期刊文献+
共找到10,380篇文章
< 1 2 250 >
每页显示 20 50 100
Expression and contribution of microphthalmia-associated transcription factor to the melanin deposition in Liancheng white ducks
1
作者 XIN Qing-wu MIAO Zhong-wei +6 位作者 LIU Zhao-yuan LI Li ZHANG Lin-li ZHU Zhi-ming ZHANG Zhenghong ZHENG Nen-zhu WANG Zheng-chao 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第3期800-809,共10页
The present study investigates the expression of microphthalmia-associated transcription factor(MITF) and its contribution to the melanin deposition in Liancheng white ducks.Nested PCR was used to clone the MITF gene ... The present study investigates the expression of microphthalmia-associated transcription factor(MITF) and its contribution to the melanin deposition in Liancheng white ducks.Nested PCR was used to clone the MITF gene sequence from the skin tissue of female Liancheng white ducks.Ultraviolet spectrophotometry was used to detect the melanin deposition.MITF mRNA expression and melanin deposition in different tissues and organs were detected and their correlation was analyzed.The MITF gene(GenBank number: MG516570) was 1 323 bp in length,contains a complete CDS region(34-1 323 bp) and codes 429 amino acids with 100% homology to the MITF of Anas platyrhynchos and over 95% homology to those of Gallus gallus and Coturnix japonica.Genetic evolution analysis reveals a close relationship of Liancheng white ducks with A.platyrhynchos,and also to lesser extents with Anser cygnoides,silky fowl and G.gallus,as well as Sus scrofa,Ovis aries and other mammals.Real-time quantitative PCR(qPCR) analysis demonstrated that MITF was expressed in skin,gizzard,liver,kidney and muscle,and of these tissues,its expression was the highest in the skin tissue(skin>gizzard>liver>kidney>muscle).Ultraviolet spectrophotometry showed that melanin deposition was positively correlated with the MITF expression level in these five tissues and organs(P<0.05).Together,these results demonstrated a tissue-specific pattern of MITF expression and a positive correlation between MITF expression and melanin deposition,indicating that MITF expression may contribute to the melanin deposition in Liancheng white ducks. 展开更多
关键词 microphthalmia-associated transcription factor genetic evolution analysis melanin deposition Liancheng white ducks
下载PDF
Transcription factor OsSPL10 interacts with OsJAmyb to regulate blast resistance in rice
2
作者 Zaofa Zhong Lijing Zhong +4 位作者 Xiang Zhu Yimin Jiang Yihong Zheng Tao Lan Haitao Cui 《The Crop Journal》 SCIE CSCD 2024年第1期301-307,共7页
Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating t... Transcription factors(TFs)play essential roles in transcriptional reprogramming during activation of plant immune responses to pathogens.OsSPL10(SQUAMOSA promoter binding protein-like10)is an important TF regulating trichome development and salt tolerance in rice.Here we report that knockout of OsSPL10 reduces whereas its overexpression enhances rice resistance to blast disease.OsSPL10 positively regulates chitin-induced immune responses including reactive oxygen species(ROS)burst and callose deposition.We show that OsSPL10 physically associates with OsJAmyb,an important TF involved in jasmonic acid(JA)signaling,and positively regulates its protein stability.We then prove that OsJAmyb positively regulates resistance to blast.Our results reveal a molecular module consisting of OsSPL10 and OsJAmyb that positively regulates blast resistance. 展开更多
关键词 IMMUNITY JASMONATE Oryza sativa OsSPL10 transcription factor
下载PDF
The BEL1-like transcription factor GhBLH5-A05 participates in cotton response to drought stress
3
作者 Jing-Bo Zhang Yao Wang +4 位作者 Shi-Peng Zhang Fan Cheng Yong Zheng Yang Li Xue-Bao Li 《The Crop Journal》 SCIE CSCD 2024年第1期177-187,共11页
Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regu... Drought stress impairs crop growth and development.BEL1-like family transcription factors may be involved in plant response to drought stress,but little is known of the molecular mechanism by which these proteins regulate plant response and defense to drought stress.Here we show that the BEL1-like transcription factor GhBLH5-A05 functions in cotton(Gossypium hirsutum)response and defense to drought stress.Expression of GhBLH5-A05 in cotton was induced by drought stress.Overexpression of GhBLH5-A05 in both Arabidopsis and cotton increased drought tolerance,whereas silencing GhBLH5-A05 in cotton resulted in elevated sensitivity to drought stress.GhBLH5-A05 binds to cis elements in the promoters of GhRD20-A09 and GhDREB2C-D05 to activate the expression of these genes.GhBLH5-A05 interacted with the KNOX transcription factor GhKNAT6-A03.Co-expression of GhBLH5-A05 and GhKNAT6-A03 increased the transcription of GhRD20-A09 and GhDREB2C-D05.We conclude that GhBLH5-A05 acts as a regulatory factor with GhKNAT6-A03 functioning in cotton response to drought stress by activating the expression of the drought-responsive genes GhRD20-A09 and GhDREB2C-D05. 展开更多
关键词 Cotton(Gossypium hirsutum) BEL1-like transcription factor Drought stress transcriptional regulation Drought tolerance
下载PDF
Sugarcane transcription factor ScWRKY4 negatively regulates resistance to pathogen infection through the JA signaling pathway
4
作者 Dongjiao Wang Wei Wang +5 位作者 Shoujian Zang Liqian Qin Yanlan Liang Peixia Lin Yachun Su Youxiong Que 《The Crop Journal》 SCIE CSCD 2024年第1期164-176,共13页
WRKY transcription factors,transcriptional regulators unique to plants,play an important role in defense response to pathogen infection.However,the resistance mechanisms of WRKY genes in sugarcane remain unclear.In th... WRKY transcription factors,transcriptional regulators unique to plants,play an important role in defense response to pathogen infection.However,the resistance mechanisms of WRKY genes in sugarcane remain unclear.In the present study,gene ontology(GO)enrichment analysis revealed that WRKY gene family in sugarcane was extensively involved in the response to biotic stress and in defense response.We identified gene ScWRKY4,a classⅡc member of the WRKY gene family,in sugarcane cultivar ROC22.This gene was induced by salicylic acid(SA)and methyl jasmonate(MeJA)stress.Interestingly,expression of ScWRKY4 was down-regulated in smut-resistant sugarcane cultivars but up-regulated in smutsusceptible sugarcane cultivars infected with Sporisorium scitamineum.Moreover,stable overexpression of the ScWRKY4 gene in Nicotiana benthamiana enhanced susceptibility to Fusarium solani var.coeruleum and caused down-regulated expression of immune marker-related genes.Transcriptome analysis indicated suppressed expression of most JAZ genes in the signal transduction pathway.ScWRKY4 interacted with ScJAZ13 to repress its expression.We thus hypothesized that the ScWRKY4 gene was involved in the regulatory network of plant disease resistance,most likely through the JA signaling pathway.The present study depicting the molecular involvement of ScWRKY4 in sugarcane disease resistance lays a foundation for future investigation. 展开更多
关键词 Disease resistance Expression profile transcriptome analysis WRKY transcription factors
下载PDF
High-throughput screening system of citrus bacterial cankerassociated transcription factors and its application to the regulation of citrus canker resistance
5
作者 Jia Fu Jie Fan +8 位作者 Chenxi Zhang Yongyao Fu Baohang Xian Qiyuan Yu Xin Huang Wen Yang Shanchun Chen Yongrui He Qiang Li 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期155-165,共11页
One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both prote... One of the main diseases that adversely impacts the global citrus industry is citrus bacterial canker(CBC),caused by the bacteria Xanthomonas citri subsp.citri(Xcc).Response to CBC is a complex process,with both proteinDNA as well as protein–protein interactions for the regulatory network.To detect such interactions in CBC resistant regulation,a citrus high-throughput screening system with 203 CBC-inducible transcription factors(TFs),were developed.Screening the upstream regulators of target by yeast-one hybrid(Y1H)methods was also performed.A regulatory module of CBC resistance was identified based on this system.One TF(CsDOF5.8)was explored due to its interactions with the 1-kb promoter fragment of CsPrx25,a resistant gene of CBC involved in reactive oxygen species(ROS)homeostasis regulation.Electrophoretic mobility shift assay(EMSA),dual-LUC assays,as well as transient overexpression of CsDOF5.8,further validated the interactions and transcriptional regulation.The CsDOF5.8–CsPrx25 promoter interaction revealed a complex pathway that governs the regulation of CBC resistance via H2O2homeostasis.The high-throughput Y1H/Y2H screening system could be an efficient tool for studying regulatory pathways or network of CBC resistance regulation.In addition,it could highlight the potential of these candidate genes as targets for efforts to breed CBC-resistant citrus varieties. 展开更多
关键词 citrus bacterial canker(CBC) high-throughput screening system transcription factor(TF) yeast-one hybrid(Y1H) CsPrx25
下载PDF
Age-related driving mechanisms of retinal diseases and neuroprotection by transcription factor EB-targeted therapy
6
作者 Samuel Abokyi Dennis Yan-yin Tse 《Neural Regeneration Research》 SCIE CAS 2025年第2期366-377,共12页
Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecu... Retinal aging has been recognized as a significant risk factor for various retinal disorders,including diabetic retinopathy,age-related macular degeneration,and glaucoma,following a growing understanding of the molecular underpinnings of their development.This comprehensive review explores the mechanisms of retinal aging and investigates potential neuroprotective approaches,focusing on the activation of transcription factor EB.Recent meta-analyses have demonstrated promising outcomes of transcription factor EB-targeted strategies,such as exercise,calorie restriction,rapamycin,and metformin,in patients and animal models of these common retinal diseases.The review critically assesses the role of transcription factor EB in retinal biology during aging,its neuroprotective effects,and its therapeutic potential for retinal disorders.The impact of transcription factor EB on retinal aging is cell-specific,influencing metabolic reprogramming and energy homeostasis in retinal neurons through the regulation of mitochondrial quality control and nutrient-sensing pathways.In vascular endothelial cells,transcription factor EB controls important processes,including endothelial cell proliferation,endothelial tube formation,and nitric oxide levels,thereby influencing the inner blood-retinal barrier,angiogenesis,and retinal microvasculature.Additionally,transcription factor EB affects vascular smooth muscle cells,inhibiting vascular calcification and atherogenesis.In retinal pigment epithelial cells,transcription factor EB modulates functions such as autophagy,lysosomal dynamics,and clearance of the aging pigment lipofuscin,thereby promoting photoreceptor survival and regulating vascular endothelial growth factor A expression involved in neovascularization.These cell-specific functions of transcription factor EB significantly impact retinal aging mechanisms encompassing proteostasis,neuronal synapse plasticity,energy metabolism,microvasculature,and inflammation,ultimately offering protection against retinal aging and diseases.The review emphasizes transcription factor EB as a potential therapeutic target for retinal diseases.Therefore,it is imperative to obtain well-controlled direct experimental evidence to confirm the efficacy of transcription factor EB modulation in retinal diseases while minimizing its risk of adverse effects. 展开更多
关键词 age-related macular degeneration anti-aging interventions autophagy calorie restriction diabetic retinopathy exercise glaucoma NEUROMODULATION PHAGOCYTOSIS photoreceptor outer segment degradation retinal aging transcription factor EB
下载PDF
Cloning of a microphthalmia-associated transcription factor gene and its functional analysis in nacre formation and melanin synthesis in Hyriopsis cumingii 被引量:2
7
作者 Jiexuan Shen Dandan Huang +2 位作者 Chaohu Sun Jiale Li Zhiyi Bai 《Aquaculture and Fisheries》 2018年第6期217-224,共8页
Microphthalmia-associated transcription factor(MITF)is an essential transactivator in melanin synthesis.To characterize the role of MITF in the pearl mussel Hyriopsis cumingii,the MITF homolog of H.cumingii was isolat... Microphthalmia-associated transcription factor(MITF)is an essential transactivator in melanin synthesis.To characterize the role of MITF in the pearl mussel Hyriopsis cumingii,the MITF homolog of H.cumingii was isolated.The full-length HcMitf cDNA consisted of a 1332-bp with an open reading frame that encode for a 443 amino acid protein that contain a conserved basic helix-loop-helix zipper domain.The HcMitf was found to widespread tissue distribution but expression was higher in purple mussels than in white mussels,mostly in mantle,liver,kidney,gill,and foot with the exception of the adductor mussel.HcMitf and its downstream gene tyrosinase(HcTyr)were highly expressed at the nacre deposition stage after implantation of mantle tissue to produce pearls.Using RNA interference,the expression of HcMitf was reduced by 78%(P<0.01)and expression of HcTyr was also significantly suppressed and consequently total melanin content was decreased(P<0.05).The results suggest that HcMitf plays an important role in melanin synthesis,nacre formation and shell pigmentation in the H.cumingii. 展开更多
关键词 microphthalmia-associated transcription factor Freshwater pearl mussel MELANIN Nacre formation Shell pigmentation
原文传递
Characteristics and expression of the TCP transcription factors family in Allium senescens reveal its potential roles in drought stress responses 被引量:1
8
作者 XIAOHONG FU JIE ZHAO +5 位作者 DANDAN CAO CHENGXING HE ZIYI WANG YIBEI JIANG JIANFENG LIU GUIXIA LIU 《BIOCELL》 SCIE 2023年第4期905-917,共13页
Allium senescens,is an important economic and ecological grassland plant with drought-resistant characteristics.A TCP protein transcription factor is important in the regulation of plant development and adverse respon... Allium senescens,is an important economic and ecological grassland plant with drought-resistant characteristics.A TCP protein transcription factor is important in the regulation of plant development and adverse responses.However,the mechanism by which TCP transcription functions in drought resistance in Allium senescens is still not clear.Here,we obtained a total of 190,305 transcripts with 115,562 single gene clusters based on RNA-Seq sequencing of Allium senescens under drought stress.The total number of bases was 97,195,096 bp,and the average length was 841.06 bp.Furthermore,we found that there were eight genes of the TCP family that showed an upregulated expression trend under drought stress in Allium senescens.We carried out an investigation to determine the evolution and function of the AsTCP family and how they produce an effect in drought resistance.The 14 AsTCP genes were confirmed and divided into class I and class II containing CIN and CYC/TBI subfamilies,respectively.We also found that the expression of AsTCP17 was remarkably upregulated with drought treatment.Besides,the transformation of AsTCP17 in Arabidopsis revealed that the protective enzymes,namely polyphenol oxidase(POD)and superoxide dismutase(SOD),were increased by 0.4 and 0.8 times,respectively.Chlorophyll content was also increased,while the H2O2 and malondialdehyde(MDA)contents were decreased.Staining assays with 3,3′-diaminobenzidine(DAB)also suggested that the AsTCP17 downregulates reactive oxygen species(ROS)accumulation.In addition,overexpression of the AsTCP17 affected the accumulation of drought-related hormones in plants,and the synthesis of ABA.The expression of AtSVP and AtNCED3,related ABA synthesis pathway genes,indicated that the level of expression of AtSVP and AtNCED3 was obviously enhanced,with the overexpression of line 6 showing a 20.6-fold and 7.0-fold increase,respectively.Taken together,our findings systematically analyze the AsTCPs family at the transcriptome expression level in Allium senescens,and we also demonstrated that AsTCP17 protein,as a positive regulator,was involved in drought resistance of Allium senescens.In addition,our research contributes to the comprehensive understanding of the drought stress defense mechanism in herbaceous plants. 展开更多
关键词 Allium senescens Drought stress TCP transcription factor ABA synthesis pathway
下载PDF
Comparative transcriptome analysis of the climacteric of apple fruit uncovers the involvement of transcription factors affecting ethylene biosynthesis
9
作者 Tong Li Xiao Zhang +6 位作者 Yun Wei Yaxiu Xu Weiting Liu Hongjian Li Guangxin Yang Aide Wang Xiaoxue Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第4期659-669,共11页
Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanis... Apple(Malus domestica)fruit generally undergoes a climacteric.During its ripening process,there is a peak in ethylene release and its firmness simultaneously decreases.Although more in-depth research into the mechanism of climacteric-type fruit ripening is being carried out,some aspects remain unclear.In this study,we compared the transcriptomes of 0-Pre and 15-Post(pre-and post-climacteric fruit),and 15-Post and 15-MCP[fruit treated with 1-MCP(1-methylcyclopropene)].Various transcription factors,such as MADS-box,ERF,NAC,Dof and SHF were identified among the DEGs(differential gene expressions).Furthermore,these transcription factors were selected for further validation analysis by qRT-PCR.Moreover,yeast one hybrid(Y1H),β-glucuronidase(GUS)transactivation assay and dual-luciferase reporter assay showed that MdAGL30,MdAGL104,MdERF008,MdNAC71,MdDof1.2,MdHSFB2a and MdHSFB3 bound to MdACS1 promoter and directly regulated its transcription,thereby regulating ethylene biosynthesis in apple fruit.Our results provide useful information and new insights for research on apple fruit ripening. 展开更多
关键词 Apple RNA-Seq Fruit ripening ETHYLENE transcription factor
下载PDF
A homeodomain-leucine zipper I transcription factor, MeHDZ14,regulates internode elongation and leaf rolling in cassava(Manihot esculenta Crantz)
10
作者 Xiaoling Yu Xin Guo +6 位作者 Pingjuan Zhao Shuxia Li Liangping Zou Wenbin Li Ziyin Xu Ming Peng Mengbin Ruan 《The Crop Journal》 SCIE CSCD 2023年第5期1419-1430,共12页
Drought stress impairs plant growth and other physiological functions. MeHDZ14, a homeodomainleucine zipper I transcription factor, is strongly induced by drought stress in various cassava cultivars.However, the role ... Drought stress impairs plant growth and other physiological functions. MeHDZ14, a homeodomainleucine zipper I transcription factor, is strongly induced by drought stress in various cassava cultivars.However, the role of MeHDZ14 in cassava growth regulation has remained unclear. Here we report that MeHDZ14 affected plant height, such that a dwarf phenotype and altered internode elongation were observed in transgenic cassava lines. MeHDZ14 was found to negatively regulate the biosynthesis of lignin. Its overexpression resulted in abaxially rolled leaves. The morphogenesis of leaf epidermal cells was inhibited by overexpression of MeHDZ14, with decreased auxin and gibberellin and increased cytokinin contents. MeHDZ14 was found to regulate many drought-responsive genes, including genes involved in cell wall synthesis and expansion. MeHDZ14 bound to the promoter of caffeic acid 3-Omethyltransferase 1(MeCOMT1), acting as a transcriptional repressor of genes involved in cell wall development. MeHDZ14 appears to act as a negative regulator of internode elongation and epidermal cell morphogenesis during cassava leaf development. 展开更多
关键词 HD-Zip transcription factor DROUGHT Internode elongation Leaf rolling CASSAVA
下载PDF
The molecular mechanism of WRINKLED1 transcription factor regulating oil accumulation in developing seeds of castor bean
11
作者 Qing Tan Bing Han +5 位作者 Mohammad Enamul Haque Ye-Lan Li Yue Wang Di Wu Shi-Bo Wu Ai-Zhong Liu 《Plant Diversity》 SCIE CAS CSCD 2023年第4期469-478,共10页
The transcription factor WRINKLED1(WRI1),a member of AP2 gene family that contain typical AP2 domains,has been considered as a master regulator regulating oil biosynthesis in oilseeds.However,the regulatory mechanism ... The transcription factor WRINKLED1(WRI1),a member of AP2 gene family that contain typical AP2 domains,has been considered as a master regulator regulating oil biosynthesis in oilseeds.However,the regulatory mechanism of RcWRI1 in regulating oil accumulation during seed development has not been clearly addressed.Castor bean(Ricinus communis)is one of the most important non-edible oil crops and its seed oils are rich in hydroxy fatty acids,widely applied in industry.In this study,based on castor bean reference genome,three RcWRIs genes(RcWRI1,RcWRI2 and RcWRI3)were identified and the expressed association of RcWRI1 with oil accumulation were determined.Heterologous transformation of RcWRI1 significantly increased oil content in tobacco leaf,confirming that RcWRI1 activate lipid biosynthesis pathway.Using DNA Affinity Purification sequencing(DAP-seq)technology,we confirmed RcWRI1 binding with Transcription Start Site of genes and identified 7961 WRI1-binding candidate genes.Functionally,these identified genes were mainly involved in diverse metabolism pathways(including lipid biosynthesis).Three cis-elements AW-box([CnTnG](n)7[CG])and AW-boxes like([GnAnC](n)6[GC]/[GnAnC](n)7[G])bound with RcWRI1 were identified.Co-expression network analysis of RcWRI1 further found that RcWRI1 might be widely involved in biosynthesis of storage materials during seed development.In particular,yeast one hybrid experiments found that both AP2 domains within RcWRI1 were required in binding targeted genes.These results not only provide new evidence to understand the regulatory mechanism of RcWRI1 in regulation of oil accumulation during castor bean seed development,but also give candidate gene resource for subsequent genetic improvement toward increasing oil content in oilseed crops. 展开更多
关键词 Castor bean WRI transcription factor Oil accumulation Developing seeds Lipid gene
下载PDF
Identification of the target genes of AhTWRKY24 and AhTWRKY106 transcription factors reveals their regulatory network in Arachis hypogaea cv.Tifrunner using DAP-seq
12
作者 Meiran Li Mingwei Chen +3 位作者 Yongli Zhang Longgang Zhao Jiancheng Zhang Hui Song 《Oil Crop Science》 CSCD 2023年第2期89-96,共8页
WRKY transcription factors(TFs)have been identified as important core regulators in the responses of plants to biotic and abiotic stresses.Cultivated peanut(Arachis hypogaea)is an important oil and protein crop.Previo... WRKY transcription factors(TFs)have been identified as important core regulators in the responses of plants to biotic and abiotic stresses.Cultivated peanut(Arachis hypogaea)is an important oil and protein crop.Previous studies have identified hundreds of WRKY TFs in peanut.However,their functions and regulatory networks remain unclear.Simultaneously,the AdWRKY40 TF is involved in drought tolerance in Arachis duranensis and has an orthologous relationship with the AhTWRKY24 TF,which has a homoeologous relationship with AhTWRKY106 TF in A.hypogaea cv.Tifrunner.To reveal how the homoeologous AhTWRKY24 and AhTWRKY106 TFs regulate the downstream genes,DNA affinity purification sequencing(DAP-seq)was performed to detect the binding sites of TFs at the genome-wide level.A total of 3486 downstream genes were identified that were collectively regulated by the AhTWRKY24 and AhTWRKY106 TFs.The results revealed that W-box elements were the binding sites for regulation of the downstream genes by AhTWRKY24 and AhTWRKY106 TFs.A gene ontology enrichment analysis indicated that these downstream genes were enriched in protein modification and reproduction in the biological process.In addition,RNA-seq data showed that the AhTWRKY24 and AhTWRKY106 TFs regulate differentially expressed genes involved in the response to drought stress.The AhTWRKY24 and AhTWRKY106 TFs can specifically regulate downstream genes,and they nearly equal the numbers of downstream genes from the two A.hypogaea cv.Tifrunner subgenomes.These results provide a theoretical basis to study the functions and regulatory networks of AhTWRKY24 and AhTWRKY106 TFs. 展开更多
关键词 DAP-Seq Homoeolog PEANUT Regulatory network WRKY transcription factor
下载PDF
The R2R3-MYB transcription factor GaPC controls petal coloration in cotton
13
作者 Caiping Cai Fan Zhou +4 位作者 Weixi Li Yujia Yu Zhihan Guan Baohong Zhang Wangzhen Guo 《The Crop Journal》 SCIE CSCD 2023年第5期1319-1330,共12页
Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified ... Although a few cases of genetic epistasis in plants have been reported, the combined analysis of genetically phenotypic segregation and the related molecular mechanism remains rarely studied. Here, we have identified a gene(named GaPC) controlling petal coloration in Gossypium arboreum and following a heritable recessive epistatic genetic model. Petal coloration is controlled by a single dominant gene,GaPC. A loss-of-function mutation of GaPC leads to a recessive gene Gapc that masks the phenotype of other color genes and shows recessive epistatic interactions. Map-based cloning showed that GaPC encodes an R2R3-MYB transcription factor. A 4814-bp long terminal repeat retrotransposon insertion at the second exon led to GaPC loss of function and disabled petal coloration. GaPC controlled petal coloration by regulating the anthocyanin and flavone biosynthesis pathways. Expression of core genes in the phenylpropanoid and anthocyanin pathways was higher in colored than in white petals. Petal color was conferred by flavonoids and anthocyanins, with red and yellow petals rich in anthocyanin and flavonol glycosides, respectively. This study provides new insight on molecular mechanism of recessive epistasis,also has potential breeding value by engineering GaPC to develop colored petals or fibers for multifunctional utilization of cotton. 展开更多
关键词 COTTON Petal color R2R3-MYB transcription factor LTR-RT insertion Flavonoid/anthocyanin biosynthesis Recessive epistasis
下载PDF
MicroRNA-584-5p/RUNX family transcription factor 2 axis mediates hypoxia-induced osteogenic differentiation of periosteal stem cells
14
作者 Jia-Jia Lu Xiao-Jian Shi +3 位作者 Qiang Fu Yong-Chuan Li Lei Zhu Nan Lu 《World Journal of Stem Cells》 SCIE 2023年第10期979-988,共10页
BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM... BACKGROUND The hypoxic environment during bone healing is important in regulating the differentiation of periosteal stem cells(PSCs)into osteoblasts or chondrocytes;however,the underlying mechanisms remain unclear.AIM To determine the effect of hypoxia on PSCs,and the expression of microRNA-584-5p(miR-584-5p)and RUNX family transcription factor 2(RUNX2)in PSCs was modulated to explore the impact of the miR-584-5p/RUNX2 axis on hypoxiainduced osteogenic differentiation of PSCs.METHODS In this study,we isolated primary mouse PSCs and stimulated them with hypoxia,and the characteristics and functional genes related to PSC osteogenic differentiation were assessed.Constructs expressing miR-584-5p and RUNX2 were established to determine PSC osteogenic differentiation.RESULTS Hypoxic stimulation induced PSC osteogenic differentiation and significantly increased calcified nodules,intracellular calcium ion levels,and alkaline phosphatase(ALP)activity in PSCs.Osteogenic differentiation-related factors such as RUNX2,bone morphogenetic protein 2,hypoxia-inducible factor 1-alpha,and ALP were upregulated;in contrast,miR-584-5p was downregulated in these cells.Furthermore,upregulation of miR-584-5p significantly inhibited RUNX2 expression and hypoxia-induced PSC osteogenic differentiation.RUNX2 was the target gene of miR-584-5p,antagonizing miR-584-5p inhibition in hypoxia-induced PSC osteogenic differentiation.CONCLUSION Our study showed that the interaction of miR-584-5p and RUNX2 could mediate PSC osteogenic differentiation induced by hypoxia. 展开更多
关键词 Periosteal stem cell Osteogenic differentiation RUNX family transcription factor 2 MiroRNA-584-5p
下载PDF
Long non-coding RNA CDKN2B-AS1 promotes hepatocellular carcinoma progression via E2F transcription factor 1/G protein subunit alpha Z axis
15
作者 Zhi-Gang Tao Yu-Xiao Yuan Guo-Wei Wang 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第11期1974-1987,共14页
BACKGROUND A series of long non-coding RNAs(lncRNAs)have been reported to play a crucial role in cancer biology.Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies.However,its ro... BACKGROUND A series of long non-coding RNAs(lncRNAs)have been reported to play a crucial role in cancer biology.Some previous studies report that lncRNA CDKN2B-AS1 is involved in some human malignancies.However,its role in hepatocellular carcinoma(HCC)has not been fully deciphered.AIM To decipher the role of CDKN2B-AS1 in the progression of HCC.METHODS CDKN2B-AS1 expression in HCC was detected by quantitative real-time polymerase chain reaction.The malignant phenotypes of Li-7 and SNU-182 cells were detected by the CCK-8 method,EdU method,and flow cytometry,respectively.RNA immunoprecipitation was executed to confirm the interaction between CDKN2B-AS1 and E2F transcription factor 1(E2F1).Luciferase reporter assay and chromatin immunoprecipitation were performed to verify the binding of E2F1 to the promoter of G protein subunit alpha Z(GNAZ).E2F1 and GNAZ were detected by western blot in HCC cells.RESULTS In HCC tissues,CDKN2B-AS1 was upregulated.Depletion of CDKN2B-AS1 inhibited the proliferation of HCC cells,and the depletion of CDKN2B-AS1 also induced cell cycle arrest and apoptosis.CDKN2B-AS1 could interact with E2F1.Depletion of CDKN2B-AS1 inhibited the binding of E2F1 to the GNAZ promoter region.Overexpression of E2F1 reversed the biological effects of depletion of CDKN2B-AS1 on the malignant behaviors of HCC cells.CONCLUSION CDKN2B-AS1 recruits E2F1 to facilitate GNAZ transcription to promote HCC progression. 展开更多
关键词 Hepatocellular carcinoma CDKN2B-AS1 E2F transcription factor 1 G protein subunit alpha Z Proliferation
下载PDF
羊驼transcription elongation factor B(S III)(Tceb2)cDNA的获取与序列分析
16
作者 范瑞文 董常生 +2 位作者 朱芷葳 赫晓燕 游蓉丽 《中国农学通报》 CSCD 2008年第11期1-4,共4页
【研究目的】分离和鉴定羊驼transcription elongation factorB(S III)(Tceb2)基因,分析其序列特征,为今后研究其生物学功能奠定理论基础。【方法】用Southern Blotting法从羊驼皮肤cDNA文库中筛选Tceb2基因,通过BLAST等生物学相关软件... 【研究目的】分离和鉴定羊驼transcription elongation factorB(S III)(Tceb2)基因,分析其序列特征,为今后研究其生物学功能奠定理论基础。【方法】用Southern Blotting法从羊驼皮肤cDNA文库中筛选Tceb2基因,通过BLAST等生物学相关软件对其进行结果分析。【结果】有6个阳性克隆,测序结果得知,序列片段大小大约为472bp,具有完整的开放阅读框,可编码119AA,分子量为13.2KDa。序列特征、结构和同源性分析表明:该序列预测为全长cDNA序列,该基因序列及其编码的氨基酸序列与大鼠和小鼠的troponinc2同源性可达100%。【结论】该基因是获得的羊驼全长Tceb2(GenBank DQ646397)(命名为AlpTceb2)。 展开更多
关键词 转录延长因子B(S Ⅲ)(Tceb2) 序列特征 羊驼
下载PDF
Isolation and functional analysis of SrMYB1,a direct transcriptional repressor of SrUGT76G1 in Stevia rebaudiana 被引量:1
17
作者 ZHANG Ting ZHANG Yong-xia +5 位作者 SUN Yu-ming XU Xiao-yang WANG Yin-jie CHONG Xinran YANG Yong-heng YUAN Hai-yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1058-1067,共10页
SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 h... SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 has rarely been explored.In this study,we identified a MYB transcription factor,SrMYB1,using a yeast one-hybrid screening assay.SrMYB1 belongs to the typical R2R3-type MYB protein and is specifically localized in the nucleus with strong transactivation activity.The transcript of SrMYB1 is predominantly accumulated in flowers,but is also present at a lower level in leaves.Yeast one-hybrid and electrophoretic mobility shift assays verified that SrMYB1 binds directly to the MYB binding sites in the F4-3 fragment(+50–(–141))of the SrUGT76G1 promoter.Furthermore,we found that SrMYB1 could significantly repress the expression of SrUGT76G1 in both epidermal cells of tobacco leaves and stevia callus.Taken together,our results demonstrate that SrMYB1 is an essential upstream regulator of SrUGT76G1 and provide novel insight into the regulatory network for the SGs metabolic pathway in S.rebaudiana. 展开更多
关键词 Stevia rebaudiana SrUGT76G1 MYB transcription factor transcriptional regulation steviol glycosides
下载PDF
Genome-wide analysis of the WRKY transcription factor gene family in Gossypium raimondii and the expression of orthologs in cultivated tetraploid cotton 被引量:24
18
作者 Caiping Cai Erli Niu +3 位作者 Hao Du Liang Zhao Yue Feng Wangzhen Guo 《The Crop Journal》 SCIE CAS 2014年第Z1期87-101,共15页
WRKY proteins are members of a family of transcription factors in higher plants that function in plant responses to various physiological processes.We identified 120 candidate WRKY genes from Gossypium raimondii with ... WRKY proteins are members of a family of transcription factors in higher plants that function in plant responses to various physiological processes.We identified 120 candidate WRKY genes from Gossypium raimondii with corresponding expressed sequence tags in at least one of four cotton species,Gossypium hirsutum,Gossypium barbadense,Gossypium arboreum,and G.raimondii.These WRKY members were anchored on 13 chromosomes in G.raimondii with uneven distribution.Phylogenetic analysis showed that WRKY candidate genes can be classified into three groups,with 20 members in group I,88 in group II,and 12 in group III.The88 genes in group II were further classified into five subgroups,groups IIa–e,containing 7,16,37,15,and 13 members,respectively.We characterized diversity in amino acid residues in the WRKY domain and/or other zinc finger motif regions in the WRKY proteins.The expression patterns of WRKY genes revealed their important roles in diverse functions in cotton developmental stages of vegetative and reproductive growth and stress response.Structural and expression analyses show that WRKY proteins are a class of important regulators of growth and development and play key roles in response to stresses in cotton. 展开更多
关键词 EXPRESSION pattern GOSSYPIUM PHYLOGENETIC relationship Stress WRKY transcription factors
下载PDF
Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis 被引量:52
19
作者 Jingkang Guo Jian Wu +5 位作者 Qian Ji Chao Wang Lei Luo Yi Yuan Yonghua Wang Jian Wang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第2期105-118,共14页
The heat shock transcription factors (HSFs) are the major heat shock factors regulating the heat stress response. They participate in regulating the expression of heat shock proteins (HSPs), which are critical in ... The heat shock transcription factors (HSFs) are the major heat shock factors regulating the heat stress response. They participate in regulating the expression of heat shock proteins (HSPs), which are critical in the protection against stress damage and many other important biological processes. Study of the HSF gene family is important for understanding the mechanism by which plants respond to stress. The completed genome sequences of rice (Oryza sativa) and Arabidopsis (Arabidopsis thaliana) constitute a valuable resource for comparative genomic analysis, as they are representatives of the two major evolutionary lineages within the angiosperms: the monocotyledons and the dicotyledons. The identification of phylogenefic relationships among HSF proteins in these species is a fundamental step to unravel the functionality of new and yet uncharacterized genes belonging to this family.In this study, the full complement of HSF genes in rice and Arabidopsis has probably been identified through the genome-wide scan. Phylogenetic analyses resulted in the identification of three major clusters of orthologous genes that contain members belonging to both species, which must have been represented in their common ancestor before the taxonomic splitting of the angiosperms. Fttrther analysis of the phylogenetic tree reveals a possible dicot specific gene group. We also identified nine pairs of paralogs, as evidence for studies on the evolution history of rice HSF family and rice genome evolution. Expression data analysis indicates that HSF proteins are widely expressed in plants. These results provide a solid base for future functional genomic studies of the HSF gene family in rice and Arabidopsis. 展开更多
关键词 heat stress transcription factor Oryza sativa (rice) Arabidopsis thaliana phylogenetic analysis
下载PDF
Epithelial-mesenchymal transition- activating transcription factors- multifunctional regulators in cancer 被引量:26
20
作者 Minal Garg 《World Journal of Stem Cells》 SCIE CAS 2013年第4期188-195,共8页
The process of epithelial to mesenchymal transition(EMT), first noted during embryogenesis, has also been reported in tumor formation and leads to the development of metastatic growth. It is a naturally occurring proc... The process of epithelial to mesenchymal transition(EMT), first noted during embryogenesis, has also been reported in tumor formation and leads to the development of metastatic growth. It is a naturally occurring process that drives the transformation of adhesive,non-mobile epithelial like cells into mobile cells with a mesenchymal phenotype that have ability to migrate to distant anatomical sites. Activating complex network of embryonic signaling pathways, including Wnt, Notch,hedgehog and transforming growth factor-β pathways,lead to the upregulation of EMT activating transcription factors, crucial for normal tissue development and maintenance. However, deregulation of tightly regulated pathways affecting the process of EMT has been recently investigated in various human cancers. Given the critical role of EMT in metastatic tumor formation,better understanding of the mechanistic regulation provides new opportunities for the development of potential therapeutic targets of clinical importance. 展开更多
关键词 Epithelial-to-mesenchymal transition METASTATIC growth EMBRYONIC signaling pathways transcription factors CANCER
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部