Microfluidic,as the systems for using microchannel(micron-or sub-micron scale)to process or manipulate microflow,is being widely applied in enzyme biotechnology and biocatalysis.Microfluidic immobilized enzyme reactor...Microfluidic,as the systems for using microchannel(micron-or sub-micron scale)to process or manipulate microflow,is being widely applied in enzyme biotechnology and biocatalysis.Microfluidic immobilized enzyme reactor(MIER)is a tool with great value for the study of catalytic property and optimal reaction parameter in a flourishing and highly producing manner.In view of its advantages in efficiency,economy,and addressable recognition especially,MIER occupies an important position in the investigation of life science,including molecular biology,bioanalysis and biosensing,biocatalysis etc.Immobilization of enzymes can generally improve their stability,and upon most occasions,the immobilized enzyme is endowed with recyclability.In this review,the enzyme immobilization techniques applied in MIER will be discussed,followed by summarizing the novel developments in the field of MIER for biocatalysis,bioconversion and bioanalysis.The preponderances and deficiencies of the current state-of-the-art preparation ways of MIER are peculiarly discussed.In addition,the prospects of its future study are outlined.展开更多
This paper reports fast and efficient chemical decontamination of water within a tree-branched centimeter-scale microfluidic reactor.The microreactor integrates Zinc oxide nanowires(ZnO NWs)in situ grown acting as an ...This paper reports fast and efficient chemical decontamination of water within a tree-branched centimeter-scale microfluidic reactor.The microreactor integrates Zinc oxide nanowires(ZnO NWs)in situ grown acting as an efficient photocatalytic nanomaterial layer.Direct growth of ZnO NWs within the microfluidic chamber brings this photocatalytic medium at the very close vicinity of the water flow path,hence minimizing the required interaction time to produce efficient purification performance.We demonstrate a degradation efficiency of 95%in o5 s of residence time in one-pass only.According to our estimates,it becomes attainable using microfluidic reactors to produce decontamination of merely 1 l of water per day,typical of the human daily drinking water needs.To conduct our experiments,we have chosen a laboratory-scale case study as a seed for addressing the health concern of water contamination by volatile organic compounds(VOCs),which remain difficult to remove using alternative decontamination techniques,especially those involving water evaporation.The contaminated water sample contains mixture of five pollutants:Benzene;Toluene;Ethylbenzene;m–p Xylenes;and o-Xylene(BTEX)diluted in water at 10 p.p.m.concentration of each.Degradation was analytically monitored in a selective manner until it falls below 1 p.p.m.for each of the five pollutants,corresponding to the maximum contaminant level(MCL)established by the US Environmental Protection Agency(EPA).We also report on a preliminary study,investigating the nature of the chemical by-products after the photocatalytic VOCs degradation process.展开更多
The silica-based poly(dimethylsiloxane) (PDMS) microfluidic enzymatic reactor was reported along with its analytical features in coupling with MALDI TOF and ESI MS. Microfluidic chip was fabricated using PDMS cast...The silica-based poly(dimethylsiloxane) (PDMS) microfluidic enzymatic reactor was reported along with its analytical features in coupling with MALDI TOF and ESI MS. Microfluidic chip was fabricated using PDMS casting and O2-plasma techniques, and used for the preparation of enzymatic reactor. Plasma oxidation for PDMS enabled the channel wall of microfluidics to present a layer of silanol (SiOH) groups. These SiOH groups as anchors onto the microchannel wall were linked covalently with the hydroxy groups of trypsin-encapsulated sol matrix. As a result, the leakage of sol-gel matrix from the microchannel was effectively prevented. On-line protein analysis was performed with the microfluidic enzymatic reactor by attachment of stainless steel tubing electrode and replaceable tip, The success of trypsin encapsulation was investigated by capillary electrophoresis (CE) detection, and MALDI TOF and ESI MS analysis. The lab-made device provided excellent extent of digestion even at the fast flow rate of 7.0 μL/min with very short residence time of ca. 2 s. In addition, the encapsulated trypsin exhibits increased stability even after continuous use. These features are the most requisite for high-throughput protein identification.展开更多
文摘Microfluidic,as the systems for using microchannel(micron-or sub-micron scale)to process or manipulate microflow,is being widely applied in enzyme biotechnology and biocatalysis.Microfluidic immobilized enzyme reactor(MIER)is a tool with great value for the study of catalytic property and optimal reaction parameter in a flourishing and highly producing manner.In view of its advantages in efficiency,economy,and addressable recognition especially,MIER occupies an important position in the investigation of life science,including molecular biology,bioanalysis and biosensing,biocatalysis etc.Immobilization of enzymes can generally improve their stability,and upon most occasions,the immobilized enzyme is endowed with recyclability.In this review,the enzyme immobilization techniques applied in MIER will be discussed,followed by summarizing the novel developments in the field of MIER for biocatalysis,bioconversion and bioanalysis.The preponderances and deficiencies of the current state-of-the-art preparation ways of MIER are peculiarly discussed.In addition,the prospects of its future study are outlined.
基金This work has received funding from the ANR EquipEx SENSECITY projectthe FUI 18 MIMESYS funded by Region Ile-de-France and the European Union’s H2020 Programme for research,technological development and demonstration under grant agreement No 644852.
文摘This paper reports fast and efficient chemical decontamination of water within a tree-branched centimeter-scale microfluidic reactor.The microreactor integrates Zinc oxide nanowires(ZnO NWs)in situ grown acting as an efficient photocatalytic nanomaterial layer.Direct growth of ZnO NWs within the microfluidic chamber brings this photocatalytic medium at the very close vicinity of the water flow path,hence minimizing the required interaction time to produce efficient purification performance.We demonstrate a degradation efficiency of 95%in o5 s of residence time in one-pass only.According to our estimates,it becomes attainable using microfluidic reactors to produce decontamination of merely 1 l of water per day,typical of the human daily drinking water needs.To conduct our experiments,we have chosen a laboratory-scale case study as a seed for addressing the health concern of water contamination by volatile organic compounds(VOCs),which remain difficult to remove using alternative decontamination techniques,especially those involving water evaporation.The contaminated water sample contains mixture of five pollutants:Benzene;Toluene;Ethylbenzene;m–p Xylenes;and o-Xylene(BTEX)diluted in water at 10 p.p.m.concentration of each.Degradation was analytically monitored in a selective manner until it falls below 1 p.p.m.for each of the five pollutants,corresponding to the maximum contaminant level(MCL)established by the US Environmental Protection Agency(EPA).We also report on a preliminary study,investigating the nature of the chemical by-products after the photocatalytic VOCs degradation process.
基金Project supported by the National Natural Science Foundation of China (Nos. 30572227, 20299030), Shanghai Science Research Foundation (No 03JC14005), National Basic Research Priority Program (No. 001 CB510202) and National High Technology Key Project (No. 2002BAC11A11).
文摘The silica-based poly(dimethylsiloxane) (PDMS) microfluidic enzymatic reactor was reported along with its analytical features in coupling with MALDI TOF and ESI MS. Microfluidic chip was fabricated using PDMS casting and O2-plasma techniques, and used for the preparation of enzymatic reactor. Plasma oxidation for PDMS enabled the channel wall of microfluidics to present a layer of silanol (SiOH) groups. These SiOH groups as anchors onto the microchannel wall were linked covalently with the hydroxy groups of trypsin-encapsulated sol matrix. As a result, the leakage of sol-gel matrix from the microchannel was effectively prevented. On-line protein analysis was performed with the microfluidic enzymatic reactor by attachment of stainless steel tubing electrode and replaceable tip, The success of trypsin encapsulation was investigated by capillary electrophoresis (CE) detection, and MALDI TOF and ESI MS analysis. The lab-made device provided excellent extent of digestion even at the fast flow rate of 7.0 μL/min with very short residence time of ca. 2 s. In addition, the encapsulated trypsin exhibits increased stability even after continuous use. These features are the most requisite for high-throughput protein identification.