The Microbial Prospecting of Oil and Gas(MPOG) is applied to the matured development area in the Satellite Oilfield in Daqing for the first time. And with the MPOG,the hydrocarbon accumulation regulation controlled by...The Microbial Prospecting of Oil and Gas(MPOG) is applied to the matured development area in the Satellite Oilfield in Daqing for the first time. And with the MPOG,the hydrocarbon accumulation regulation controlled by faults is interpreted,and the matured development area is extended out to western part. At the same time,four microbial anomalies are discovered. The MPOG results were verified by the hydrocarbon-bearing conditions of the 10 drilled wells within the following half a year,and the consistent rate is up to 80%,which add about 300×104 t of the explored petroleum-in-place. Through study and successful application of MPOG to the Satellite Oilfield,the basis of the application from the exploration to development field is substantially established,and standard system of microbial anomaly is more precisely built for the Satellite Oilfield,which provided an effective explanatory item for the studied and adjacent region,even for the whole Songliao Basin,and also a new technique for complicated reservoirs,especially for the later stage development of litho-reservoirs in China. Therefore,it must have profound influence upon the oil and gas exploration,especially upon the remaining oil,extension and reserves addition of the developed area in China.展开更多
Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma S...Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma Sequence' and 'turbidite fan' deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes.In this article,by applying sandy debris flows theory and combining a lot work of core,outcrop observation and analysis plus seismic profile interpretation,we recognized three types of sedimentary gravity flows that are sandy debris flows,classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin.Among the three types,the sandy debris flows are the most prominent and possesses the best oil bearing conditions.On the contrary,the classic turbidites formed by turbidity currents are limited in distribution;therefore,previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition.Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution,huge depth and prevalent advantages for oil forming,which make it one of the most favorable new areas for Ordos Basin prospecting.展开更多
The South Yellow Sea Basin is a large sedimentary basin superimposed by the Mesozoic-Paleozoic marine sedimentary basin and the Mesozoic-Cenozoic terrestrial sedimentary basin, where no oil and gas fields have been di...The South Yellow Sea Basin is a large sedimentary basin superimposed by the Mesozoic-Paleozoic marine sedimentary basin and the Mesozoic-Cenozoic terrestrial sedimentary basin, where no oil and gas fields have been discovered after exploration for 58 years. After the failure of oil and gas exploration in terrestrial basins, the exploration target of the South Yellow Sea Basin turned to the marine Mesozoic- Paleozoic strata. After more than ten years' investigation and research, a lot of achievements have been obtained. The latest exploration obtained effective seismic reflection data of deep marine facies by the application of seismic exploration technology characterized by high coverage, abundant low-frequency components and strong energy source for the deep South Yellow Sea Basin. In addition, some wells drilled the Middle-Upper Paleozoic strata, with obvious oil and gas shows discovered in some horizons. The recent petroleum geological research on the South Yellow Sea Basin shows that the structure zoning of the marine residual basin has been redetermined, the basin structure has been defined, and 3 seismic reflection marker layers are traceable and correlatable in the residual thick Middle-Paleozoic strata below the continental Meso-Cenozoic strata in the South Yellow Sea Basin. Based on these, the seismic sequence of the marine sedimentary strata was established. According to the avaliable oil and gas exploration and research, the marine Mesozoic-Paleozoic oil and gas prospects of the South Yellow Sea were predicted as follows.(1) The South Yellow Sea Basin has the same sedimentary formation and evolution history during the sedimentary period of the Middle-Paleozoic marine basin with the Sichuan Basin.(2) There are 3 regional high-quality source rocks.(3) The carbonate and clastic reservoirs are developed in the Mesozoic- Paleozoic strata.(4) The three source-reservoir-cap assemblages are relatively intact.(5) The Laoshan Uplift is a prospect area for the Lower Paleozoic oil and gas, and the Wunansha Uplift is one for the marine Upper Paleozoic oil and gas.(6) The Gaoshi stable zone in the Laoshan Uplift is a favorable zone.(7) The marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin has the geological conditions required to form large oil and gas fields, with remarkable oil and gas resources prospect. An urgent problem to be addressed now within the South Yellow Sea Basin is to drill parametric wells for the Lower Paleozoic strata as the target, to establish the complete stratigraphic sequence since the Paleozoic period, to obtain resource evaluation parameters, and to realize the strategic discovery and achieve breakthrough in oil and gas exploration understanding.展开更多
It is a conventional method for petroleum prospecting to generally use paraffin hydrocarbon as basic indexes of oil and gas. This conventional geochemical technology, however, shows some limits in the prospecting as p...It is a conventional method for petroleum prospecting to generally use paraffin hydrocarbon as basic indexes of oil and gas. This conventional geochemical technology, however, shows some limits in the prospecting as paraffin is vulnerable to influences from human and biologic activities. Consequently, BTEX (short for benzene, toluene, ethyl benzene and xylem, which are direct biomarkers) among aromatic hydrocarbon series has been taken into account for the oil and gas prediction. Domestic and foreign study results demonstrate that BTEX is hardly disturbed and can well indicate oil and gas reservoirs. Based on measured data from a South China Sea area, the present authors have used self-developed visual assessment software for petroleum prospecting has been used to process data, strip background anomalies, and outline significant BTEX anomalies. By comparison with stratigraphic profiles of the target area, it is confirmed that BTEX is a good indication of marine oil and gas during the petroleum prospecting.展开更多
Objective Complex geological factors have been constraining the oil and gas exploration in the Paleozoic strata of the Qaidam Basin,although there are high-quality hydrocarbon source rocks.One of the most important re...Objective Complex geological factors have been constraining the oil and gas exploration in the Paleozoic strata of the Qaidam Basin,although there are high-quality hydrocarbon source rocks.One of the most important reasons may be reservoir densification due to the multiple stages of destructive cementation,which has hindered our understanding of the Paleozoic petroleum enrichment rules in the Qaidam basin.In recent years.展开更多
The Mohe permafrost in northeast China possesses favorable subsurface ambient temperature, salinity, Eh values and pH levels of groundwater for the formation of microbial gas, and the Mohe Basin contains rich organic ...The Mohe permafrost in northeast China possesses favorable subsurface ambient temperature, salinity, Eh values and pH levels of groundwater for the formation of microbial gas, and the Mohe Basin contains rich organic matter in the Middle Jurassic dark mudstones. This work conducted gas chromatography and isotope mass spectrometry analyses of nearly 90 core gas samples from the Mk-2 well in the Mohe Basin. The results show that the dryness coefficient(C1/C1–5) of core hydrocarbon gas from approximately 900 m intervals below the surface is larger than 98%, over 70% of the δ13 C values of methane are smaller than-55‰, and almost all δD values of methane are smaller than-250‰, indicative of a microbial origin of the gas from almost 900 m of the upper intervals in the Mohe permafrost. Moreover, the biomarker analyses of 72 mudstone samples from the Mohe area indicate that all of them contain 25-norhopane series compounds, thereby suggesting widely distributed microbial activities in the permafrost. This work has confirmed the prevailing existence of microbial gas in the Mohe area, which may be a potential gas source of gas hydrate formation in the Mohe permafrost. This result is of great significance to gas hydrate accumulation in the permafrost across China.展开更多
There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly eas...There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.展开更多
Structural characteristics of the Jurassic basins of Xining, Minhe, and Xiji in the east of middle Qilian were researched based on the data obtained by gravitational, magnetic, and seismic methods. The result shows th...Structural characteristics of the Jurassic basins of Xining, Minhe, and Xiji in the east of middle Qilian were researched based on the data obtained by gravitational, magnetic, and seismic methods. The result shows that each of these three basins is an independent structural unit with a NW strike and being separated by upheavals. Two groups of faults with NW and NE directions are developed in the basin, which controls the formation and evolution of the (Jurassic basins). The NW faults are the main ones while the NE faults are the secondary for controlling the sedimentation. Of the three basins, the Minhe basin is the favorable prospecting area.展开更多
Borehole nuclear magnetic resonance(NMR)is a powerful technology to characterize the petrophysical properties of underground reservoirs in the petroleum industry.The rising complexity of oil and gas exploration and de...Borehole nuclear magnetic resonance(NMR)is a powerful technology to characterize the petrophysical properties of underground reservoirs in the petroleum industry.The rising complexity of oil and gas exploration and development objectives,as well as the novel application contexts of underground reservoirs,have led to increasingly demanding requirements on borehole NMR technology including instrument design and related processing methods.This mini review summarizes the advances and applications of borehole NMR instruments along with some future possibilities.It may be helpful for researchers and engineers in the petroleum industry to understand the development status and future trends of borehole NMR technology.展开更多
As reported in this paper, a strain of oil-degrading bacterium Sp - 5 - 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to g...As reported in this paper, a strain of oil-degrading bacterium Sp - 5 - 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2× 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsifica-tion activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.展开更多
The Qinghai-Tibet Plateau(also referred to as the Plateau)has long received much attention from the community of geoscience due to its unique geographical location and rich mineral resources.This paper reviews the aer...The Qinghai-Tibet Plateau(also referred to as the Plateau)has long received much attention from the community of geoscience due to its unique geographical location and rich mineral resources.This paper reviews the aeromagnetic surveys in the Plateau in the past 60 years and summarizes relevant research achievements,which mainly include the followings.(1)The boundaries between the Plateau and its surrounding regions have been clarified.In detail,its western boundary is restricted by West Kunlun-Altyn Tagh arc-shaped magnetic anomaly zone forming due to the arc-shaped connection of the Altyn Tagh and Kangxiwa faults and its eastern boundary consists of the boundaries among different magnetic fields along the Longnan(Wudu)-Kangding Fault.Meanwhile,the fault on the northern margin of the Northern Qilian Mountains serves as its northern boundary.(2)The Plateau is mainly composed of four orogens that were stitched together,namely East Kunlun-Qilian,Hoh-Xil-Songpan,Chamdo-Southwestern Sanjiang(Nujiang,Lancang,and Jinsha rivers in southeastern China),and Gangdese-Himalaya orogens.(3)The basement of the Plateau is dominated by weakly magnetic Proterozoic metamorphic rocks and lacks strongly magnetic Archean crystalline basement of stable continents such as the Tarim and Sichuan blocks.Therefore,it exhibits the characteristics of unstable orogenic basement.(4)The Yarlung-Zangbo suture zone forming due to continent-continent collisions since the Cenozoic shows double aeromagnetic anomaly zones.Therefore,it can be inferred that the Yarlung-Zangbo suture zone formed from the Indian Plate subducting towards and colliding with the Eurasian Plate twice.(5)A huge negative aeromagnetic anomaly in nearly SN trending has been discovered in the middle part of the Plateau,indicating a giant deep thermal-tectonic zone.(6)A dual-layer magnetic structure has been revealed in the Plateau.It consists of shallow magnetic anomaly zones in nearly EW and NW trending and deep magnetic anomaly zones in nearly SN trending.They overlap vertically and cross horizontally,showing the flyover-type geological structure of the Plateau.(7)A group of NW-trending faults occur in eastern Tibet,which is intersected rather than connected by the nearly EW trending that develop in middle-west Tibet.(8)As for the central uplift zone that occurs through the Qiangtang Basin,its metamorphic basement tends to gradually descend from west to east,showing the form of steps.The Qiangtang Basin is divided into the northern and southern part by the central uplift zone in it.The basement in the Qiangtang Basin is deep in the north and west and shallow in the south and west.The basement in the northern Qiangtang Basin is deep and relatively stable and thus is more favorable for the generation and preservation of oil and gas.Up to now,19 favorable tectonic regions of oil and gas have been determined in the Qiangtang Basin.(9)A total of 21 prospecting areas of mineral resources have been delineated and thousands of ore-bearing(or mineralization)anomalies have been discovered.Additionally,the formation and uplift mechanism of the Plateau are briefly discussed in this paper.展开更多
The Kumkol basin is located in the northern Tibetan Plateau and is a closed plateau basin with an average altitude of>4000 m and an area of nearly 20000 km^(2). Its boundaries are limited by the Altyn Tagh fault, E...The Kumkol basin is located in the northern Tibetan Plateau and is a closed plateau basin with an average altitude of>4000 m and an area of nearly 20000 km^(2). Its boundaries are limited by the Altyn Tagh fault, East Kunlun orogen and Qimantag orogen. Studying the deep structure of the Kumkol basin reveals 2 significant implications:(1) the basin has developed a large thickness of >7000 m Cenozoic continental sediments, recording the uplift history of the northern Tibetan Plateau, and(2)preliminary work indicates that the basin is likely to have oil and gas prospects. However, owing to the adverse natural conditions of the area and the strong tectonic activity in the Cenozoic, the latter of which was not conducive to hydrocarbon preservation,only regional geological mapping and petroleum exploration route surveys have been carried out, and there is no consensus on strata, structure and tectonic evolution. From 2021 to 2022, a deep seismic reflection profile implemented by the Second Tibetan Plateau Scientific Expedition and Research(STEP) project was the first high-resolution geophysical survey across the Kumkol basin. This study uses seismic reflection migration profiles, first-arrival wave tomographic imaging and previous research results to analyze the deep structure of the basin. The final merged model contains many features of tectonic and resource significance:(1) The Kumkol basin is ~90 km wide from north to south, with a basement depth of >9000 m. The main component is the Cenozoic continental deposits, which are divided into two major parts: the southern composite basin and the northern faulted basin. Owing to the later compression, the southern composite basin experienced significant deformation, but most parts still preserved their original sedimentary formations.(2) The structural deformation characteristics of the basin reveal a two-stage tectonic evolution process of the northern Tibetan Plateau in the Cenozoic: from the Oligocene to the Pliocene, the main mechanism was vertical differential uplift and subsidence, and after the Pliocene, it transformed to north-south compression and shortened deformation.(3) The strata, formation time, and source-reservoir-cap conditions of the Kumkol basin are similar to those of the Qaidam basin. If a breakthrough can be achieved, it is expected to expand the production capacity of the oil field in the Qaidam basin with a low-cost investment. Thus, further exploration is recommended.展开更多
基金Supported by Petrotech Junior Innovation Fund of China: Rapid appraisal of soil obligate microbes and its significance for oil and gas exploration (code: 2003Z0506)
文摘The Microbial Prospecting of Oil and Gas(MPOG) is applied to the matured development area in the Satellite Oilfield in Daqing for the first time. And with the MPOG,the hydrocarbon accumulation regulation controlled by faults is interpreted,and the matured development area is extended out to western part. At the same time,four microbial anomalies are discovered. The MPOG results were verified by the hydrocarbon-bearing conditions of the 10 drilled wells within the following half a year,and the consistent rate is up to 80%,which add about 300×104 t of the explored petroleum-in-place. Through study and successful application of MPOG to the Satellite Oilfield,the basis of the application from the exploration to development field is substantially established,and standard system of microbial anomaly is more precisely built for the Satellite Oilfield,which provided an effective explanatory item for the studied and adjacent region,even for the whole Songliao Basin,and also a new technique for complicated reservoirs,especially for the later stage development of litho-reservoirs in China. Therefore,it must have profound influence upon the oil and gas exploration,especially upon the remaining oil,extension and reserves addition of the developed area in China.
文摘Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma Sequence' and 'turbidite fan' deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes.In this article,by applying sandy debris flows theory and combining a lot work of core,outcrop observation and analysis plus seismic profile interpretation,we recognized three types of sedimentary gravity flows that are sandy debris flows,classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin.Among the three types,the sandy debris flows are the most prominent and possesses the best oil bearing conditions.On the contrary,the classic turbidites formed by turbidity currents are limited in distribution;therefore,previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition.Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution,huge depth and prevalent advantages for oil forming,which make it one of the most favorable new areas for Ordos Basin prospecting.
文摘The South Yellow Sea Basin is a large sedimentary basin superimposed by the Mesozoic-Paleozoic marine sedimentary basin and the Mesozoic-Cenozoic terrestrial sedimentary basin, where no oil and gas fields have been discovered after exploration for 58 years. After the failure of oil and gas exploration in terrestrial basins, the exploration target of the South Yellow Sea Basin turned to the marine Mesozoic- Paleozoic strata. After more than ten years' investigation and research, a lot of achievements have been obtained. The latest exploration obtained effective seismic reflection data of deep marine facies by the application of seismic exploration technology characterized by high coverage, abundant low-frequency components and strong energy source for the deep South Yellow Sea Basin. In addition, some wells drilled the Middle-Upper Paleozoic strata, with obvious oil and gas shows discovered in some horizons. The recent petroleum geological research on the South Yellow Sea Basin shows that the structure zoning of the marine residual basin has been redetermined, the basin structure has been defined, and 3 seismic reflection marker layers are traceable and correlatable in the residual thick Middle-Paleozoic strata below the continental Meso-Cenozoic strata in the South Yellow Sea Basin. Based on these, the seismic sequence of the marine sedimentary strata was established. According to the avaliable oil and gas exploration and research, the marine Mesozoic-Paleozoic oil and gas prospects of the South Yellow Sea were predicted as follows.(1) The South Yellow Sea Basin has the same sedimentary formation and evolution history during the sedimentary period of the Middle-Paleozoic marine basin with the Sichuan Basin.(2) There are 3 regional high-quality source rocks.(3) The carbonate and clastic reservoirs are developed in the Mesozoic- Paleozoic strata.(4) The three source-reservoir-cap assemblages are relatively intact.(5) The Laoshan Uplift is a prospect area for the Lower Paleozoic oil and gas, and the Wunansha Uplift is one for the marine Upper Paleozoic oil and gas.(6) The Gaoshi stable zone in the Laoshan Uplift is a favorable zone.(7) The marine Mesozoic-Paleozoic strata in the South Yellow Sea Basin has the geological conditions required to form large oil and gas fields, with remarkable oil and gas resources prospect. An urgent problem to be addressed now within the South Yellow Sea Basin is to drill parametric wells for the Lower Paleozoic strata as the target, to establish the complete stratigraphic sequence since the Paleozoic period, to obtain resource evaluation parameters, and to realize the strategic discovery and achieve breakthrough in oil and gas exploration understanding.
基金The "863" Projects of MST (Faculty of Materials Science and Technology) of China under contract No2002AA615160
文摘It is a conventional method for petroleum prospecting to generally use paraffin hydrocarbon as basic indexes of oil and gas. This conventional geochemical technology, however, shows some limits in the prospecting as paraffin is vulnerable to influences from human and biologic activities. Consequently, BTEX (short for benzene, toluene, ethyl benzene and xylem, which are direct biomarkers) among aromatic hydrocarbon series has been taken into account for the oil and gas prediction. Domestic and foreign study results demonstrate that BTEX is hardly disturbed and can well indicate oil and gas reservoirs. Based on measured data from a South China Sea area, the present authors have used self-developed visual assessment software for petroleum prospecting has been used to process data, strip background anomalies, and outline significant BTEX anomalies. By comparison with stratigraphic profiles of the target area, it is confirmed that BTEX is a good indication of marine oil and gas during the petroleum prospecting.
基金supported by the National Natural Science Fund(grants No.41272159 and 41572099)Geological Survey Project of China Geological Survey (grant No.1212011120964)
文摘Objective Complex geological factors have been constraining the oil and gas exploration in the Paleozoic strata of the Qaidam Basin,although there are high-quality hydrocarbon source rocks.One of the most important reasons may be reservoir densification due to the multiple stages of destructive cementation,which has hindered our understanding of the Paleozoic petroleum enrichment rules in the Qaidam basin.In recent years.
基金supported by Prospecting and Testing Production Project of Gas Hydrate resources, Ministry of Land and Resources of China (grants No. GZHL20110317, GZHL20110320, GZHL20110322)
文摘The Mohe permafrost in northeast China possesses favorable subsurface ambient temperature, salinity, Eh values and pH levels of groundwater for the formation of microbial gas, and the Mohe Basin contains rich organic matter in the Middle Jurassic dark mudstones. This work conducted gas chromatography and isotope mass spectrometry analyses of nearly 90 core gas samples from the Mk-2 well in the Mohe Basin. The results show that the dryness coefficient(C1/C1–5) of core hydrocarbon gas from approximately 900 m intervals below the surface is larger than 98%, over 70% of the δ13 C values of methane are smaller than-55‰, and almost all δD values of methane are smaller than-250‰, indicative of a microbial origin of the gas from almost 900 m of the upper intervals in the Mohe permafrost. Moreover, the biomarker analyses of 72 mudstone samples from the Mohe area indicate that all of them contain 25-norhopane series compounds, thereby suggesting widely distributed microbial activities in the permafrost. This work has confirmed the prevailing existence of microbial gas in the Mohe area, which may be a potential gas source of gas hydrate formation in the Mohe permafrost. This result is of great significance to gas hydrate accumulation in the permafrost across China.
文摘There were more expounding to north—west (west) trend fault and north\|east trend fault within Qiangtang Basin, North Part of Tibet, in the past literature. With increasing of geophysical exploration data, nearly east\|west trend structure began to be taken note to. Since the year of 1995, by a synthetic study to geophysical and geological data, that south\|north trend faulted structures are well developed. These structures should be paid much more attention to, because they have important theoretical meaning and practical significance.1 Spreading of south\|north faulted structure belt According to different geological and geophysical data, the six larger scale nearly south\|north faulted structure belt could be distinguished within the scope of east longitude 84°~96° and near Qiangtang Basin. The actual location of the six belts are nearly located in the west of the six meridian of east longitude 85°,87°,89°,91°,93°,95° or located near these meridian. The six south\|north faulted structure belts spread in the same interval with near 2° longitude interval. The more clear and much more significance of south\|north trend faulted structure belts are the two S—N trend faulted structure belts of east longitude 87° and 89°. There are S—N trend faulted structure belts in the west of east longitude 83°,81°, or near the longitudes. The structure belts spreading features,manifestation,geological function and its importance, and inter texture and structure are not exactly so same. The structure belts all different degree caused different region of geological structure or gravity field and magnetic field. There is different scale near S—N trend faulted structure belt between the belts.
文摘Structural characteristics of the Jurassic basins of Xining, Minhe, and Xiji in the east of middle Qilian were researched based on the data obtained by gravitational, magnetic, and seismic methods. The result shows that each of these three basins is an independent structural unit with a NW strike and being separated by upheavals. Two groups of faults with NW and NE directions are developed in the basin, which controls the formation and evolution of the (Jurassic basins). The NW faults are the main ones while the NE faults are the secondary for controlling the sedimentation. Of the three basins, the Minhe basin is the favorable prospecting area.
基金“The Strategic Cooperation Technology Projects of CNPC and CUP(Grant Number ZLZX2020-03)”“China Postdoctoral Science Foundation(Grant Number 2021M700172)”.
文摘Borehole nuclear magnetic resonance(NMR)is a powerful technology to characterize the petrophysical properties of underground reservoirs in the petroleum industry.The rising complexity of oil and gas exploration and development objectives,as well as the novel application contexts of underground reservoirs,have led to increasingly demanding requirements on borehole NMR technology including instrument design and related processing methods.This mini review summarizes the advances and applications of borehole NMR instruments along with some future possibilities.It may be helpful for researchers and engineers in the petroleum industry to understand the development status and future trends of borehole NMR technology.
基金The project supported by the Knowledge Innovation Project of the Chinese Academy of Sciences(No. KSCX2-SW-324)
文摘As reported in this paper, a strain of oil-degrading bacterium Sp - 5 - 3 was determined to belong to Enterobacteriaceae, which would be useful for microbial enhanced oil recovery (MEOR). The aim of our study was to generate a mutant using low energy N+ beam implantation. With 10 keV of energy and 5.2× 1014 N+/cm2 of dose - the optimum condition, a mutant, S-34, was obtained, which had nearly a 5-fold higher surface and a 13-fold higher of emulsifica-tion activity than the wild type. The surface activity was measured by two methods, namely, a surface tension measuring instrument and a recording of the repulsive circle of the oil film; the emulsification activity was scaled through measuring the separating time of the oil-fermentation mixture. The metabolic acid was determined as methane by means of gas chromatography.
基金funded by the National Key Research and Development Project(2017YFC0602200)China Geological Survey(DD20160065,DD20190025).
文摘The Qinghai-Tibet Plateau(also referred to as the Plateau)has long received much attention from the community of geoscience due to its unique geographical location and rich mineral resources.This paper reviews the aeromagnetic surveys in the Plateau in the past 60 years and summarizes relevant research achievements,which mainly include the followings.(1)The boundaries between the Plateau and its surrounding regions have been clarified.In detail,its western boundary is restricted by West Kunlun-Altyn Tagh arc-shaped magnetic anomaly zone forming due to the arc-shaped connection of the Altyn Tagh and Kangxiwa faults and its eastern boundary consists of the boundaries among different magnetic fields along the Longnan(Wudu)-Kangding Fault.Meanwhile,the fault on the northern margin of the Northern Qilian Mountains serves as its northern boundary.(2)The Plateau is mainly composed of four orogens that were stitched together,namely East Kunlun-Qilian,Hoh-Xil-Songpan,Chamdo-Southwestern Sanjiang(Nujiang,Lancang,and Jinsha rivers in southeastern China),and Gangdese-Himalaya orogens.(3)The basement of the Plateau is dominated by weakly magnetic Proterozoic metamorphic rocks and lacks strongly magnetic Archean crystalline basement of stable continents such as the Tarim and Sichuan blocks.Therefore,it exhibits the characteristics of unstable orogenic basement.(4)The Yarlung-Zangbo suture zone forming due to continent-continent collisions since the Cenozoic shows double aeromagnetic anomaly zones.Therefore,it can be inferred that the Yarlung-Zangbo suture zone formed from the Indian Plate subducting towards and colliding with the Eurasian Plate twice.(5)A huge negative aeromagnetic anomaly in nearly SN trending has been discovered in the middle part of the Plateau,indicating a giant deep thermal-tectonic zone.(6)A dual-layer magnetic structure has been revealed in the Plateau.It consists of shallow magnetic anomaly zones in nearly EW and NW trending and deep magnetic anomaly zones in nearly SN trending.They overlap vertically and cross horizontally,showing the flyover-type geological structure of the Plateau.(7)A group of NW-trending faults occur in eastern Tibet,which is intersected rather than connected by the nearly EW trending that develop in middle-west Tibet.(8)As for the central uplift zone that occurs through the Qiangtang Basin,its metamorphic basement tends to gradually descend from west to east,showing the form of steps.The Qiangtang Basin is divided into the northern and southern part by the central uplift zone in it.The basement in the Qiangtang Basin is deep in the north and west and shallow in the south and west.The basement in the northern Qiangtang Basin is deep and relatively stable and thus is more favorable for the generation and preservation of oil and gas.Up to now,19 favorable tectonic regions of oil and gas have been determined in the Qiangtang Basin.(9)A total of 21 prospecting areas of mineral resources have been delineated and thousands of ore-bearing(or mineralization)anomalies have been discovered.Additionally,the formation and uplift mechanism of the Plateau are briefly discussed in this paper.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Project (Grant No. 2019QZKK0701-02)the National Natural Science Foundation of China (Grant Nos. 42174124, 42274135)。
文摘The Kumkol basin is located in the northern Tibetan Plateau and is a closed plateau basin with an average altitude of>4000 m and an area of nearly 20000 km^(2). Its boundaries are limited by the Altyn Tagh fault, East Kunlun orogen and Qimantag orogen. Studying the deep structure of the Kumkol basin reveals 2 significant implications:(1) the basin has developed a large thickness of >7000 m Cenozoic continental sediments, recording the uplift history of the northern Tibetan Plateau, and(2)preliminary work indicates that the basin is likely to have oil and gas prospects. However, owing to the adverse natural conditions of the area and the strong tectonic activity in the Cenozoic, the latter of which was not conducive to hydrocarbon preservation,only regional geological mapping and petroleum exploration route surveys have been carried out, and there is no consensus on strata, structure and tectonic evolution. From 2021 to 2022, a deep seismic reflection profile implemented by the Second Tibetan Plateau Scientific Expedition and Research(STEP) project was the first high-resolution geophysical survey across the Kumkol basin. This study uses seismic reflection migration profiles, first-arrival wave tomographic imaging and previous research results to analyze the deep structure of the basin. The final merged model contains many features of tectonic and resource significance:(1) The Kumkol basin is ~90 km wide from north to south, with a basement depth of >9000 m. The main component is the Cenozoic continental deposits, which are divided into two major parts: the southern composite basin and the northern faulted basin. Owing to the later compression, the southern composite basin experienced significant deformation, but most parts still preserved their original sedimentary formations.(2) The structural deformation characteristics of the basin reveal a two-stage tectonic evolution process of the northern Tibetan Plateau in the Cenozoic: from the Oligocene to the Pliocene, the main mechanism was vertical differential uplift and subsidence, and after the Pliocene, it transformed to north-south compression and shortened deformation.(3) The strata, formation time, and source-reservoir-cap conditions of the Kumkol basin are similar to those of the Qaidam basin. If a breakthrough can be achieved, it is expected to expand the production capacity of the oil field in the Qaidam basin with a low-cost investment. Thus, further exploration is recommended.