期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Effect of endogenous hydrogen utilization on improved methane production in an integrated microbial electrolysis cell and anaerobic digestion: Employing catalyzed stainless steel mesh cathode 被引量:1
1
作者 Kiros Hagos Chang Liu Xiaohua Lu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2018年第3期574-582,共9页
Improving the production of methane, while maintaining a significant level of process stability, is the main challenge in the anaerobic digestion process. Recently, microbial electrolysis cell(MEC) has become a promis... Improving the production of methane, while maintaining a significant level of process stability, is the main challenge in the anaerobic digestion process. Recently, microbial electrolysis cell(MEC) has become a promising method for CO_2 reduction produced during anaerobic digestion(AD) and leads to minimize the cost of biogas upgrading technology. In this study, the MEC-AD coupled reactor was used to generate and utilize the endogenous hydrogen by employing biocompatible electrodeposited cobalt-phosphate as catalysts to improve the performance of stainless steel mesh and carbon cloth electrodes. In addition, the modified version of ADM1 model(ADM1 da) was used to simulate the process. The result indicated that the MEC-AD coupled reactor can improve the CH_4 yield and production rate significantly. The CH_4 yield was enhanced with an average of 48% higher than the control. The CH_4 production rate was also increased 1.65 times due to the utilization of endogenous hydrogen.The specific yield, flow rate, content of CH_4, and p H value were the variables that the model was best at predicting(with indexes of agreement: 0.960/0.941, 0.682/0.696, 0.881/0.865, and 0.764/0.743) of the process with SSmeshes 80/SS-meshes 200, respectively. Employing the catalyzed SS mesh cathode, in the MEC-AD coupled reactor, could be an effective approach to generate and facilitate the utilization of endogenous hydrogen in anaerobic digestion of CH_4 production technology, which is a promising and feasible method to scale up to the industrial level. 展开更多
关键词 Biochemical engineering methane Mathematical modeling Endogenous hydrogen Stainless steel cathode microbial electrolysis
下载PDF
Effect of supplementation of allicin on methanogenesis and ruminal microbial flora in Dorper crossbred ewes 被引量:12
2
作者 Tao Ma Dandan Chen +4 位作者 Yan Tu Naifeng Zhang Bingwen Si Kaidong Deng Qiyu Diao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2016年第2期194-200,共7页
Background: Garlic extracts have been reported to be effective in reducing methanogenesis. Related mechanisms are not well illustrated, however, and most studies have been conducted in vitro. This study investigates ... Background: Garlic extracts have been reported to be effective in reducing methanogenesis. Related mechanisms are not well illustrated, however, and most studies have been conducted in vitro. This study investigates the effects of supplementary allicin(AL) in sheep diet on in vivo digestibility, rumen fermentation, and shifts of microbial flora.Methods: Two experiments were conducted using Dorper × thin-tailed Han crossbred ewes. In experiment 1,eighteen ewes(60.0 ± 1.73 kg BW) were randomly assigned for 29 days to either of two dietary treatments: a basal diet or the basal diet supplemented with 2.0 g AL/head?day to investigate supplementary AL on nutrient digestibility and methane emissions. In experiment 2, six ewes(65.2 ± 2.0 kg BW) with ruminal canulas were assigned to the same two dietary treatments as in experiment 1 for 42 days to investigate supplementary AL on ruminal fermentation and microbial flora. The methane emissions were determined using an open-circuit respirometry system and microbial assessment was done by q PCR of 16 S r RNA genes.Results: Supplementary AL increased the apparent digestibility of organic matter(P 〈 0.001), nitrogen(P = 0.006),neutral detergent fiber(P 〈 0.001), and acid detergent fiber(P = 0.002). Fecal nitrogen output was reduced(P = 0.001)but urinary nitrogen output was unaffected(P = 0.691), while nitrogen retention(P = 0.077) and nitrogen retention/nitrogen intake(P = 0.077) tended to increase. Supplementary AL decreased methane emissions scaled to metabolic bodyweight by 5.95 %(P = 0.007) and to digestible organic matter intake by 8.36 %(P = 0.009). Ruminal p H was unaffected(P = 0.601) while ammonia decreased(P = 0.024) and total volatile fatty acids increased(P = 0.024) in response to supplementary AL. Supplementary AL decreased the population of methanogens(P = 0.001) and tended to decrease that of protozoans(P = 0.097), but increased the populations of F. succinogenes(P 〈 0.001), R. flavefaciens(P = 0.001), and B. fibrisolvens(P = 0.001).Conclusions: Supplementation of AL at 2.0 g/head?day effectively enhanced OM, N, NDF, and ADF digestibility and reduced daily methane emissions(L/kg BW0.75) in ewes, probably by decreasing the population of ruminal protozoans and methanogens. 展开更多
关键词 Allicin Digestibility Ewe methane microbial flora
下载PDF
Digestion performance and microbial community in full-scale methane fermentation of stillage from sweet potato-shochu production
3
作者 Tsutomu Kobayashi Yueqin Tang +2 位作者 Toyoshi Urakami Shigeru Morimura Kenji Kida 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第2期423-431,共9页
Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 105 tons per year. Wastewater mainly containing stillage from th... Sweet potato shochu is a traditional Japanese spirit produced mainly in the South Kyushu area in Japan. The amount of stillage reaches approximately 8 x 105 tons per year. Wastewater mainly containing stillage from the production of sweet potato-shochu was treated thermophilically in a fullscale treatment plant using fixed-bed reactors (8 reactors ×283 m3). Following the addition of Ni2+ and Co2+, the reactors have been stably operated for six years at a high chemical oxygen demand (COD) loading rate of 14 kg/(m3.day). Analysis of coenzyme content and microbial communities indicated that similar microbial communities were present in the liquid phase and on the fiber carders installed in reactors. Bacteria in the phyla Firmieutes as well as Bacteroidetes were dominant bacteria, and Methanosarcina thermophila as well as Methanothermobacter crinale were dominant methanogens in the reactors. This study reveals that stillage from sweet potato-shochu production can be treated effectively in a full-scale fixed-bed reactor under thermophilic conditions with the help of Ni2~ and Co2+. The high diversity of bacterial community and the coexistence of both aceticlastic and hydrogenotrophic methanogens contributed to the excellent fermentation performance. 展开更多
关键词 thermophilic methane fermentation stillage treatment full-scale fixed-bed reactor microbial community
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部