The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (...The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (about 1700 mg/L) and copper (about 200 mg/L), and contained high concentrations of sulfate (about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor (PBR).The HRT was shortened stepwise from 40 h to 20 h, 13 h, and 8 h under the acidic environment at a pH value of 2.2.Then, the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT, and when the HRT exceeded 13 h, ferrous iron in AMD was almost completely oxidized.In addition, the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor, and low influent pH values are suitable for the growth of Leptospirillum.展开更多
Microbial oxidation and reduction of iron and sulfur are important parts of biogeochemical cycles in acidic environments such as geothermal solfataric regions. Species of Acidithiobacillus and Leptospirillum are the c...Microbial oxidation and reduction of iron and sulfur are important parts of biogeochemical cycles in acidic environments such as geothermal solfataric regions. Species of Acidithiobacillus and Leptospirillum are the common ferrous-iron and sulfur oxidizers from such environments. This study focused on the Tengchong sofataric region, located in Yunnan Province, Southwest China. Based on cultivation, 9 strains that grow on ferrous-iron and sulfuric compounds were obtained. Analysis of 16S rRNA genes of the 9 strains indicated that they were affiliated to AcidithiobaciUus, Alicyclobacillus, Sulfobacillus, Leptospirillum and Acidiphilium. Physiological and phylogenetic studies indicated that two strains (TC-34 and TC-71) might represent two novel members of Alicyclobacillus. Strain TC-34 and TC-71 showed 94.8%-97.1% 16S rRNA gene identities to other species of Alicyclobacillus. Different from the previously described Alicyclobacillus species, strains TC-34 and TC-71 were mesophilic and their cellular fatty acids do not contain w-cyclic fatty acids. Strain TC-71 was obligately dependent on ferrous-iron for growth. It was concluded that the ferrous-iron oxidizers were diversified and Alicyclobacillus species were proposed to take part in biochemical geocycling of iron in the Tengchong solfataric region.展开更多
Drinking water utilities are interested in upgrading their treatment facilities to enhance micropollutant removal and byproduct control.Pre-oxidation by chlorine dioxide(ClO_(2))followed by coagulation-flocculation-se...Drinking water utilities are interested in upgrading their treatment facilities to enhance micropollutant removal and byproduct control.Pre-oxidation by chlorine dioxide(ClO_(2))followed by coagulation-flocculation-sedimentation and advanced oxidation processes(AOPs)is one of the promising solutions.However,the chlorite(ClO_(2)^(-))formed from the ClO_(2) preoxidation stage cannot be removed by the conventional coagulation process using aluminum sulfate.ClO_(2)^(–)negatively affects the post-UV/chlorine process due to its strong radical scavenging effect,and it also enhances the formation of chlorate(ClO_(3)^(–)).In this study,dosing micromolar-level ferrous iron(Fe(II))into aluminum-based coagulants was proposed to eliminate the ClO_(2)^(–)generated from ClO_(2) pre-oxidation and benefit the post-UV/chlorine process in radical production and ClO_(3)^(–)reduction.Results showed that the addition of 52.1-μmol/L FeSO_(4) effectively eliminated the ClO_(2)^(-)generated from the pre-oxidation using 1.0 mg/L(14.8μmol/L)of ClO 2.Reduction of ClO_(2)^(-)increased the degradation rate constant of a model micropollutant(carbamazepine)by 55.0%in the post-UV/chlorine process.The enhanced degradation was verified to be attributed to the increased steady-state concentrations of HO^(-)·and ClO_(2)·by Fe(II)addition.Moreover,Fe(II)addition also decreased the ClO_(3)^(–)formation by 53.8%in the UV/chlorine process and its impact on the formation of chloroorganic byproducts was rather minor.The findings demonstrated a promising strategy to improve the drinking water quality and safety by adding low-level Fe(II)in coagulation in an advanced drinking water treatment train.展开更多
我国制备氧化铁黄的原料大多以硫铁矿烧渣、钛白副产品硫酸亚铁、硫酸亚铁等分析纯试剂为主,存在杂质多、原料成本高、原料来源复杂等问题。试验采用超级铁精矿作为初始原料,通过酸溶-过滤-还原法制备硫酸亚铁,利用碳酸氢铵为沉淀剂,通...我国制备氧化铁黄的原料大多以硫铁矿烧渣、钛白副产品硫酸亚铁、硫酸亚铁等分析纯试剂为主,存在杂质多、原料成本高、原料来源复杂等问题。试验采用超级铁精矿作为初始原料,通过酸溶-过滤-还原法制备硫酸亚铁,利用碳酸氢铵为沉淀剂,通过氧化沉淀法制备氧化铁黄。试验表明在超级铁精矿(TFe:71.81%)、400 m L 4°Bé硫酸亚铁、初始pH为3.5、水浴温度为100℃、搅拌速度为500 r·min^(-1)、反应时间11 h等条件下,与GB/T 1863—2008各项指标数值作对比,铁含量高于国家标准1.07%,筛余物低于国家标准0.005%,105℃挥发物低于国家标准0.15%,总钙量低于国家标准0.248%。具有原料来源广、节能环保等优点,为制备高纯氧化铁黄提供新思路。展开更多
基金supported by the National Natural Science Foundation of China(Grant No.U1402234)the Guangxi Scientific Research and Technology Development Plan(Grants No.GuikeAB16380287 and GuikeAB17129025)+2 种基金the Public Welfare Fund of the Ministry of Environmental Protection of China(Grant No.201509049)the Program of International S & T Cooperation(Grant No.2016YFE0130700)the Fund of the General Research Institute for Nonferrous Metals(Grants No.53321 and 53348)
文摘The effect of hydraulic retention time (HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage (AMD) treatment was investigated.The simulated AMD was highly acidic (pH 2.5), rich in iron (about 1700 mg/L) and copper (about 200 mg/L), and contained high concentrations of sulfate (about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor (PBR).The HRT was shortened stepwise from 40 h to 20 h, 13 h, and 8 h under the acidic environment at a pH value of 2.2.Then, the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT, and when the HRT exceeded 13 h, ferrous iron in AMD was almost completely oxidized.In addition, the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor, and low influent pH values are suitable for the growth of Leptospirillum.
基金supported by the National Natural Science Foundation of China(No.30670018,30621005)
文摘Microbial oxidation and reduction of iron and sulfur are important parts of biogeochemical cycles in acidic environments such as geothermal solfataric regions. Species of Acidithiobacillus and Leptospirillum are the common ferrous-iron and sulfur oxidizers from such environments. This study focused on the Tengchong sofataric region, located in Yunnan Province, Southwest China. Based on cultivation, 9 strains that grow on ferrous-iron and sulfuric compounds were obtained. Analysis of 16S rRNA genes of the 9 strains indicated that they were affiliated to AcidithiobaciUus, Alicyclobacillus, Sulfobacillus, Leptospirillum and Acidiphilium. Physiological and phylogenetic studies indicated that two strains (TC-34 and TC-71) might represent two novel members of Alicyclobacillus. Strain TC-34 and TC-71 showed 94.8%-97.1% 16S rRNA gene identities to other species of Alicyclobacillus. Different from the previously described Alicyclobacillus species, strains TC-34 and TC-71 were mesophilic and their cellular fatty acids do not contain w-cyclic fatty acids. Strain TC-71 was obligately dependent on ferrous-iron for growth. It was concluded that the ferrous-iron oxidizers were diversified and Alicyclobacillus species were proposed to take part in biochemical geocycling of iron in the Tengchong solfataric region.
基金supported by the Hong Kong Innovation and Technology Fund (No. GHP/010/18GD)the National Natural Science Foundation of China (No. 21876210)+1 种基金the Hong Kong Research Grants Council (No. T21-604/19-R)partially supported by a fellowship award from the Research Grants Council of the Hong Kong Special Administrative Region, China (No. HKUST PDFS2021-6S05)。
文摘Drinking water utilities are interested in upgrading their treatment facilities to enhance micropollutant removal and byproduct control.Pre-oxidation by chlorine dioxide(ClO_(2))followed by coagulation-flocculation-sedimentation and advanced oxidation processes(AOPs)is one of the promising solutions.However,the chlorite(ClO_(2)^(-))formed from the ClO_(2) preoxidation stage cannot be removed by the conventional coagulation process using aluminum sulfate.ClO_(2)^(–)negatively affects the post-UV/chlorine process due to its strong radical scavenging effect,and it also enhances the formation of chlorate(ClO_(3)^(–)).In this study,dosing micromolar-level ferrous iron(Fe(II))into aluminum-based coagulants was proposed to eliminate the ClO_(2)^(–)generated from ClO_(2) pre-oxidation and benefit the post-UV/chlorine process in radical production and ClO_(3)^(–)reduction.Results showed that the addition of 52.1-μmol/L FeSO_(4) effectively eliminated the ClO_(2)^(-)generated from the pre-oxidation using 1.0 mg/L(14.8μmol/L)of ClO 2.Reduction of ClO_(2)^(-)increased the degradation rate constant of a model micropollutant(carbamazepine)by 55.0%in the post-UV/chlorine process.The enhanced degradation was verified to be attributed to the increased steady-state concentrations of HO^(-)·and ClO_(2)·by Fe(II)addition.Moreover,Fe(II)addition also decreased the ClO_(3)^(–)formation by 53.8%in the UV/chlorine process and its impact on the formation of chloroorganic byproducts was rather minor.The findings demonstrated a promising strategy to improve the drinking water quality and safety by adding low-level Fe(II)in coagulation in an advanced drinking water treatment train.
文摘我国制备氧化铁黄的原料大多以硫铁矿烧渣、钛白副产品硫酸亚铁、硫酸亚铁等分析纯试剂为主,存在杂质多、原料成本高、原料来源复杂等问题。试验采用超级铁精矿作为初始原料,通过酸溶-过滤-还原法制备硫酸亚铁,利用碳酸氢铵为沉淀剂,通过氧化沉淀法制备氧化铁黄。试验表明在超级铁精矿(TFe:71.81%)、400 m L 4°Bé硫酸亚铁、初始pH为3.5、水浴温度为100℃、搅拌速度为500 r·min^(-1)、反应时间11 h等条件下,与GB/T 1863—2008各项指标数值作对比,铁含量高于国家标准1.07%,筛余物低于国家标准0.005%,105℃挥发物低于国家标准0.15%,总钙量低于国家标准0.248%。具有原料来源广、节能环保等优点,为制备高纯氧化铁黄提供新思路。