR), and(3) conventional puddled manual transplanted rice(CTPTR) and three subplot treatments in subsequent wheat:(1) conventional tillage with rice residue removed(CTW-R),(2) zero tillage with rice residue removed(ZTW-R) and(3) zero tillage with rice residue retained as surface mulch(ZTW+R). Irrespective of rice treatments, ZTW+R treatment had higher soil biochemical indicators compared with ZTW-R and CTW-R at all the growth stages of wheat. Generally, all the biochemical indicators were the highest at the flowering stage of wheat. Residual effect of rice treatments was also significant on biochemical quotients in wheat, which were the highest under ZTDSR followed by CTDSR and CTPTR. The present study provided three sensitive and reliable biochemical indicators(microbial biomass, basal soil respiration and microbial quotient) which respond rapidly to change in tillage and residue management practices in RWS of South Asia.
基金This study was supported by projects of the National Natural Science Foundation of China(Nos.31972939,31630009 and 31670325)the National Basic Research Pro-gram of China(No.2016YFC0500701)+1 种基金the Research Fund of the State Key Laboratory of Soil and Sustainable Agri-culture,Nanjing Institute of Soil Science,Chinese Academy of Sciences(No.Y412201439)the University Con-struction Projects from the Central Authorities in Beiing of China.
文摘Soil microorganisms play a key role in soil organic matter dynamics, nutrient cycling, and soil fertility maintenance in forest ecosystems, and they are influenced by stand age and soil depth. However, few studies have simultaneously considered these two factors. In this study, we measured soil microbial biomass carbon (SMBC), soil microbial biomass nitrogen (SMBN), soil basal respiration (SBR) rate, and potential extracellular enzyme activity (EEA) in soil to a depth of 60 cm under 10-, 30-, and 40-year-old Scots pine (Pinus sylvestris var. mongolica) stands (Y10, Y30, and Y40, respectively) in plantations in northern China in 2011. Soil water content (SWC), soil pH, soil organic carbon (SOC), and soil total nitrogen (STN) were also measured to explore their effects on soil microbial indices across different stand ages and soil depths. Our results showed that SMBC, SMBN, and the SBR rate were generally higher for the Y30 stand than for the Y10 and Y40 stands. Potential EEA, except forα-glucosidase, decreased significantly with increasing stand age. Soil organic carbon,STN, SWC, and soil pH explained 67%of the variation in soil microbial attributes among the three stand ages. For the same stand age, soil microbial biomass and the SBR rate decreased with soil depth. Lower microbial biomass, lower SBR rate, and lower EEA for the mature Y40 stand indicate lower substrate availability for soil microorganisms, lower soil quality, and lower microbial adaptability to the environment. Our results suggest that changes in soil quality with stand age should be considered when determining the optimum rotation length of plantations and the best management practices for afforestation programs.