To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes ...To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.展开更多
We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the se...We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.展开更多
This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insert...This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insertion loss. A 3-stage double channel side-coupled integrated spaced sequence of resonator (SCISSOR) device was optimized by shifting the resonance of each microring and fabricated with electron beam lithography and dry etching. The group delay was measured to be 17 ps for non-return-to-zero signals at different bit rates and the bandwidth of 78 GHz was achieved. The experiment result agreed well with our simulation.展开更多
A high-performance microring resonator in a silicon-on-insulator rib waveguide is realized by using the electron beam lithography followed by inductively coupled plasma etching. The design and the experimental realiza...A high-performance microring resonator in a silicon-on-insulator rib waveguide is realized by using the electron beam lithography followed by inductively coupled plasma etching. The design and the experimental realization of this device are presented in detail. In addition to improving relevant processes to minimize propagation loss, the coupling efficiency between the ring and the bus is carefully chosen to approach a critical coupling for high performance operating. We have measured a quality factor of 21,200 and an extinction ratio of 12.SdB at a resonant wavelength of 1549.32nm. Meanwhile, a low propagation loss of 0.89dB/mm in a curved waveguide with a bending radius of 40μm is demonstrated as well.展开更多
We propose a novel resonator containing an elliptical microring based on a silicon-on-insulator platform. Simu- lations using the three-dimensional finite-difference time-domain method show that the novel elliptical m...We propose a novel resonator containing an elliptical microring based on a silicon-on-insulator platform. Simu- lations using the three-dimensional finite-difference time-domain method show that the novel elliptical microring can efficiently enhance the mode coupling between straight bus waveguides and resonator waveguides or between adjacent resonators while preserving relatively high intrinsic quality factors with large free spectral range. The proposed resonator would be an alternative choice for future high-density integrated photonic circuits.展开更多
We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is c...We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is continuously adjustable whose quality factor varies from 7.9×10^(4) to 1.9×10^(5) with the extinction ratio keeping higher than 25 dB.Also a variety of coupling spanning from"under-coupling"to"over-coupling"were achieved,showing the ability to tune the quality factor from 6.0×10^(3) to 2.3×10^(5).Our design can provide an adjustable filtering method on silicon nitride photonic chip and contribute to optimize the nonlinear process for quantum photonics and all-optical signal processing.展开更多
High-dimensional entanglement provides valuable resources for quantum technologies,including quantum communication,quantum optical coherence tomography,and quantum computing.Obtaining a high brightness and dimensional...High-dimensional entanglement provides valuable resources for quantum technologies,including quantum communication,quantum optical coherence tomography,and quantum computing.Obtaining a high brightness and dimensional entanglement source has significant value.Here we utilize a tunable asymmetric Mach–Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal.With the strategy of the tunable coupler,the dynamical and extensive tuning range of quality factors of the microring can be obtained,and then the biphoton pair generation rate can be optimized.By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb,we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/m W;under a low on-chip pump power,which corresponds to 547 dimensions Hilbert space in frequency freedom.These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing.展开更多
To improve the output characteristics of all-fiber Mach-Zehnder interferometer(MZI)-interleaver,a dual microring-assisted MZI interleaver is designed.According to its structure,the output expression of the device is d...To improve the output characteristics of all-fiber Mach-Zehnder interferometer(MZI)-interleaver,a dual microring-assisted MZI interleaver is designed.According to its structure,the output expression of the device is derived from the signal flow diagram.After simulation analysis,the optimal structural parameters during the transmission process are obtained.In addition,the coupling coefficient and transmission loss of the coupler are analyzed.The results show that the improved interleaver output line wave is closer to the square wave,and its 25 dB cutoff band bandwidth and 0.5 dB passband bandwidth are significantly improved,with the values of 41.2 GHz and 18.9 GHz,respectively.The device has a certain resistantability to deviation,and the transmission loss has less influence on the extinction characteristics of the filter.展开更多
The effects of manufacturing errors on transmission characteristics are analyzed for a polymer vertical coupling microring resonator.Calculated results show that the errors cause a shift and shape change of the transm...The effects of manufacturing errors on transmission characteristics are analyzed for a polymer vertical coupling microring resonator.Calculated results show that the errors cause a shift and shape change of the transmission spectrum compared to the designed case without errors.Furthermore,accumulation and compensation for the errors is researched.In order to realize the normal filtering for the fabricated microring resonator device,some allowed errors are discussed.展开更多
We report on an eight-channel reconfigurable optical add-drop multiplexer based on cascaded microring resonators with a high tuning power consumption and a compact footprint. Microheaters are fabricated on top of the ...We report on an eight-channel reconfigurable optical add-drop multiplexer based on cascaded microring resonators with a high tuning power consumption and a compact footprint. Microheaters are fabricated on top of the microring resonators and can be modulated using the thermo-optic effect to achieve the reconfigurable functionality of the device. We demonstrate the reconfigurable add-drop multiplexing functionality for channel spacings of 1 O0 GHz and 50 GHz, with the centre wavelengths of the channels aligned to International Telecommunication Union grid specifications. The crosstalk for channel spacings of 100 GHz and 50 GHz are less than -22.5 dB and -15.5 dB, respectively. The average tuning efficiency is about 4.5 mW/nm, and the response speed is about 13.0 kHz.展开更多
We propose and experimentally demonstrate compact on-chip 1×2 wavelength selective switches(WSSs) based on silicon microring resonators(MRRs) with nested pairs of subrings(NPSs). Owing to the resonance splitting ...We propose and experimentally demonstrate compact on-chip 1×2 wavelength selective switches(WSSs) based on silicon microring resonators(MRRs) with nested pairs of subrings(NPSs). Owing to the resonance splitting induced by the inner NPSs, the proposed devices are capable of performing selective channel routing at certain resonance wavelengths of the outer MRRs. System demonstration of dynamic channel routing using fabricated devices with one and two NPSs is carried out for 10 Gb∕s non-return-to-zero signal. The experimental results verify the effectiveness of the fabricated devices as compact on-chip WSSs.展开更多
A wide range (9.4nm) tuning of vertically coupled microring resonator filter was demonstrated utilizing a large TO coefficient of polymer. The power consumption was about 60m W and no degradation of filter response wa...A wide range (9.4nm) tuning of vertically coupled microring resonator filter was demonstrated utilizing a large TO coefficient of polymer. The power consumption was about 60m W and no degradation of filter response was observed.展开更多
An approach to the simultaneous optical ring resonators is proposed measurement of refractive-index (RI) and theoretically demonstrated. With and temperature changes using a liquid-core silica ring resonator as an e...An approach to the simultaneous optical ring resonators is proposed measurement of refractive-index (RI) and theoretically demonstrated. With and temperature changes using a liquid-core silica ring resonator as an example, two different-order whispering gallery modes (WGMs) might differ in not only RI but also temperature sensitivities. Thus, a second-order sensing matrix should be defined based on these WGMs to determine RI and temperature changes simultaneously. The analysis shows that the RI and temperature detection limits can be achieved on the order of 10.7 RI unit and 10-3 K at a wavelength of approximately 780 nm.展开更多
To achieve photon-pair generation scaling, we optimize the quality factor of microring resonators for efficient continuous-wave-pumped spontaneous four-wave mixing. Numerical studies indicate that a high intrinsic qua...To achieve photon-pair generation scaling, we optimize the quality factor of microring resonators for efficient continuous-wave-pumped spontaneous four-wave mixing. Numerical studies indicate that a high intrinsic quality factor makes high pair rate and pair brightness possible, in which the maximums take place under overcoupling and critical-coupling conditions, respectively. We fabricate six all-pass-type microring resonator samples on a silicon-on-insulator chip involving gap width as the only degree of freedom. The signal count rate, pair brightness,and coincidence rate of all the samples are characterized, which are then compared with the modified simulations by taking the detector saturation and nonlinear loss into account. Being experimentally validated for the first time to the best of our knowledge, this work explicitly demonstrates that reducing the round-trip loss in a ring cavity and designing the corresponding optimized gap width are more effective to generate high-rate or high-brightness photon pairs than the conventional strategy of simply increasing the quality factor.展开更多
基金supported by Natural Science Foundation of Gansu Province(No.22JR5RA320).
文摘To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB327601)
文摘We propose a novel high-performance digital optical sensor based on the Mach-Zehnder interferential effect and the dual-microring resonators with the waveguide-coupled feedback. The simulation results show that the sensitivity of the sensor can be orders of magnitude higher than that of aconventional sensor, and high quality factor is not critical in it. Moreover, by optimizing the length of the feedback waveguide to be equal to the perimeter of the ring, the measurement range of the proposed sensor is twice as much as that of the conventional sensor in the weak coupling case.
基金Project supported by the National Basic Research Program of China (Grant Nos.2006CB302803 and 2011CB301701)the National Natural Science Foundation of China (Grant No.60877036)+1 种基金State Key Laboratory of Advanced Optical Communication Systems and Networks of China (Grant No.2008SH02)the Knowledge Innovation Program of Institute of Semiconductors,Chinese Academy of Sciences (Grant No.ISCAS2008T10)
文摘This paper investigated the design and the characterization of a photonic delay line based on passive cascaded silicon-on-insulator (SOI) microrings. We considered the compromise of group delay, bandwidth and insertion loss. A 3-stage double channel side-coupled integrated spaced sequence of resonator (SCISSOR) device was optimized by shifting the resonance of each microring and fabricated with electron beam lithography and dry etching. The group delay was measured to be 17 ps for non-return-to-zero signals at different bit rates and the bandwidth of 78 GHz was achieved. The experiment result agreed well with our simulation.
基金supported by the State Key Development Program for Basic Research of China (Grant Nos 2006CB302803 and2007CB613405)the National High Technology Research and Development Program of China (Grant No 2006AA03Z424)the National Natural Science Foundation of China (Grant No 60577044)
文摘A high-performance microring resonator in a silicon-on-insulator rib waveguide is realized by using the electron beam lithography followed by inductively coupled plasma etching. The design and the experimental realization of this device are presented in detail. In addition to improving relevant processes to minimize propagation loss, the coupling efficiency between the ring and the bus is carefully chosen to approach a critical coupling for high performance operating. We have measured a quality factor of 21,200 and an extinction ratio of 12.SdB at a resonant wavelength of 1549.32nm. Meanwhile, a low propagation loss of 0.89dB/mm in a curved waveguide with a bending radius of 40μm is demonstrated as well.
基金Project supported by the National Basic Research Program of China (Grant Nos. 2011CB301701, 2012CB933502, and2012CB933504)the National Natural Science Foundation of China (Grant Nos. 60877036 and 61107048)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KGCX2-EW-102)
文摘We propose a novel resonator containing an elliptical microring based on a silicon-on-insulator platform. Simu- lations using the three-dimensional finite-difference time-domain method show that the novel elliptical microring can efficiently enhance the mode coupling between straight bus waveguides and resonator waveguides or between adjacent resonators while preserving relatively high intrinsic quality factors with large free spectral range. The proposed resonator would be an alternative choice for future high-density integrated photonic circuits.
基金the National Key Research and Development Program of China(Grant Nos.2019YFA0308700and 2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.11627810 and 11690031)the Open Funds from the State Key Laboratory of High Performance Computing of China(HPCL,National University of Defense Technology).
文摘We designed a reconfigurable dual-interferometer coupled silicon nitride microring resonator.By tuning the integrated heater on interferometer's arms,the"critical coupling"bandwidth of resonant mode is continuously adjustable whose quality factor varies from 7.9×10^(4) to 1.9×10^(5) with the extinction ratio keeping higher than 25 dB.Also a variety of coupling spanning from"under-coupling"to"over-coupling"were achieved,showing the ability to tune the quality factor from 6.0×10^(3) to 2.3×10^(5).Our design can provide an adjustable filtering method on silicon nitride photonic chip and contribute to optimize the nonlinear process for quantum photonics and all-optical signal processing.
基金supported by the National Basic Research Program of China(Grant Nos.2019YFA0308700 and 2017YFA0303700)the National Natural Science Foundation of China(Grant Nos.61632021 and 11690031)the Open Funds from the State Key Laboratory of High Performance Computing of China(HPCL,National University of Defense Technology)。
文摘High-dimensional entanglement provides valuable resources for quantum technologies,including quantum communication,quantum optical coherence tomography,and quantum computing.Obtaining a high brightness and dimensional entanglement source has significant value.Here we utilize a tunable asymmetric Mach–Zehnder interferometer coupled silicon microring resonator with 100 GHz free spectral range to achieve this goal.With the strategy of the tunable coupler,the dynamical and extensive tuning range of quality factors of the microring can be obtained,and then the biphoton pair generation rate can be optimized.By selecting and characterizing 28 pairs from a more than 30-pair modes biphoton frequency comb,we obtain a Schmidt number of at least 23.4 and on-chip pair generation rate of 19.9 MHz/m W;under a low on-chip pump power,which corresponds to 547 dimensions Hilbert space in frequency freedom.These results will prompt the wide applications of quantum frequency comb and boost the further large density and scalable on-chip quantum information processing.
基金National Natural Science Foundation of China(No.61461024)Foundation of a Hundred Youth Talent Training Program of Lanzhou Jiaotong University(No.1520220232)。
文摘To improve the output characteristics of all-fiber Mach-Zehnder interferometer(MZI)-interleaver,a dual microring-assisted MZI interleaver is designed.According to its structure,the output expression of the device is derived from the signal flow diagram.After simulation analysis,the optimal structural parameters during the transmission process are obtained.In addition,the coupling coefficient and transmission loss of the coupler are analyzed.The results show that the improved interleaver output line wave is closer to the square wave,and its 25 dB cutoff band bandwidth and 0.5 dB passband bandwidth are significantly improved,with the values of 41.2 GHz and 18.9 GHz,respectively.The device has a certain resistantability to deviation,and the transmission loss has less influence on the extinction characteristics of the filter.
基金supported by the Science and Technology Development of Jilin Province.China(Nos.20110320.201201078)
文摘The effects of manufacturing errors on transmission characteristics are analyzed for a polymer vertical coupling microring resonator.Calculated results show that the errors cause a shift and shape change of the transmission spectrum compared to the designed case without errors.Furthermore,accumulation and compensation for the errors is researched.In order to realize the normal filtering for the fabricated microring resonator device,some allowed errors are discussed.
文摘We report on an eight-channel reconfigurable optical add-drop multiplexer based on cascaded microring resonators with a high tuning power consumption and a compact footprint. Microheaters are fabricated on top of the microring resonators and can be modulated using the thermo-optic effect to achieve the reconfigurable functionality of the device. We demonstrate the reconfigurable add-drop multiplexing functionality for channel spacings of 1 O0 GHz and 50 GHz, with the centre wavelengths of the channels aligned to International Telecommunication Union grid specifications. The crosstalk for channel spacings of 100 GHz and 50 GHz are less than -22.5 dB and -15.5 dB, respectively. The average tuning efficiency is about 4.5 mW/nm, and the response speed is about 13.0 kHz.
基金supported in part by the National Natural Science Foundation of China under Grant 61125504/61235007in part by the 863 High-Tech Program under Grant 2013AA013402
文摘We propose and experimentally demonstrate compact on-chip 1×2 wavelength selective switches(WSSs) based on silicon microring resonators(MRRs) with nested pairs of subrings(NPSs). Owing to the resonance splitting induced by the inner NPSs, the proposed devices are capable of performing selective channel routing at certain resonance wavelengths of the outer MRRs. System demonstration of dynamic channel routing using fabricated devices with one and two NPSs is carried out for 10 Gb∕s non-return-to-zero signal. The experimental results verify the effectiveness of the fabricated devices as compact on-chip WSSs.
文摘A wide range (9.4nm) tuning of vertically coupled microring resonator filter was demonstrated utilizing a large TO coefficient of polymer. The power consumption was about 60m W and no degradation of filter response was observed.
基金supported by the National "973" Program of China (No. 2011CB013000)the National Natural Science Foundation of China (Nos. 90923039and 51025521)
文摘An approach to the simultaneous optical ring resonators is proposed measurement of refractive-index (RI) and theoretically demonstrated. With and temperature changes using a liquid-core silica ring resonator as an example, two different-order whispering gallery modes (WGMs) might differ in not only RI but also temperature sensitivities. Thus, a second-order sensing matrix should be defined based on these WGMs to determine RI and temperature changes simultaneously. The analysis shows that the RI and temperature detection limits can be achieved on the order of 10.7 RI unit and 10-3 K at a wavelength of approximately 780 nm.
基金National Natural Science Foundation of China(NSFC)(60907003)Natural Science Foundation of Hunan Province,China(13JJ3001)+2 种基金Program for New Century Excellent Talents in University(NCET),China(NCET-12-0142)Danmarks Grundforskningsfond(DNRF)(DNRF123)China Scholarship Council(CSC)
文摘To achieve photon-pair generation scaling, we optimize the quality factor of microring resonators for efficient continuous-wave-pumped spontaneous four-wave mixing. Numerical studies indicate that a high intrinsic quality factor makes high pair rate and pair brightness possible, in which the maximums take place under overcoupling and critical-coupling conditions, respectively. We fabricate six all-pass-type microring resonator samples on a silicon-on-insulator chip involving gap width as the only degree of freedom. The signal count rate, pair brightness,and coincidence rate of all the samples are characterized, which are then compared with the modified simulations by taking the detector saturation and nonlinear loss into account. Being experimentally validated for the first time to the best of our knowledge, this work explicitly demonstrates that reducing the round-trip loss in a ring cavity and designing the corresponding optimized gap width are more effective to generate high-rate or high-brightness photon pairs than the conventional strategy of simply increasing the quality factor.