We describe an accurate periodic boundary condition (PBC) called the symmetric PBC in the calculation of the magnetostatie interaction field in the finite-differentiation-method fast-Fourier-transform (FDM-FFT) mi...We describe an accurate periodic boundary condition (PBC) called the symmetric PBC in the calculation of the magnetostatie interaction field in the finite-differentiation-method fast-Fourier-transform (FDM-FFT) micromagneties. The micromagnetic cells in the regular mesh used by the FDM-FFT method are finite-sized elements, but not geometrical points. Therefore, the key PBC operations for FDM-FFT methods are splitting and relocating the micromagnetic cell surfaces to stay symmetrically inside the box of half-total sizes with respect to the origin. The properties of the demagnetizing matrix of the split micromagnetic cells are discussed, and the sum rules of demagnetizing matrix are fulfilled by the symmetric PBC.展开更多
Microwave permeability spectra of single Co nanotube under equilibrium state have been studied by micromagnetics simulation.More than four obvious resonance peaks have been found(11.72,24.20,33.18 and 39.55 GHz).Such ...Microwave permeability spectra of single Co nanotube under equilibrium state have been studied by micromagnetics simulation.More than four obvious resonance peaks have been found(11.72,24.20,33.18 and 39.55 GHz).Such large resonance frequency cannot be found in other traditional magnetic materials.The configurations of magnetic moments along the nanotube have been simulated.The results show that the top end of nanotube has a"flow-out"pattern of magnetic moments configuration.The bottom end has a"flow-in"pattern of magnetic moments configuration.The magnetic moments within the main body of nanotube are aligned perfectly along the length of nanotube.The magnitude of natural resonance peak is strongly related to the volume fraction of a zone,which has the same orientation of magnetic moments.Large microwave permeability values have been found for single nanotube.The generalized Snoek’s law has been used to validate the micromagnetics simulations in this paper.展开更多
In this paper, a new high accuracy numerical method for the thin-film problems of micron and submicron size ferromagnetic elements is proposed. For the computation of stray field, we use the finite element method(FEM)...In this paper, a new high accuracy numerical method for the thin-film problems of micron and submicron size ferromagnetic elements is proposed. For the computation of stray field, we use the finite element method(FEM) by introducing a semi-discrete artificial boundary condition [1, 2]. In our numerical experiments about the domain patterns and their movement, we can see that the results are accordant to that of experiments and other numerical methods. Our method are very convenient to deal with arbitrary shape of thin films such as a polygon with high accuracy.展开更多
The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films ...The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.展开更多
Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in g...Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in geometrically confined systems are crucial for the development of skyrmion-based spintronic devices. In this study, we focus on investigating the non-reciprocal transport behavior of skyrmions and their interactions with boundaries of various shapes. The shape of the notch structure in the nanotrack significantly affects the dynamic behavior of magnetic skyrmions. Through micromagnetic simulation, the non-reciprocal transport properties of skyrmions in nanowires with different notch structures are investigated in this work.展开更多
Recent theory and experiments show that artificial magnetic skyrmions can be stabilized at room temperature without the need for the external magnetic field,casting strong potentials for the device applications.In thi...Recent theory and experiments show that artificial magnetic skyrmions can be stabilized at room temperature without the need for the external magnetic field,casting strong potentials for the device applications.In this work,we study the electric field manipulation of artificial magnetic skyrmions imprinted by Co disks on CoPt multilayers utilizing the micromagnetic simulations.We find that the reversible annihilation and creation of skyrmions can be realized with the electric field via the strain mediated magnetoelastic coupling.In addition,we also demonstrate controllable manipulation of individual skyrmion,which opens a new platform for constructing magnetic field-free and low-energy dissipation skyrmion based media.展开更多
Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the freq...Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.展开更多
MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDI...MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDIA,AMD,Intel,and Apple GPUs.Moreover,MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations.With built-in support for double and single precision modes and a design allowing easy extensibility to add new features,MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations.展开更多
Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization pr...Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization process, the mechanism of magnetization reversal was analyzed.For the Pr2Fe14B with 10 nm grains or its composite with 10vol.% α-Fe, the coercivity was determined by nucleation of reversed domain that took place at grain boundaries.However, for Pr2Fe14B with 30 nm grains, coercivity was controlled by pinning of the nucle-ated domain.For Pr2Fe14B/α-Fe with 30vol.% α-Fe, the demagnetization behavior was characterized by continuous reversal of α-Fe moment.展开更多
The relation between microscopic properties (e.g., layer thickness, easy axis orientation) and the macroscopic magnetic properties such as remanent magnetization of the ferromagnetic multilayer system is investigated ...The relation between microscopic properties (e.g., layer thickness, easy axis orientation) and the macroscopic magnetic properties such as remanent magnetization of the ferromagnetic multilayer system is investigated based on a simple micromagnet approach. We concentrate on a multilayer design with periodic boundary condition, where alternating soft/hard layers build a nanostructured multilayer. For any easy axis direction in the soft and hard layers a simple explicit expression of remanence of the system has been derived analytically. We find that the remanence clearly depends on the thickness of the soft magnetic layer and is nearly independent of the thickness of hard magnetic layer. On the other hand, the remanence increases upon reducing the angle enclosed by the saturation magnetization and the easy axis directions of soft magnetic layer. However, it is unsensitive to the easy axis direction of hard magnetic layer, but there exists a maximum remanence for a certain easy axis direction of hard magnetic layer.展开更多
Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensi...Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.展开更多
A three-dimensional finite element micromagnetic algorithm was developed to study the magnetization reversal of the SmCo 5/Sm 2Co 17 based magnets. The influences of the microstructure and magnetic parameters on ...A three-dimensional finite element micromagnetic algorithm was developed to study the magnetization reversal of the SmCo 5/Sm 2Co 17 based magnets. The influences of the microstructure and magnetic parameters on the coercivity were studied based on the model consisting of 64 irregular cells according to the experimental microstructure. Numerical results show that the coercivity increases with increasing the 2∶17-type cell size. Large cell boundary thickness leads to small coercivity. The drop of anisotropy constant of 1∶5 phase leads to the coercivity reducing, while the effect of exchange constant of 1∶5 phase on coercivity is contrary to that of exchange constant. The calculated field dependence of coercivity can be predicted by an inhomogeneous domain-wall pinning model. The microstructure parameter was analyzed by comparing the calculated coercivity.展开更多
The hysteresis loops as well as the spin distributions of Sm-Co/a-Fe bilayers have been investigated by both three- dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of t...The hysteresis loops as well as the spin distributions of Sm-Co/a-Fe bilayers have been investigated by both three- dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Alas between the hard and soft ,layers varies from 1.8 x10-6 erg/cm to 0.45 x 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/a-Fe multilayers.展开更多
Multiscale simulation is a key research tool in the quest for new permanent magnets.Starting with first principles methods,a sequence of simulation methods can be applied to calculate the maximum possible coercive fie...Multiscale simulation is a key research tool in the quest for new permanent magnets.Starting with first principles methods,a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density product of a magnet made from a novel magnetic material composition.Iron(Fe)-rich magnetic phases suitable for permanent magnets can be found by means of adaptive genetic algorithms.The intrinsic properties computed by ab initio simulations are used as input for micromagnetic simulations of the hysteresis properties of permanent magnets with a realistic structure.Using machine learning techniques,the magnet’s structure can be optimized so that the upper limits for coercivity and energy density product for a given phase can be estimated.Structure property relations of synthetic permanent magnets were computed for several candidate hard magnetic phases.The following pairs(coercive field(T),energy density product(kJ·m^-3))were obtained for iron-tin-antimony(Fe3Sn0.75Sb0.25):(0.49,290),L10-ordered iron-nickel(L10 FeNi):(1,400),cobalt-iron-tantalum(CoFe6Ta):(0.87,425),and manganese-aluminum(MnAl):(0.53,80).展开更多
The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Diffe...The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Different magnetization reversal modes can appear depending on whether the bias field is applied or not. When there is no bias field, double “C” state is the initial reversal state. However, when there is a bias field, “S” state is the starting mode. The larger the aspect ratio is, the larger the switching field is. But, when the aspect ratio is larger than 3, the increase of the switching field ceases. These results can provide useful information to the application of the patterned NiFe film with rectangular elements.展开更多
The magnetization reversal mechanisms for Ni nanowires with different diameters were investigated by micromagnetic simulations. The results show that the reversal mechanisms are significantly dependeht on the diameter...The magnetization reversal mechanisms for Ni nanowires with different diameters were investigated by micromagnetic simulations. The results show that the reversal mechanisms are significantly dependeht on the diameter of wire. For very thin wires, the reversal occurs by pseudo-coherent rotation. With increasing diameter, magnetization reversal takes place via different nucleation (the transverse domain wall and the vortex domain wall) and subsequent propagation. The reason of transition from the transverse domain wall to the vortex domain wall is given by analytical studies. With further increase of the diameter, the reversal nuclear domain wall becomes tundishoshaped form. As the diameter increases, the width of wall becomes larger.展开更多
Single-grain models with different cerium contents or structural parameters have been introduced to investigate the reversal magnetization behaviors in cerium-containing magnets. All the micromagnetic simulations are ...Single-grain models with different cerium contents or structural parameters have been introduced to investigate the reversal magnetization behaviors in cerium-containing magnets. All the micromagnetic simulations are carried out via the object oriented micromagnetic framework(OOMMF). As for single(Nd,Ce)_2 Fe_(14)B type grain, the coercivity decreases monotonously with the increase of the cerium content. Four types of grain structure have been compared: single(Nd,Ce)_2 Fe_(14)B type, core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type with 2 nm thick shell, core(Ce_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type, and core(Nd_2 Fe_(14)B)-shell(Ce_2 Fe_(14)B) type. It is found that core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B)type grain with 2 nm thick shell always presents the largest coercivity under the same total cerium content. Furthermore,the relationship between the coercivity and the shell thickness t in core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type grain has been studied. When the total cerium content is kept at 20.51 at.%, the analyzed results show that as t varies from 1 nm to 7 nm, the coercivity gradually ascends at the beginning, then quickly descends after reaching the maximum value when t = 5 nm. From the perspective of the positions of nucleation points, the reasons why t affects the coercivity are discussed in detail.展开更多
Hysteresis loops and energy products have been calculated systematically by a three-dimensional (3D) software OOMMF for Sm-Co/α-Fe/Sm-Co trilayers with various thicknesses and β, where β is the angle between the ...Hysteresis loops and energy products have been calculated systematically by a three-dimensional (3D) software OOMMF for Sm-Co/α-Fe/Sm-Co trilayers with various thicknesses and β, where β is the angle between the easy axis and the field applied perpendicular to the film plane. It is found that trilayers with a perpendicular anisotropy possess considerably larger coercivities and smaller remanences and energy products compared with those with an in-plane anisotropy. Increase of β leads to a fast decrease of the maximum energy product as well as the drop of both remanence and coercivity. Such a drop is much faster than that in the single-phased hard material, which can explain the significant discrepancy between the experiment and the theoretical energy products. Some modeling techniques have been utilized with spin check procedures performed, which yield results in good agreement with the one-dimensional (1D) analytical and experimental data, justifying our calculations. Further, the calculated nucleation fields according to the 3D calculations are larger than those based on the 1D model, whereas the corresponding coercivity is smaller, leading to more square hysteresis loops and better agreement between experimental data and the theory.展开更多
Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eig...Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eigenfrequency, trajectory, velocity and the time for a magnetic vortex to obtain the steady gyration are analyzed. Simulation results reveal that the magnetic vortices in larger and thinner nanodisks can achieve a lower-frequency gyration at a lower current density in a shorter time. However, the magnetic vortices in thicker nanodisks need a higher current density and longer time to attain steady gyration but with a higher eigenfrequency. We also find that the point-contact position exerts different influences on these parameters in different nanodisks, which contributes to the control of the magnetic vortex gyration. The conclusions of this paper can serve as a theoretical basis for designing nano-oscillators and microwave frequency modulators.展开更多
Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materia...Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materials with impurities and inhomogeneities exhibit complex magnetization behavior.Here we investigate the effects of size,volume fraction,and surroundings of inhomogeneities on the magnetic properties of an inhomogeneous magnetic material via micromagnetic simulations.The underlying magnetization reversal and coercivity mechanisms are revealed.Three different demagnetization characteristics corresponding to the exchange coupling phase,semi-coupled phase,and decoupled phase are found,depending on the size of inhomogeneities.In addition,the increase in the size of inhomogeneities leads to a transition of the coercivity mechanism from nucleation to pinning.This work could be useful for optimizing the magnetic properties of both exchange-coupled nanomagnets and inhomogeneous single-phase magnets.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51171086 and 51371101
文摘We describe an accurate periodic boundary condition (PBC) called the symmetric PBC in the calculation of the magnetostatie interaction field in the finite-differentiation-method fast-Fourier-transform (FDM-FFT) micromagneties. The micromagnetic cells in the regular mesh used by the FDM-FFT method are finite-sized elements, but not geometrical points. Therefore, the key PBC operations for FDM-FFT methods are splitting and relocating the micromagnetic cell surfaces to stay symmetrically inside the box of half-total sizes with respect to the origin. The properties of the demagnetizing matrix of the split micromagnetic cells are discussed, and the sum rules of demagnetizing matrix are fulfilled by the symmetric PBC.
基金supported by the National Natural Science Foundation of China(Grant No.61271039)the Scientific Foundation of Young Scientists of Sichuan Province(Grant No.2012JQ0053)the Program for New Century Excellent Talents in Universities(NCET-11-0060)
文摘Microwave permeability spectra of single Co nanotube under equilibrium state have been studied by micromagnetics simulation.More than four obvious resonance peaks have been found(11.72,24.20,33.18 and 39.55 GHz).Such large resonance frequency cannot be found in other traditional magnetic materials.The configurations of magnetic moments along the nanotube have been simulated.The results show that the top end of nanotube has a"flow-out"pattern of magnetic moments configuration.The bottom end has a"flow-in"pattern of magnetic moments configuration.The magnetic moments within the main body of nanotube are aligned perfectly along the length of nanotube.The magnitude of natural resonance peak is strongly related to the volume fraction of a zone,which has the same orientation of magnetic moments.Large microwave permeability values have been found for single nanotube.The generalized Snoek’s law has been used to validate the micromagnetics simulations in this paper.
基金This work was supported by the Climbing Program of National Key Project of Foundation.
文摘In this paper, a new high accuracy numerical method for the thin-film problems of micron and submicron size ferromagnetic elements is proposed. For the computation of stray field, we use the finite element method(FEM) by introducing a semi-discrete artificial boundary condition [1, 2]. In our numerical experiments about the domain patterns and their movement, we can see that the results are accordant to that of experiments and other numerical methods. Our method are very convenient to deal with arbitrary shape of thin films such as a polygon with high accuracy.
基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MA053),the National Natural Science Foundation of China(Grant Nos.11704211,11847233,52301255,12205157,and 12205093)the Funda-mental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)+2 种基金China and Germany Postdoctoral Exchange Program(Helmholtz-OCPC)China Postdoctoral Science Foundation(Grant No.2018M632608)Applied Basic Research Project of Qingdao(Grant No.18-2-2-16-jcb).
文摘The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.
基金Project supported by the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2021B0101300003)the Guangdong Basic and Applied Basic Research Foundation,China(Grant Nos.2022A1515110863 and 2023A1515010837)+5 种基金the National Key Research and Development Program of China(Grant No.2016YFA0300803)the National Natural Science Foundation of China(Grant Nos.12304136,61427812,11774160,12241403,51771127,52171188,and 52111530143)the Natural Science Foundation of Jiangsu Province,China(Grant Nos.BK20192006 and BK20200307)the Fundamental Research Funds for the Central Universities,China(Grant No.021014380113)International Exchanges 2020 Cost Share(NSFC),China(Grant No.IECNSFC201296)the Project for Maiden Voyage of Guangzhou Basic and Applied Basic Research Scheme,China(Grant No.2024A04J4186)。
文摘Skyrmions, with their vortex-like structures and inherent topological protection, play a pivotal role in developing innovative low-power memory and logic devices. The efficient generation and control of skyrmions in geometrically confined systems are crucial for the development of skyrmion-based spintronic devices. In this study, we focus on investigating the non-reciprocal transport behavior of skyrmions and their interactions with boundaries of various shapes. The shape of the notch structure in the nanotrack significantly affects the dynamic behavior of magnetic skyrmions. Through micromagnetic simulation, the non-reciprocal transport properties of skyrmions in nanowires with different notch structures are investigated in this work.
基金Project supported by the National Key R&D Program of China(Grant Nos.2021YFB3502400 and 2022YFA1403601)the National Natural Science Foundation of China(Grant Nos.12274204,12274203,51831005,52172270,11974165,92165103,51971110,12004329,and 12241402).
文摘Recent theory and experiments show that artificial magnetic skyrmions can be stabilized at room temperature without the need for the external magnetic field,casting strong potentials for the device applications.In this work,we study the electric field manipulation of artificial magnetic skyrmions imprinted by Co disks on CoPt multilayers utilizing the micromagnetic simulations.We find that the reversible annihilation and creation of skyrmions can be realized with the electric field via the strain mediated magnetoelastic coupling.In addition,we also demonstrate controllable manipulation of individual skyrmion,which opens a new platform for constructing magnetic field-free and low-energy dissipation skyrmion based media.
基金Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 20720210030)the National Natural Science Foundation of China (Grant No. 11204255)。
文摘Investigations on domain wall(DW) and spin wave(SW) modes in a series of nanostrips with different widths and thicknesses have been carried out using micromagnetic simulation. The simulation results show that the frequencies of SW modes and the corresponding DW modes are consistent with each other if they have the same node number along the width direction. This consistency is more pronounced in wide and thin nanostrips, favoring the DW motion driven by SWs.Further analysis of the moving behavior of a DW driven by SWs is also carried out. The average DW speed can reach a larger value of ~ 140 m/s under two different SW sources. We argue that this study is very meaningful for the potential application of DW motion driven by SWs.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403603)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB33030100)+2 种基金the National Natural Science Fund for Distinguished Young Scholar(Grant No.52325105)the National Natural Science Foundation of China(Grant Nos.12374098,11974021,and 12241406)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-084).
文摘MicroMagnetic.jl is an open-source Julia package for micromagnetic and atomistic simulations.Using the features of the Julia programming language,MicroMagnetic.jl supports CPU and various GPU platforms,including NVIDIA,AMD,Intel,and Apple GPUs.Moreover,MicroMagnetic.jl supports Monte Carlo simulations for atomistic models and implements the nudged-elastic-band method for energy barrier computations.With built-in support for double and single precision modes and a design allowing easy extensibility to add new features,MicroMagnetic.jl provides a versatile toolset for researchers in micromagnetics and atomistic simulations.
基金supported by the National Natural Science Foundation of China (10574156)
文摘Magnetization configurations were calculated under various magnetic fields for nanocrystalline Pr-Fe-B permanent magnets by micromagnetic finite element method.According to the configurations during demagnetization process, the mechanism of magnetization reversal was analyzed.For the Pr2Fe14B with 10 nm grains or its composite with 10vol.% α-Fe, the coercivity was determined by nucleation of reversed domain that took place at grain boundaries.However, for Pr2Fe14B with 30 nm grains, coercivity was controlled by pinning of the nucle-ated domain.For Pr2Fe14B/α-Fe with 30vol.% α-Fe, the demagnetization behavior was characterized by continuous reversal of α-Fe moment.
文摘The relation between microscopic properties (e.g., layer thickness, easy axis orientation) and the macroscopic magnetic properties such as remanent magnetization of the ferromagnetic multilayer system is investigated based on a simple micromagnet approach. We concentrate on a multilayer design with periodic boundary condition, where alternating soft/hard layers build a nanostructured multilayer. For any easy axis direction in the soft and hard layers a simple explicit expression of remanence of the system has been derived analytically. We find that the remanence clearly depends on the thickness of the soft magnetic layer and is nearly independent of the thickness of hard magnetic layer. On the other hand, the remanence increases upon reducing the angle enclosed by the saturation magnetization and the easy axis directions of soft magnetic layer. However, it is unsensitive to the easy axis direction of hard magnetic layer, but there exists a maximum remanence for a certain easy axis direction of hard magnetic layer.
基金Project supported by the National Key Research and Development Program of China(Grant No.2016YFB0700900)the National Natural Science Foundation of China(Grant Nos.51571126 and 51861030)+1 种基金the Inner Mongolia Autonomous Region Natural Science Foundation of China(Grant No.2019MS01002)the Inner Mongolia Innovative Research Team of China(Grant No.3400102)。
文摘Hysteresis loops,energy products and magnetic moment distributions of perpendicularly oriented Nd2Fe(14)B/α-Fe exchange-spring multilayers are studied systematically based on both three-dimensional(3D)and one-dimensional(1D)micromagnetic methods,focused on the influence of the interface anisotropy.The calculated results are carefully compared with each other.The interface anisotropy effect is very palpable on the nucleation,pinning and coercive fields when the soft layer is very thin.However,as the soft layer thickness increases,the pinning and coercive fields are almost unchanged with the increment of interface anisotropy though the nucleation field still monotonically rises.Negative interface anisotropy decreases the maximum energy products and increases slightly the angles between the magnetization and applied field.The magnetic moment distributions in the thickness direction at various applied fields demonstrate a progress of three-step magnetic reversal,i.e.,nucleation,evolution and irreversible motion of the domain wall.The above results calculated by two models are in good agreement with each other.Moreover,the in-plane magnetic moment orientations based on two models are different.The 3D calculation shows a progress of generation and disappearance of vortex state,however,the magnetization orientations within the film plane calculated by the 1D model are coherent.Simulation results suggest that negative interface anisotropy is necessarily avoided experimentally.
文摘A three-dimensional finite element micromagnetic algorithm was developed to study the magnetization reversal of the SmCo 5/Sm 2Co 17 based magnets. The influences of the microstructure and magnetic parameters on the coercivity were studied based on the model consisting of 64 irregular cells according to the experimental microstructure. Numerical results show that the coercivity increases with increasing the 2∶17-type cell size. Large cell boundary thickness leads to small coercivity. The drop of anisotropy constant of 1∶5 phase leads to the coercivity reducing, while the effect of exchange constant of 1∶5 phase on coercivity is contrary to that of exchange constant. The calculated field dependence of coercivity can be predicted by an inhomogeneous domain-wall pinning model. The microstructure parameter was analyzed by comparing the calculated coercivity.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11074179 and 10747007)the National Basic Research Program of Chi(Grant No.2014CB643702)+3 种基金the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY14E010006)the Construction Plan for Scientif Research Innovation Teams of Universities in Sichuan Province,China(Grant No.12TD008)the Scientific Research Foundation for the Returned Overse Chinese Scholars of the Education Ministry,Chinathe Program for Key Science and Technology Innovation Team of Zhejiang Province,China(Gra No.2013TD08)
文摘The hysteresis loops as well as the spin distributions of Sm-Co/a-Fe bilayers have been investigated by both three- dimensional (3D) and one-dimensional (1D) micromagnetic calculations, focusing on the effect of the interface exchange coupling under various soft layer thicknesses ts. The exchange coupling coefficient Alas between the hard and soft ,layers varies from 1.8 x10-6 erg/cm to 0.45 x 10-6 erg/cm, while the soft layer thickness increases from 2 nm to 10 nm. As the exchange coupling decreases, the squareness of the loop gradually deteriorates, both pinning and coercive fields rise up monotonically, and the nucleation field goes down. On the other hand, an increment of the soft layer thickness leads to a significant drop of the nucleation field, the deterioration of the hysteresis loop squareness, and an increase of the remanence. The simulated loops based on the 3D and 1D methods are consistent with each other and in good agreement with the measured loops for Sm-Co/a-Fe multilayers.
基金This work was supported by the EU H2020 project NOVAMAG(686056)and the Austrian Science Fund FWF(I3288-N36).Sergiu Arapan and Pablo Nieves acknowledge the European Regional Development Fund in the IT4Innovations National Supercomputing Center—path to exascale project(CZ 02.1.01/0.0/0.0/16-013/0001791)within the Operational Programme Research,Development and Education,and IT4Innovations computational resources allocated within projects OPEN-11-33,OPEN-14-23,and OPEN-17-14.
文摘Multiscale simulation is a key research tool in the quest for new permanent magnets.Starting with first principles methods,a sequence of simulation methods can be applied to calculate the maximum possible coercive field and expected energy density product of a magnet made from a novel magnetic material composition.Iron(Fe)-rich magnetic phases suitable for permanent magnets can be found by means of adaptive genetic algorithms.The intrinsic properties computed by ab initio simulations are used as input for micromagnetic simulations of the hysteresis properties of permanent magnets with a realistic structure.Using machine learning techniques,the magnet’s structure can be optimized so that the upper limits for coercivity and energy density product for a given phase can be estimated.Structure property relations of synthetic permanent magnets were computed for several candidate hard magnetic phases.The following pairs(coercive field(T),energy density product(kJ·m^-3))were obtained for iron-tin-antimony(Fe3Sn0.75Sb0.25):(0.49,290),L10-ordered iron-nickel(L10 FeNi):(1,400),cobalt-iron-tantalum(CoFe6Ta):(0.87,425),and manganese-aluminum(MnAl):(0.53,80).
文摘The magnetization reversal process of nano-size rectangle-shaped NiFe film elements with different aspect ratios have been investigated under the orthogonally applied magnetic fields by micromagnetic simulation. Different magnetization reversal modes can appear depending on whether the bias field is applied or not. When there is no bias field, double “C” state is the initial reversal state. However, when there is a bias field, “S” state is the starting mode. The larger the aspect ratio is, the larger the switching field is. But, when the aspect ratio is larger than 3, the increase of the switching field ceases. These results can provide useful information to the application of the patterned NiFe film with rectangular elements.
基金supported by the National Natural Sci-ence Foundation of China under Grant No. 60571043 the Natural Science Foundation of Hunan Provinceof China under Grant No. 04JJ3078.
文摘The magnetization reversal mechanisms for Ni nanowires with different diameters were investigated by micromagnetic simulations. The results show that the reversal mechanisms are significantly dependeht on the diameter of wire. For very thin wires, the reversal occurs by pseudo-coherent rotation. With increasing diameter, magnetization reversal takes place via different nucleation (the transverse domain wall and the vortex domain wall) and subsequent propagation. The reason of transition from the transverse domain wall to the vortex domain wall is given by analytical studies. With further increase of the diameter, the reversal nuclear domain wall becomes tundishoshaped form. As the diameter increases, the width of wall becomes larger.
基金supported by the National Natural Science Foundation of China(Grant Nos.51590882 and 51871063)
文摘Single-grain models with different cerium contents or structural parameters have been introduced to investigate the reversal magnetization behaviors in cerium-containing magnets. All the micromagnetic simulations are carried out via the object oriented micromagnetic framework(OOMMF). As for single(Nd,Ce)_2 Fe_(14)B type grain, the coercivity decreases monotonously with the increase of the cerium content. Four types of grain structure have been compared: single(Nd,Ce)_2 Fe_(14)B type, core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type with 2 nm thick shell, core(Ce_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type, and core(Nd_2 Fe_(14)B)-shell(Ce_2 Fe_(14)B) type. It is found that core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B)type grain with 2 nm thick shell always presents the largest coercivity under the same total cerium content. Furthermore,the relationship between the coercivity and the shell thickness t in core((Nd,Ce)_2 Fe_(14)B)-shell(Nd_2 Fe_(14)B) type grain has been studied. When the total cerium content is kept at 20.51 at.%, the analyzed results show that as t varies from 1 nm to 7 nm, the coercivity gradually ascends at the beginning, then quickly descends after reaching the maximum value when t = 5 nm. From the perspective of the positions of nucleation points, the reasons why t affects the coercivity are discussed in detail.
基金supported by the National Natural Science Foundation of China(Grant Nos.11074179,10747007,51331003,51371011,and 51001002)the State Key Development Program of Basic Research of China(Grant No.2010CB934600)+2 种基金the Construction Plan for Scientific Research Innovation Teams of Universities in Sichuan Province,China(Grant No.12TD008)the Beijing Municipal Natural Science Foundation,China(Grant No.2122006)Scientific Research Innovation Fund for Student in Sichuan Normal University,China
文摘Hysteresis loops and energy products have been calculated systematically by a three-dimensional (3D) software OOMMF for Sm-Co/α-Fe/Sm-Co trilayers with various thicknesses and β, where β is the angle between the easy axis and the field applied perpendicular to the film plane. It is found that trilayers with a perpendicular anisotropy possess considerably larger coercivities and smaller remanences and energy products compared with those with an in-plane anisotropy. Increase of β leads to a fast decrease of the maximum energy product as well as the drop of both remanence and coercivity. Such a drop is much faster than that in the single-phased hard material, which can explain the significant discrepancy between the experiment and the theoretical energy products. Some modeling techniques have been utilized with spin check procedures performed, which yield results in good agreement with the one-dimensional (1D) analytical and experimental data, justifying our calculations. Further, the calculated nucleation fields according to the 3D calculations are larger than those based on the 1D model, whereas the corresponding coercivity is smaller, leading to more square hysteresis loops and better agreement between experimental data and the theory.
基金Project supported by the Thirteenth Five-Year Program for Science and Technology of Education Department of Jilin Province,China(Grant No.JJKH20191007KJ)the Program for Development of Science and Technology of Siping City,China(Grant No.2016063)
文摘Micromagnetic simulation is employed to study the gyration motion of magnetic vortices in distinct permalloy nanodisks driven by a spin-polarized current. The critical current density for magnetic vortex gyration, eigenfrequency, trajectory, velocity and the time for a magnetic vortex to obtain the steady gyration are analyzed. Simulation results reveal that the magnetic vortices in larger and thinner nanodisks can achieve a lower-frequency gyration at a lower current density in a shorter time. However, the magnetic vortices in thicker nanodisks need a higher current density and longer time to attain steady gyration but with a higher eigenfrequency. We also find that the point-contact position exerts different influences on these parameters in different nanodisks, which contributes to the control of the magnetic vortex gyration. The conclusions of this paper can serve as a theoretical basis for designing nano-oscillators and microwave frequency modulators.
基金Project supported by the National Key R&D Program of China(Grant No.2021YFB3500300)the National Natural Science Foundation of China(Grant Nos.51931007and 51871005)+4 种基金the Program of Top Disciplines Construction in Beijing(Grant No.PXM2019014204500031)the International Research Cooperation Seed Fund of Beijing University of Technology(Grant No.2021B23)the Key Program of Science and Technology Development Project of Beijing Municipal Education Commission of China(Grant No.KZ202010005009)General Program of Science and Technology Development Project of Beijing Municipal Education Commission(Grant No.KM202010005009)Chaoyang District Postdoctoral Research Foundation。
文摘Macroscopic magnetic properties of magnets strongly depend on the magnetization process and the microstructure of the magnets.Complex materials such as hard-soft exchange-coupled magnets or just real technical materials with impurities and inhomogeneities exhibit complex magnetization behavior.Here we investigate the effects of size,volume fraction,and surroundings of inhomogeneities on the magnetic properties of an inhomogeneous magnetic material via micromagnetic simulations.The underlying magnetization reversal and coercivity mechanisms are revealed.Three different demagnetization characteristics corresponding to the exchange coupling phase,semi-coupled phase,and decoupled phase are found,depending on the size of inhomogeneities.In addition,the increase in the size of inhomogeneities leads to a transition of the coercivity mechanism from nucleation to pinning.This work could be useful for optimizing the magnetic properties of both exchange-coupled nanomagnets and inhomogeneous single-phase magnets.