A new microreactor with continuous serially connected micromixers(CSCM)was tailored for the coprecipitation process to synthesize Fe_(3)O_(4) nanoparticles.Numerical simulation reveals that the two types of CSCM micro...A new microreactor with continuous serially connected micromixers(CSCM)was tailored for the coprecipitation process to synthesize Fe_(3)O_(4) nanoparticles.Numerical simulation reveals that the two types of CSCM microchannels(V-typed and U-typed)proposed in this work exhibited markedly better mixing performances than the Zigzag and capillary microchannels due to the promotion of Dean vortices.Complete mixing was achieved in the V-typed microchannel in 2.7 s at an inlet Reynolds number of 27.Fe_(3)O_(4) nanoparticles synthesized in a planar glass microreactor with the V-typed microchannel,possessing an average size of 9.3 nm and exhibiting superparamagnetism,had obviously better dispersity and uniformity and higher crystallinity than those obtained in the capillary microreactor.The new CSCM microreactor developed in this work can act as a potent device to intensify the synthesis of similar inorganic nanoparticles via multistep chemical precipitation processes.展开更多
In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of...In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.展开更多
Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes w...Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes was designed to generate Dean flow,which was used to enhance the liquid-liquid micromixing performance.The Villermaux-Dushman probe reaction was employed to characterize the micromixing performance in different curved capillary microreactors.The effects of experiment parameters such as liquid flow rate,inner diameter,tube length,and curve diameter on micromixing performance were systematically investigated.Under the optimal conditions,the minimum value of the segmentation factor XS was 0.008.It was worth noting that at the low Reynolds number(Re<30),the change of curved shape on the capillary microreactor can significantly improve the micromixing performance with XS reduced by 37.5%.Further,the correlations of segment index XS with dimensionless factor such as Reynolds number or Dean number were developed,which can be used to predict the liquid-liquid micromixing performance in capillary microreactors.展开更多
Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow cha...Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.展开更多
Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles...Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles. The Reynolds number, baffle height and setting angle were varied to investigate their effect on the mixing performance. Three micro T-mixer models were produced, which are several centimeters long and have a rectangular cross-section of few millimeters a side. The mixing of two-liquid was measured using the laser induced fluorescence (LIF) technique. Moreover, three-dimensional numerical simulations were conducted with the open-source CFD solver, OpenFOAM, for the same configuration as used in the experiments to investigate the detailed mechanism of the chaotic mixing. As a result, it was found that the mixing of two-liquid is greatly improved in the micro T-mixer with baffle. The baffle height and setting angle show a significant influence on the mixing performance.展开更多
The scope of the present research aims at demonstrating the 3D printing use in the manufacturing of microchannels for chemical process applications. A comparison among digital model processing applications for 3D prin...The scope of the present research aims at demonstrating the 3D printing use in the manufacturing of microchannels for chemical process applications. A comparison among digital model processing applications for 3D print(slicers) and a print layer thickness analysis were performed. The 3D print fidelity was verified in several devices, including the microchannels’ printing with and without micromixer zones. In order to highlight the 3D print potential in Chemical Engineering, the biodiesel synthesis was also carried out in a millireactor manufactured by 3D printing. The millireactor operated under laminar flow regime with a total flow rate of 75.25 ml·min^-1(increment of about 130 times over traditional microdevices used for biodiesel production).The printed millireactor provided a maximum yield of Ethyl Esters of 73.51% at 40 ℃, ethanol:oil molar ratio of7 and catalyst concentration of 1.25 wt% and residence time about 10 s. As a result of flow rate increment attained in the millireactor, the number of required units for scaling-up the chemical processes is reduced. Using the approach described in the present research, anyone could produce their own millireactor for chemical process in a simple way with the aid of a 3D printer.展开更多
Passive micromixers are preferred over active mixers for many microfluidic applications due to their relative ease in integration into complex systems and operational flexibility.They also incur very low cost of manuf...Passive micromixers are preferred over active mixers for many microfluidic applications due to their relative ease in integration into complex systems and operational flexibility.They also incur very low cost of manufacturing.However,the degree of mixing is comparatively low in passive mixers than active mixers due to the absence of disturbance in the flow by external forces and the inherent laminar nature of microchannel flows.Various designs of complex channel structures and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers.But the studies on mixing enhancement with simple planar geometries of passive mixers have been few and limited.The present work aims to investigate the possibility of mixing enhancement by employing simple planar type designs,such as T-mixer and T–T mixer with cylindrical elements placed in the mixing channel.The mixing performance has been evaluated in the Reynolds number range of 6 to700.Numerical results have shown that T–T mixer with cylindrical elements performed significantly well and obtained very good mixing quality over basic T-mixer for the entire range of Reynolds number(6 to 700).The device has also shown better mixing as compared to basic T–T mixer and T-mixer with cylindrical elements.A larger pair of vortices formed in the stagnation area due to the presence of a cylindrical element in the junction.Cylindrical elements downstream caused significant enhancement in mixing due to splitting and recombining action.The size of the cylindrical element in the T–T mixer has been optimized to obtain better mixing performance of the device.Remarkable improvement in mixing quality by T–T mixer with cylindrical elements has been obtained at the expense of small rise in pressure drop as compared to other passive designs considered in this study.Therefore,the current design of T–T mixer with cylindrical elements can act as an effective and simple passive mixing device for various micromixing applications.展开更多
Microreaction technology is one of the most innovative and rapid developing fields in chemical engineering, synthesis and process technology. Many expectations toward enhanced product selectivity, yield and purity, im...Microreaction technology is one of the most innovative and rapid developing fields in chemical engineering, synthesis and process technology. Many expectations toward enhanced product selectivity, yield and purity, improved safety, and access to new products and processes are directed to the microreaction technology. Microfluidic mixer is the most important component in microfluidic devices. Based on various principles, active and passive micromixers have been designed and investigated. This review is focused on the recent developments in microfluidic mixers. An overview of the flow phenomena and mixing characteristics in active and passive micromixers is presented, including the types of physical phenomena and their utilization in micromixers. Due to the simple fabrication technology and the easy implementation in a complex microfluidic system, T-micromixer is highlighted as an example to illustrate the effect of design and operating parameters on mixing efficiency and fuid flow inside microfluidic mixers.展开更多
Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the ...Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the conditions of SCISR normal operation, only is of the order of 0.1m·s^-1, are much slower than that inferred,suggesting low power requirement for operation. The values of the characteristic time constant for micromixing,tM, determined in the impinging velocity range of 0.184m·s^-1 < u0 < 0.326m·s^-1 are ranged from 192ms to 87 ms, showing that impinging streams promotes micromixing very efficiently. The data follow approximately the relationship of tM∝ u0^-1.5. A comparative study shows that the micromixing performance of SCISR is much better than that of the traditional stirred tank reactor. The tM values predicted with the existing theoretical model are systematically longer than those measured by about 2--3 times, implying that the regularity of impinging streams promoting micromixing is unclear yet.展开更多
In this paper, the nitration characteristic of alcohols with mixed acid for the synthesis of energetic mate-rials in a stainless steel microreactor was investigated experimentally. The nitration of iso-octanol with HN...In this paper, the nitration characteristic of alcohols with mixed acid for the synthesis of energetic mate-rials in a stainless steel microreactor was investigated experimentally. The nitration of iso-octanol with HNO3-H2SO4 mixed acid was chosen as a typical model reaction which involved fast and strong exothermic liquid-liquid heterogeneous reaction process. The influences of mixed acid composition, flow rate, organic/aqueous flow ratio and reaction temperature have been investigated. The results indicated that the reaction could be con-ducted safely and stably in the microreactor at 25-40°C, which are enhanced compared to 15°C or below for safe operating conditions in the conventional reactors. Moreover, the 98.2% conversion of iso-octanol could be obtained and no by-products were detected in all cases.展开更多
Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different visco...Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different viscosities.The experimental results showed that segregation index of the micro-channel reactor increases with the decrease of volumetric flow rate and the increase of solution viscosity.Based on the incorporation model,the micromixing time tm of the micro-channel reactor was estimated in the range of 10-4-10-3s at different viscosities,which indicated that the micro-channel reactor possesses a much better micromixing performance compared to the stirred tank(tm=0.02-0.2s).展开更多
Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the siz...Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the size of ~1 mm was developed by steel micro-capillary and laser drilling technology. Utilizing the Villermaux/Dushman parallel competing reaction, numerical and experimental studies were carried out to investigate the micromixing performance(expressed as the segregation index XS) of liquids inside S-CFMCR at the low flow velocity regime.The effects of various operating conditions and design parameters of S-CFMCR, e.g., inlet Reynolds number(Re),volumetric flow ratio(R), inlet diameter(d) and outlet length(L), on the quality of micromixing were studied qualitatively. It was found that the micromixing efficiency was enhanced with increasing Re, but weakened with the increase of R. Moreover, d and L also have a significant influence on micromixing. CFD results were in good agreement with experimental data. In addition, the visualization of velocity magnitude, turbulent kinetic energy and concentration distributions of various ions inside S-CFMCR was illustrated as well. Based on the incorporation model, the estimated minimum micromixing time tmof S-CFMCR is ~2 × 10-4s.展开更多
Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of i...Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.展开更多
In this study, a computer code is developed to numerically investigate a magnetic bead micromixer under different conditions. The micromixer consists of a microchannel and numerous micro magnetic particles which enter...In this study, a computer code is developed to numerically investigate a magnetic bead micromixer under different conditions. The micromixer consists of a microchannel and numerous micro magnetic particles which enter the micromixer by fluid flows and are actuated by an alternating magnetic field normal to the main flow. An important feature of micromixer which is not considered before by researchers is the particle entrance arrangement into the micromixer. This parameter could effectively affect the micromixer efficiency. There are two general micro magnetic particle entrance arrangements in magnetic bead micromixers: determined position entrance and random position entrance. In the case of determined position entrances, micro magnetic particles enter the micromixer at specific positions of entrance cross section. However, in a random position entrance,particles enter the microchannel with no order. In this study mixing efficiencies of identical magnetic bead micromixers which only differ in particle entrance arrangement are numerically investigated and compared.The results reported in this paper illustrate that the prepared computer code can be one of the most powerful and beneficial tools for the magnetic bead micromixer performance analysis. In addition, the results show that some features of the magnetic bead micromixer are strongly affected by the entrance arrangement of the particles.展开更多
An integral description of chemical reactions taken place under mixing was formulated on the basis of the three-region model pictured in Part Ⅰ of this study. A mathematically simplified version of the model was deve...An integral description of chemical reactions taken place under mixing was formulated on the basis of the three-region model pictured in Part Ⅰ of this study. A mathematically simplified version of the model was developed. It was shown that the converted portion of the material in the dispersion region can be neglected provided that the initial concentration ratio of A and B was less than 0.1, and the effects of micro - and macromixing on the chemical reactions could be represented by two dimensionless numbers: Dα and Π. The model was applied to two reacting systems: competitive-consecutive reactions and parallel reactions. Agreement between model prediction and experimental results demonstrated that the present framework, though in simplified form, is capable of describing reactive mixing without loss of any significant features of the process.展开更多
Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems.With the help of experimental and numerical analysis,simulation...Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems.With the help of experimental and numerical analysis,simulation equation governing those times scale has been presented in the present work.展开更多
This paper studied a concept of micromixer with a synthetic jet placed at the bottom of a rectangular channel. Due to periodic ejections from and suctions into the channel, the fluids are mixed effectively. To study t...This paper studied a concept of micromixer with a synthetic jet placed at the bottom of a rectangular channel. Due to periodic ejections from and suctions into the channel, the fluids are mixed effectively. To study the effects of the inlet velocity, the jet intensity and frequency, and the jet location on the mixing efficiency, 3-D numerical simulations of the micromixer have been carried out. It has been found that when the jet intensity and the frequency are fixed, the mixing efficiency increases when Re 〈 50, and decreases when Re 〉 50 with the best mixing efficiency achieved at Re = 50. When the ratio of the jet velocity magnitude to the inlet velocity is taken as 10 and the jet frequency is 100 Hz, the mixing index reaches the highest value. It has also been found that to get better mixing efficiency, the orifice of the synthetic jet should be asymmetrically located away from the channel's centerline.展开更多
The parallel-competing iodide-iodate reaction scheme was used to study the micromixing performance in a multi-phase stirred tank of 0.3 m diameter.The impeller combination consisted of a half elliptical blade disk tur...The parallel-competing iodide-iodate reaction scheme was used to study the micromixing performance in a multi-phase stirred tank of 0.3 m diameter.The impeller combination consisted of a half elliptical blade disk turbine below two down-pimping wide-blade hydrofoils,identified as HEDT + 2WH_D.Nitrogen and glass beads of100 μm diameter and density 2500 kg-m^(-3) were used as the dispersed phases.The micromixing could be improved by sparging gas because of its additional potential energy.Also,micromixing could be improved by the solid particles with high kinetic energy near the impeller tip.In a gas-solid-liquid system,the gas-liquid film vibration with damping,due to the frequent collisions between the bubbles and particles,led to the decrease of the turbulence level in the liquid and caused eventually the deterioration of the micromixing.A Damping Film Dissipation model is formulated to shed light on the above micromixing performances.At last,the micromixing time t_m according to the incorporation model varied from 1.9 ms to 6.7 ms in our experiments.展开更多
High speed microphotographic studies showed that fluid elements injected from a point source tended to exhibit slice-like and strip-like configurations rather than lamellar structure during the turbulent mixing of flu...High speed microphotographic studies showed that fluid elements injected from a point source tended to exhibit slice-like and strip-like configurations rather than lamellar structure during the turbulent mixing of fluids with Sc〉〉1 . Based on this phenomenon a new micromixing model was developed. The model stated that micromixing was contributed by shrinkage deformation and molecular diffusion on a slab element surrounded by an infinite ambient fluid. Balance between the deformation and the diffusion resulted in an exponential increase in volume for the element. After a certain period of time tm , the volumetric increase of the feed material would be confined by the development and extension of the turbulent spreading zone. Therefore, three successive downstream regions, with different controlling steps and segregation states, could be recognized. A simplified picture for the point source mixing was then drawn, which might serve as a basis for describing chemical reactions during turbulent mixing.展开更多
In this paper,a novel micromixer with complex 3D-shape inner units was put forward and fabricated by metal Additive Manufacturing(AM).The design of the micromixer combined the constraints of selective laser melting te...In this paper,a novel micromixer with complex 3D-shape inner units was put forward and fabricated by metal Additive Manufacturing(AM).The design of the micromixer combined the constraints of selective laser melting technology and the factors to improve mixing efficiency.Villermaux-Dushman reaction system and Compute Fluid Design(CFD)simulation were conducted to investigate the performance and the mechanism of this novel micromixer to improve mixing efficiency.The research found that the best mixing efficiency of this novel micromixer could be gained when the inner units divided fluid into five pieces with a uniform volume.Compared with a conventional micromixer without obstacle in the channel,the micromixer designed in this research achieved higher mixing efficiency and reduce the pressure drop by 10.34%.The mixing behaviour in this novel micromixer was discussed,which mainly contains two types:collisions and swirls.Via collisions,the fluid micro masses would hit each other directly,which broke the boundaries of micro masses and promoted the interchange of species in the whole flow field.In swirls,the fluid micro masses were drawn into thin and long slices,which increased the size of the contact area and enhanced molecule diffusion.Finally,the application scheme of this novel micromixer was briefly discussed.展开更多
基金the financial support from the National Natural Science Foundation of China(21808059)the Fundamental Research Funds for the Central Universities(JKA01221712).
文摘A new microreactor with continuous serially connected micromixers(CSCM)was tailored for the coprecipitation process to synthesize Fe_(3)O_(4) nanoparticles.Numerical simulation reveals that the two types of CSCM microchannels(V-typed and U-typed)proposed in this work exhibited markedly better mixing performances than the Zigzag and capillary microchannels due to the promotion of Dean vortices.Complete mixing was achieved in the V-typed microchannel in 2.7 s at an inlet Reynolds number of 27.Fe_(3)O_(4) nanoparticles synthesized in a planar glass microreactor with the V-typed microchannel,possessing an average size of 9.3 nm and exhibiting superparamagnetism,had obviously better dispersity and uniformity and higher crystallinity than those obtained in the capillary microreactor.The new CSCM microreactor developed in this work can act as a potent device to intensify the synthesis of similar inorganic nanoparticles via multistep chemical precipitation processes.
基金National Natural Science Foundation of China(Grant No.22005275)to provide fund for conducting experiments.
文摘In order to improve the energy output consistency of 3, 3’-diamino-4, 4’-azoxyfurazan(DAAF) in the new insensitive booster and the safety and efficiency in the preparation process, a continuous preparation system of DAAF from synthesis to spherical coating was designed and established in this paper, which combined ultrasonic micromixing reaction with microdroplet globular template. In the rapid micromixing stage, the microfluidic mixing technology with ultrasonic was used to synergistically strengthen the uniform and rapid mass transfer mixing reaction between raw materials to ensure the uniformity of DAAF particle nucleation-growth, and to prepare high-quality DAAF crystals with uniform structure and morphology and concentrated particle size distribution. In the microdroplet globular template stage, the microfluidic droplet technology was used to form a droplet globular template with uniform size under the shear action of the continuous phase of the dispersed phase solution containing DAAF particles and binder. The size of the droplet template was controlled by adjusting the flow rate ratio between the continuous phase and the dispersed phase. In the droplet globular template, with the diffusion of the solvent in the dispersed phase droplets, the binder precipitates to coat the DAAF into a ball, forming a DAAF microsphere with high sphericity, narrow particle size distribution and good monodispersity. The problem of discontinuity and DAAF particle suspension in the process was solved, and the coating theory under this process was studied. DAAF was coated with different binder formulations of fluororubber(F2604), nitrocellulose(NC) and NC/glycidyl azide polymer(GAP), and the process verification and evaluation of the system were carried out. The balling effects of large, medium and small droplet templates under different binder formulations were studied. The scanning electron microscope(SEM) results show that the three droplet templates under the three binder formulations exhibit good balling effect and narrow particle size distribution. The DAAF microspheres were characterized by powder X-ray diffraction(XRD), differential scanning calorimetry(DSC), thermo-gravimetric(TG) and sensitivity analyzer. The results showed that the crystal structure of DAAF did not change during the process, and the prepared DAAF microspheres had lower decomposition temperature and lower mechanical sensitivity than raw DAAF. The results of detonation parameters show that the coating of DAAF by using the above three binder formulations will not greatly reduce the energy output of DAAF, and has comparable detonation performance to raw DAAF. This study proves an efficient and safe continuous system from synthesis to spherical coating modification of explosives, which provides a new way for the continuous, safe and efficient preparation of spherical explosives.
基金supports of National Natural Science Foundation of China(22308057)Outstanding Talent Introduction Funds from Fuzhou University(0040-511175)Fuzhou University Testing Fund of precious apparatus(2023T003).
文摘Micromixing efficiency is an important parameter for evaluating the multiphase mass transfer performance and reaction efficiency of microreactors.In this work,the novel curved capillary reactor with different shapes was designed to generate Dean flow,which was used to enhance the liquid-liquid micromixing performance.The Villermaux-Dushman probe reaction was employed to characterize the micromixing performance in different curved capillary microreactors.The effects of experiment parameters such as liquid flow rate,inner diameter,tube length,and curve diameter on micromixing performance were systematically investigated.Under the optimal conditions,the minimum value of the segmentation factor XS was 0.008.It was worth noting that at the low Reynolds number(Re<30),the change of curved shape on the capillary microreactor can significantly improve the micromixing performance with XS reduced by 37.5%.Further,the correlations of segment index XS with dimensionless factor such as Reynolds number or Dean number were developed,which can be used to predict the liquid-liquid micromixing performance in capillary microreactors.
基金the financial support from the Shanghai Sailing Program,China(21YF1409500)the National Natural Science Foundation of China(22308100,22308105)+1 种基金the State Key Laboratory of Chemical Engineering(SKL-ChE-23Z01)the National Science Fund for Distinguished Young Scholars of China(22225804).
文摘Multi-orifice cross-flow jet mixers(MOCJMs)are used in various industrial applications due to their excellent mixing efficiency,but few studies have focused on the micromixing performance of MOCJMs.Herein,the flow characteristics and micromixing performance inside the MOCJM were investigated using experiments and computational fluid dynamics(CFD)simulations based on the Villermaux/Dushman system and the finite-rate/modified eddy-dissipation model.The optimal A value was correlated with the characteristic parameters of MOCJMs to develop a CFD calculation method applicable to the study of the micromixing performance of the MOCJMs.Then the micromixing efficiency was evaluated using the segregation index XS,and the effects of operational and geometric parameters such as mixing flow Reynolds number(ReM),flow ratio(RF),total jet area(ST),the number of jet orifices(n),and outlet configuration on the micromixing efficiency were investigated.It was found that the intensive turbulent region generated by interactions between jets,as well as between jets and crossflows,facilitated rapid reactions.XS decreased with increasing ReM and decreasing RF.Furthermore,MOCJMs with lower ST,four jet orifices,and the narrower outlet configuration demonstrated a better micromixing efficiency.This study contributes to a deeper understanding of the micromixing performance of MOCJMs and provides valuable guidance for their design,optimization,and industrial application.
文摘Chaotic mixing in eight different types of micro T-mixer flow has been studied experimentally and numerically. The present experimental study was performed to visualize two-liquid flows in a micro T-mixer with baffles. The Reynolds number, baffle height and setting angle were varied to investigate their effect on the mixing performance. Three micro T-mixer models were produced, which are several centimeters long and have a rectangular cross-section of few millimeters a side. The mixing of two-liquid was measured using the laser induced fluorescence (LIF) technique. Moreover, three-dimensional numerical simulations were conducted with the open-source CFD solver, OpenFOAM, for the same configuration as used in the experiments to investigate the detailed mechanism of the chaotic mixing. As a result, it was found that the mixing of two-liquid is greatly improved in the micro T-mixer with baffle. The baffle height and setting angle show a significant influence on the mixing performance.
基金the National Postdoctoral Program(PNPD/CAPES)the UNICAMP Scholarship Program+2 种基金FUNCAMP(UNICAMP Foundation)the financial support provided by CNPq(National Council for Scientific and Technological Development,Process404760/2016-3)FAPESP(Sao Paulo Research Foundation,Process 2016/20842-4).
文摘The scope of the present research aims at demonstrating the 3D printing use in the manufacturing of microchannels for chemical process applications. A comparison among digital model processing applications for 3D print(slicers) and a print layer thickness analysis were performed. The 3D print fidelity was verified in several devices, including the microchannels’ printing with and without micromixer zones. In order to highlight the 3D print potential in Chemical Engineering, the biodiesel synthesis was also carried out in a millireactor manufactured by 3D printing. The millireactor operated under laminar flow regime with a total flow rate of 75.25 ml·min^-1(increment of about 130 times over traditional microdevices used for biodiesel production).The printed millireactor provided a maximum yield of Ethyl Esters of 73.51% at 40 ℃, ethanol:oil molar ratio of7 and catalyst concentration of 1.25 wt% and residence time about 10 s. As a result of flow rate increment attained in the millireactor, the number of required units for scaling-up the chemical processes is reduced. Using the approach described in the present research, anyone could produce their own millireactor for chemical process in a simple way with the aid of a 3D printer.
文摘Passive micromixers are preferred over active mixers for many microfluidic applications due to their relative ease in integration into complex systems and operational flexibility.They also incur very low cost of manufacturing.However,the degree of mixing is comparatively low in passive mixers than active mixers due to the absence of disturbance in the flow by external forces and the inherent laminar nature of microchannel flows.Various designs of complex channel structures and three-dimensional geometries have been investigated in the past to obtain an efficient mixing in passive mixers.But the studies on mixing enhancement with simple planar geometries of passive mixers have been few and limited.The present work aims to investigate the possibility of mixing enhancement by employing simple planar type designs,such as T-mixer and T–T mixer with cylindrical elements placed in the mixing channel.The mixing performance has been evaluated in the Reynolds number range of 6 to700.Numerical results have shown that T–T mixer with cylindrical elements performed significantly well and obtained very good mixing quality over basic T-mixer for the entire range of Reynolds number(6 to 700).The device has also shown better mixing as compared to basic T–T mixer and T-mixer with cylindrical elements.A larger pair of vortices formed in the stagnation area due to the presence of a cylindrical element in the junction.Cylindrical elements downstream caused significant enhancement in mixing due to splitting and recombining action.The size of the cylindrical element in the T–T mixer has been optimized to obtain better mixing performance of the device.Remarkable improvement in mixing quality by T–T mixer with cylindrical elements has been obtained at the expense of small rise in pressure drop as compared to other passive designs considered in this study.Therefore,the current design of T–T mixer with cylindrical elements can act as an effective and simple passive mixing device for various micromixing applications.
基金the National High Technology Research and Development Program of China(2006AA030202,2006AA05Z316)
文摘Microreaction technology is one of the most innovative and rapid developing fields in chemical engineering, synthesis and process technology. Many expectations toward enhanced product selectivity, yield and purity, improved safety, and access to new products and processes are directed to the microreaction technology. Microfluidic mixer is the most important component in microfluidic devices. Based on various principles, active and passive micromixers have been designed and investigated. This review is focused on the recent developments in microfluidic mixers. An overview of the flow phenomena and mixing characteristics in active and passive micromixers is presented, including the types of physical phenomena and their utilization in micromixers. Due to the simple fabrication technology and the easy implementation in a complex microfluidic system, T-micromixer is highlighted as an example to illustrate the effect of design and operating parameters on mixing efficiency and fuid flow inside microfluidic mixers.
基金Supported by the National Natural Science Foundation of China (No. 29276260, No. 20176043).
文摘Micromixing in the submerged circulative impinging stream reactor (SCISR) developed by the authors is investigated with the Bourne's reaction scheme. The values measured for the impinging velocity, u0, under the conditions of SCISR normal operation, only is of the order of 0.1m·s^-1, are much slower than that inferred,suggesting low power requirement for operation. The values of the characteristic time constant for micromixing,tM, determined in the impinging velocity range of 0.184m·s^-1 < u0 < 0.326m·s^-1 are ranged from 192ms to 87 ms, showing that impinging streams promotes micromixing very efficiently. The data follow approximately the relationship of tM∝ u0^-1.5. A comparative study shows that the micromixing performance of SCISR is much better than that of the traditional stirred tank reactor. The tM values predicted with the existing theoretical model are systematically longer than those measured by about 2--3 times, implying that the regularity of impinging streams promoting micromixing is unclear yet.
基金Supported by the National Natural Science Foundation of China (20490208)the National High Technology Research and Development Program of China (2007AA030206)the Open Fund of State Key Laboratory of Explosion Science and Technology,BIT (KFJJ06-1)
文摘In this paper, the nitration characteristic of alcohols with mixed acid for the synthesis of energetic mate-rials in a stainless steel microreactor was investigated experimentally. The nitration of iso-octanol with HNO3-H2SO4 mixed acid was chosen as a typical model reaction which involved fast and strong exothermic liquid-liquid heterogeneous reaction process. The influences of mixed acid composition, flow rate, organic/aqueous flow ratio and reaction temperature have been investigated. The results indicated that the reaction could be con-ducted safely and stably in the microreactor at 25-40°C, which are enhanced compared to 15°C or below for safe operating conditions in the conventional reactors. Moreover, the 98.2% conversion of iso-octanol could be obtained and no by-products were detected in all cases.
基金Supported by the National-Natural Science Foundation of China (20821004, 20806004) and the National High Technology Research and Development Program of China (2007AA030207, 2006AA030202, 2006AA030203).
文摘Micromixing efficiency of viscous media in Y-type micro-channel reactor was studied by using iodide-iodate test reaction as working system.Experiments were carried out in water-glycerin mixtures with 7 different viscosities.The experimental results showed that segregation index of the micro-channel reactor increases with the decrease of volumetric flow rate and the increase of solution viscosity.Based on the incorporation model,the micromixing time tm of the micro-channel reactor was estimated in the range of 10-4-10-3s at different viscosities,which indicated that the micro-channel reactor possesses a much better micromixing performance compared to the stirred tank(tm=0.02-0.2s).
基金Supported by the National Natural Science Foundation of China(21576012)the National Key Research and Development Program of China(2017YFB0307202)
文摘Microchannel reactors are widely used in different fields due to their intensive micromixing and, thus, high masstransfer efficiency. In this work, a single countercurrent-flow microchannel reactor(S-CFMCR) at the size of ~1 mm was developed by steel micro-capillary and laser drilling technology. Utilizing the Villermaux/Dushman parallel competing reaction, numerical and experimental studies were carried out to investigate the micromixing performance(expressed as the segregation index XS) of liquids inside S-CFMCR at the low flow velocity regime.The effects of various operating conditions and design parameters of S-CFMCR, e.g., inlet Reynolds number(Re),volumetric flow ratio(R), inlet diameter(d) and outlet length(L), on the quality of micromixing were studied qualitatively. It was found that the micromixing efficiency was enhanced with increasing Re, but weakened with the increase of R. Moreover, d and L also have a significant influence on micromixing. CFD results were in good agreement with experimental data. In addition, the visualization of velocity magnitude, turbulent kinetic energy and concentration distributions of various ions inside S-CFMCR was illustrated as well. Based on the incorporation model, the estimated minimum micromixing time tmof S-CFMCR is ~2 × 10-4s.
基金Supported by the National Natural Science Foundation of China(21206002,21121064,20990224)the State Key Laboratory of Chemical Engineering(SKL-Ch E-13A03)
文摘Confined impinging jet reactor(CIJR)offers advantages for chemical rapid processes and has become an important new reactor used in the chemical industry.The micromixing efficiency in a T-shaped CIJR for two tubes of inner diameter of 3 mm was studied by using a parallel competing iodide–iodate reaction as the working system.In this work,the effects of different operating conditions,such as impinging velocity and acid concentration,on segregation index were investigated.In addition,the effects of the inner nozzles diameter and the distance L between the jet axis and the top wall of the mixing chamber on the micromixing efficiency were also considered.It is concluded that the best range of L in this CIJR is 6.5–12.5 mm.Based on the incorporation model,the estimated minimum micromixing time tmof CIJR approximately equals to 2×10-4s.These experimental results indicate clearly that CIJR possesses a much better micromixing performance compared with the conventional stirred tank(micromixing time of 2×10-3to 2×10-2s).Hence,it can be envisioned that CIJR has more promising applications in various industrial processes.
文摘In this study, a computer code is developed to numerically investigate a magnetic bead micromixer under different conditions. The micromixer consists of a microchannel and numerous micro magnetic particles which enter the micromixer by fluid flows and are actuated by an alternating magnetic field normal to the main flow. An important feature of micromixer which is not considered before by researchers is the particle entrance arrangement into the micromixer. This parameter could effectively affect the micromixer efficiency. There are two general micro magnetic particle entrance arrangements in magnetic bead micromixers: determined position entrance and random position entrance. In the case of determined position entrances, micro magnetic particles enter the micromixer at specific positions of entrance cross section. However, in a random position entrance,particles enter the microchannel with no order. In this study mixing efficiencies of identical magnetic bead micromixers which only differ in particle entrance arrangement are numerically investigated and compared.The results reported in this paper illustrate that the prepared computer code can be one of the most powerful and beneficial tools for the magnetic bead micromixer performance analysis. In addition, the results show that some features of the magnetic bead micromixer are strongly affected by the entrance arrangement of the particles.
基金Supported by the National Natural Science Foundation of China and China Petrochemical Corporation.
文摘An integral description of chemical reactions taken place under mixing was formulated on the basis of the three-region model pictured in Part Ⅰ of this study. A mathematically simplified version of the model was developed. It was shown that the converted portion of the material in the dispersion region can be neglected provided that the initial concentration ratio of A and B was less than 0.1, and the effects of micro - and macromixing on the chemical reactions could be represented by two dimensionless numbers: Dα and Π. The model was applied to two reacting systems: competitive-consecutive reactions and parallel reactions. Agreement between model prediction and experimental results demonstrated that the present framework, though in simplified form, is capable of describing reactive mixing without loss of any significant features of the process.
基金Supported by the Department of Science and Technology,Government of India (DSTO717)
文摘Macro and micromixing time represent two extreme mixing time scales,which governs the whole hydrodynamics characteristics of the surface aeration systems.With the help of experimental and numerical analysis,simulation equation governing those times scale has been presented in the present work.
基金the National Natural Science Foundation of China(10372099)
文摘This paper studied a concept of micromixer with a synthetic jet placed at the bottom of a rectangular channel. Due to periodic ejections from and suctions into the channel, the fluids are mixed effectively. To study the effects of the inlet velocity, the jet intensity and frequency, and the jet location on the mixing efficiency, 3-D numerical simulations of the micromixer have been carried out. It has been found that when the jet intensity and the frequency are fixed, the mixing efficiency increases when Re 〈 50, and decreases when Re 〉 50 with the best mixing efficiency achieved at Re = 50. When the ratio of the jet velocity magnitude to the inlet velocity is taken as 10 and the jet frequency is 100 Hz, the mixing index reaches the highest value. It has also been found that to get better mixing efficiency, the orifice of the synthetic jet should be asymmetrically located away from the channel's centerline.
基金Supported by the National Natural Science Foundation of China(20990224,21121064,21206002)
文摘The parallel-competing iodide-iodate reaction scheme was used to study the micromixing performance in a multi-phase stirred tank of 0.3 m diameter.The impeller combination consisted of a half elliptical blade disk turbine below two down-pimping wide-blade hydrofoils,identified as HEDT + 2WH_D.Nitrogen and glass beads of100 μm diameter and density 2500 kg-m^(-3) were used as the dispersed phases.The micromixing could be improved by sparging gas because of its additional potential energy.Also,micromixing could be improved by the solid particles with high kinetic energy near the impeller tip.In a gas-solid-liquid system,the gas-liquid film vibration with damping,due to the frequent collisions between the bubbles and particles,led to the decrease of the turbulence level in the liquid and caused eventually the deterioration of the micromixing.A Damping Film Dissipation model is formulated to shed light on the above micromixing performances.At last,the micromixing time t_m according to the incorporation model varied from 1.9 ms to 6.7 ms in our experiments.
基金Supported by the National Natural Science Foundation of China and China Petrochemical Corporation.
文摘High speed microphotographic studies showed that fluid elements injected from a point source tended to exhibit slice-like and strip-like configurations rather than lamellar structure during the turbulent mixing of fluids with Sc〉〉1 . Based on this phenomenon a new micromixing model was developed. The model stated that micromixing was contributed by shrinkage deformation and molecular diffusion on a slab element surrounded by an infinite ambient fluid. Balance between the deformation and the diffusion resulted in an exponential increase in volume for the element. After a certain period of time tm , the volumetric increase of the feed material would be confined by the development and extension of the turbulent spreading zone. Therefore, three successive downstream regions, with different controlling steps and segregation states, could be recognized. A simplified picture for the point source mixing was then drawn, which might serve as a basis for describing chemical reactions during turbulent mixing.
基金supported by the National Natural Science Foundation of China(51775196)Guangdong Province Science and Technology Project(2017B090912003,2017B090911014)+3 种基金High-level Personnel Special Support Plan of Guangdong Province(2016TQ03X289)Guangzhou Star of Pearl River Talent Project(201710010064)the Fundamental Research Funds for the Central Universities(Project Nos.2018ZD30,2019MS060)Guangzhou Science and Technology Project(201704030097).
文摘In this paper,a novel micromixer with complex 3D-shape inner units was put forward and fabricated by metal Additive Manufacturing(AM).The design of the micromixer combined the constraints of selective laser melting technology and the factors to improve mixing efficiency.Villermaux-Dushman reaction system and Compute Fluid Design(CFD)simulation were conducted to investigate the performance and the mechanism of this novel micromixer to improve mixing efficiency.The research found that the best mixing efficiency of this novel micromixer could be gained when the inner units divided fluid into five pieces with a uniform volume.Compared with a conventional micromixer without obstacle in the channel,the micromixer designed in this research achieved higher mixing efficiency and reduce the pressure drop by 10.34%.The mixing behaviour in this novel micromixer was discussed,which mainly contains two types:collisions and swirls.Via collisions,the fluid micro masses would hit each other directly,which broke the boundaries of micro masses and promoted the interchange of species in the whole flow field.In swirls,the fluid micro masses were drawn into thin and long slices,which increased the size of the contact area and enhanced molecule diffusion.Finally,the application scheme of this novel micromixer was briefly discussed.