Ion transport of sandwich cementitious materials(SCM) exposed to chloride environment was investigated by accelerated diffusion method and natural diffusion method. Pore structure and micromorphology of SCM were inv...Ion transport of sandwich cementitious materials(SCM) exposed to chloride environment was investigated by accelerated diffusion method and natural diffusion method. Pore structure and micromorphology of SCM were investigated by MIP and SEM-EDS. In comparison with the monolayer structural high performance concrete(HPC), conductive charge for 6 hours, chloride diffusion coefficient, and apparent chloride diffusion coeffi cient of SCM were decreased by 30%-40%, two orders of magnitude and 40%-50%, respectively. Pore structure of ultra low ion permeability cementitious materials(ULIPCM) prepared for the facesheet is superior to that of HPC prepared for the core. As for porosity, the most probable pore radius, the content of pores with radius 50 nm and the surface area of pores, the order is ULIPCM展开更多
基金Funded by the National Natural Science Foundation of China(Nos.51002072 and 51562024)the Jiangxi Science and Technology Support Project(Nos.20133BBE50027 and 20143BBM26055)
文摘Ion transport of sandwich cementitious materials(SCM) exposed to chloride environment was investigated by accelerated diffusion method and natural diffusion method. Pore structure and micromorphology of SCM were investigated by MIP and SEM-EDS. In comparison with the monolayer structural high performance concrete(HPC), conductive charge for 6 hours, chloride diffusion coefficient, and apparent chloride diffusion coeffi cient of SCM were decreased by 30%-40%, two orders of magnitude and 40%-50%, respectively. Pore structure of ultra low ion permeability cementitious materials(ULIPCM) prepared for the facesheet is superior to that of HPC prepared for the core. As for porosity, the most probable pore radius, the content of pores with radius 50 nm and the surface area of pores, the order is ULIPCM