Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy.Patients often suffer chronic pain and might eventually have to undergo e...Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy.Patients often suffer chronic pain and might eventually have to undergo end-stage surgery.Therefore,future treatments should focus on early detection and intervention of regional lesions.Microrobots have been gradually used in organisms due to their advantages of intelligent,precise and minimally invasive targeted delivery.Through the combination of control and imaging systems,microrobots with good biosafety can be delivered to the desired area for treatment.In the musculoskeletal system,microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body.Compared to traditional biomaterial and tissue engineering strategies,active motion improves the efficiency and penetration of local targeting of cells/drugs.This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system.We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.展开更多
In order to develop a new type of fish-like microrobot with swimming, walking, and floating motions, in our past research, we developed a hybrid microrobot actuated by ionic conducting polymer film (ICPF) actuators....In order to develop a new type of fish-like microrobot with swimming, walking, and floating motions, in our past research, we developed a hybrid microrobot actuated by ionic conducting polymer film (ICPF) actuators. But the microrobot had some problems in walking and floating motions. In this paper, we propose a concept of hybrid microrobot (see Fig. 1). The microrobot is actuated by a pair of caudal fins, a base with legs and an array of artificial swim bladders. We have developed a prototype of the base with legs and one artificial swim bladder, respectively, and carried out experiments for evaluating their characteristics. Experimental results show the base with legs can realize walking speed of 6 mm/s and rotating speed of 7.1 degrees/s respectively, and the prototype of the artificial swim bladder has a maximum floatage of 2.6 mN. The experimental results also indicate that the microrobot has some advantages, such as walking motion with 2 degrees of freedom, the walking ability on rough surface (sand paper), the controllable floatage, etc. This kind of fish-like microrobot is expected for industrial and medical applications.展开更多
It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure s...It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure should be simple and it can be driven by low voltage and produces no pollution or noise. The low actuating voltage and quick bending responses of Ionic Conducting Polymer Film (ICPF) are considered very useful and attractive for constructing various types of actuators and sensors. In this paper, we will first study the characteristics of the ICPF actuator used in underwater microrobot to realize swimming and walking. Then, we propose a new prototype model of underwater swimming microrobot utilizing only one piece of ICPF as the servo actuator. Through theoretic analysis, the motion mechanism of the microrobot is illustrated. It can swim forward and vertically. The relationships between moving speed and signal voltage amplitude and signal frequency is obtained after experimental study. Lastly, we present a novel underwater crab-like walking microrobot named crabliker-1. It has eight legs, and each leg is made up of two pieces of ICPF. Three sample processes of the octopod gait are proposed with a new analyzing method. The experimental results indicate that the crab-like underwater microrobot can perform transverse and rotation movement when the legs of the crab collaborate.展开更多
Hydrogels with stimuli-responsive capabilities are gaining more and more attention nowadays with prospective applications in biomedical engineering,bioelectronics,microrobot,etc.We develop a photothermal responsive hy...Hydrogels with stimuli-responsive capabilities are gaining more and more attention nowadays with prospective applications in biomedical engineering,bioelectronics,microrobot,etc.We develop a photothermal responsive hydrogel based on N-isopropylacrylamide that achieved a fast and reversible deformation manipulated only by near-infrared(NIR)light.The hydrogel was fabricated by the projection micro stereolithography based 3D printing technique,which can rapidly prototype complex 3D structures.Furthermore,with the variation of the grayscale while manufacturing the hydrogel,the deformation of the hydrogel structure can be freely tuned within a few seconds by losing and absorbing water through adjusting the intensity and the irradiation direction of the NIR light,showing a potential application in ultra-fast object grabbing and transportation.The present study provides a new method for designing ultrafast photothermal responsive hydrogel based microrobot working in water.展开更多
This paper presents the formulation and practical implementation of positioning methodologies that compensate for the nonholonomic constraints of a mobile microrobot that is driven by two vibrating direct current(DC) ...This paper presents the formulation and practical implementation of positioning methodologies that compensate for the nonholonomic constraints of a mobile microrobot that is driven by two vibrating direct current(DC) micromotors. The open-loop and closed-loop approaches described here add the capability for net sidewise displacements of the microrobotic platform. A displacement is achieved by the execution of a number of repeating steps that depend on the desired displacement, the speed of the micromotors, and the elapsed time. Simulation and experimental results verified the performance of the proposed methodologies.展开更多
A simple autonomous docking method based on infrared sensors for mobile self-reconfigurable relay microrobots is proposed in the paper.The IR guidance system composed of an IR receiver and four IR emitters is designed...A simple autonomous docking method based on infrared sensors for mobile self-reconfigurable relay microrobots is proposed in the paper.The IR guidance system composed of an IR receiver and four IR emitters is designed,analyzed and developed.The autonomous docking control method based on centering alignment and dynamic motion planning is adopted so that it has high efficiency and reliability.Two basic microrobot prototypes are developed,and related docking experiments are done to verify the feasibility of the approach.展开更多
This study focuses on exploring the complex dynamical behaviors of a magnetic microrobot in a random environment.The purpose is to reveal the mechanism of influence of random disturbance on microrobot dynamics.This pa...This study focuses on exploring the complex dynamical behaviors of a magnetic microrobot in a random environment.The purpose is to reveal the mechanism of influence of random disturbance on microrobot dynamics.This paper establishes stochastic dynamic models for the microrobot before and after deformation,considering the influence of Gaussian white noise.The system responses are analyzed via steady-state probability density functions and first deformation time.The effects of different magnetic field strengths and fluid viscosities on the movement speed and angular velocity of the microrobot are studied.The results indicate that random disturbances can cause deformation of microrobots in advance compared to the deterministic case.This work contributes to the design and motion control of microrobots and enhances the theoretical foundation of microrobots.展开更多
Inspired by the fast,agile movements of insects,we present a 1.9 g,4.5 cm in length,piezoelectrically driven,quadrupedal microrobot.This microrobot uses a novel spatial parallel mechanism as its hip joint,which consis...Inspired by the fast,agile movements of insects,we present a 1.9 g,4.5 cm in length,piezoelectrically driven,quadrupedal microrobot.This microrobot uses a novel spatial parallel mechanism as its hip joint,which consists of two spatially orthogonal slider-crank linkages.This mechanism maps two inputs of two independent actuators to the decoupled swing and lift outputs of a leg,and each leg can produce the closed trajectories in the sagittal plane necessary for robot motion.Moreover,the kinematics of the transmission are analyzed,and the parameters of the flexure hinges are designed based on geometrical constraints and yield conditions.The hip joints,legs and exoskeletons are integrated into a five-layer standard laminate for monolithic fabrication which is composed of two layers of carbon fiber,two layers of acrylic adhesive and a polyimide film.The measured output force(15.97 mN)of each leg is enough to carry half of the robot’s weight,which is necessary for the robot to move successfully.It has been proven that the robot can successfully perform forward and turning motions.Compared to the microrobot fabricated with discrete components,the monolithically fabricated microrobot is more capable of maintaining the original direction of locomotion when driven by a forward signal and has a greater speed,whose maximum speed is 25.05 cm/s.展开更多
For a significant duration,enhancing the efficacy of cancer therapy has remained a critical concern.Magnetotactic bacteria(MTB),often likened to micro-robots,hold substantial promise as a drug delivery system.MTB,clas...For a significant duration,enhancing the efficacy of cancer therapy has remained a critical concern.Magnetotactic bacteria(MTB),often likened to micro-robots,hold substantial promise as a drug delivery system.MTB,classified as anaerobic,aquatic,and gram-negative microorganisms,exhibit remarkable motility and precise control over their internal biomineralization processes.This unique ability results in the formation of magnetic nanoparticles arranged along filamentous structures in a catenary fashion,enclosed within a membrane.These bacteria possess distinctive biochemical properties that facilitate their precise positioning within complex environments.By harnessing these biochemical attributes,MTB could potentially offer substantial advantages in the realm of cancer therapy.This article reviews the drug delivery capabilities of MTB in tumor treatment and explores various applications based on their inherent properties.The objective is to provide a comprehensive understanding of MTB-driven drug delivery and stimulate innovative insights in this field.展开更多
Oral administration is the most simple, noninvasive, convenient treatment. With the increasing demands on thetargeted drug delivery, the traditional oral treatment now is facing some challenges: 1) biologics how toimp...Oral administration is the most simple, noninvasive, convenient treatment. With the increasing demands on thetargeted drug delivery, the traditional oral treatment now is facing some challenges: 1) biologics how toimplement the oral treatment and ensure the bioavailability is not lower than the subcutaneous injections;2)How to achieve targeted therapy of some drugs in the gastrointestinal tract? Based on these two issues, drugdelivery microrobots have shown great application prospect in oral drug delivery due to their characteristics offlexible locomotion or driven ability. Therefore, this paper summarizes various drug delivery microrobotsdeveloped in recent years and divides them into four categories according to different driving modes: magneticcontrolleddrug delivery microrobots, anchored drug delivery microrobots, self-propelled drug delivery microrobotsand biohybrid drug delivery microrobots. As oral drug delivery microrobots involve disciplines such asmaterials science, mechanical engineering, medicine, and control systems, this paper begins by introducing thegastrointestinal barriers that oral drug delivery must overcome. Subsequently, it provides an overview of typicalmaterials involved in the design process of oral drug delivery microrobots. To enhance readers’ understanding ofthe working principles and design process of oral drug delivery microrobots, we present a guideline for designingsuch microrobots. Furthermore, the current development status of various types of oral drug delivery microrobotsis reviewed, summarizing their respective advantages and limitations. Finally, considering the significantconcerns regarding safety and clinical translation, we discuss the challenges and prospections of clinical translationfor various oral drug delivery microrobots presented in this paper, providing corresponding suggestions foraddressing some existing challenges.展开更多
Metal-organic frameworks(MOFs)hold significant potential as vehicles for drug delivery due to their expansive specific surface area,biocompatibility,and versatile attributes.Concurrently,magnetically actuated micro/na...Metal-organic frameworks(MOFs)hold significant potential as vehicles for drug delivery due to their expansive specific surface area,biocompatibility,and versatile attributes.Concurrently,magnetically actuated micro/nano-robots(MNRs)offer distinct advantages,such as untethered and precise manipulation.The fusion of these technologies presents a promising avenue for achieving non-invasive targeted drug delivery.Here,we report a MOF-based magnetic microrobot swarm(MMRS)for targeted therapy.Our approach overcomes limitations associated with a single MNR,including limited drug loading and the risk of loss during manipulation.We select Zeolitic Imidazolate Framework-8(ZIF-8)as the drug vehicle for its superior loading potential and p H-sensitive decomposition.Our design incorporates magnetic responsive components into the one-pot synthesis of Fe@ZIF-8,enabling collective behaviors under actuation.Tuning the yaw angle of alternating magnetic fields and nanoparticles'amount,the MMRSs with controllable size achieve instantaneous transformation among different configurations,including vortex-like swarms,chain-like swarms,and elliptical swarms,facilitating adaptation to environmental variations.Transported to the subcutaneous T24 tumor site,the MMRSs with encapsulated doxorubicin(DOX)automatically degrade and release the drug,leading to a dramatic reduction of the tumor in vivo.Our investigation signifies a significant advancement in the integration of biodegradable MOFs into microrobot swarms,ushering in new avenues for accurate and non-invasive targeted drug delivery.展开更多
Microrobots-assisted drug delivery and surgery have been always in the spotlight and are highly anticipated to solve the challenges of cancer in situ treatment. These versatile small biomedical robots are expected to ...Microrobots-assisted drug delivery and surgery have been always in the spotlight and are highly anticipated to solve the challenges of cancer in situ treatment. These versatile small biomedical robots are expected to realize direct access to the tumor or disease site for precise treatment, which requires real-time and high-resolution in vivo tracking as feedback for the microrobots’ actuation and control. Among current biomedical imaging methods, photoacoustic imaging(PAI) is presenting its outstanding performances in the tracking of microrobots in the human body derived from its great advantages of excellent imaging resolution and contrast in deep tissue. In this review, we summarize the PAI techniques, imaging systems, and their biomedical applications in microrobots tracking in vitro and in vivo. From a robotic tracking perspective,we also provide some insight into the future of PAI technology in clinical applications.展开更多
When developing microscale robotic systems it is desired that they are capable of performing microscale tasks such as small scale manipulation and transport. In this paper, we demonstrate the transport of microscale o...When developing microscale robotic systems it is desired that they are capable of performing microscale tasks such as small scale manipulation and transport. In this paper, we demonstrate the transport of microscale objects using single or multiple microrobots in low Reynolds number fluidic environment. The microrobot is composed of a ‘U' shaped SU-8 body, coated on one side with nickel. Once the nickel coating is magnetized, the motion of the microrobots can be driven by external magnetic fields. To invoke different responses from two microrobots under a global magnetic field, two batches of microrobots were fabricated with different thicknesses of nickel coating as a way to promote heterogeneity within the microrobot population. The heterogeneity in magnetic content induces different spatial and temporal responses under the same control input, resulting in differences in movement speed. The nickel coated microstructure is manually controlled through a user interface developed using C++. This paper presents a control strategy to navigate the microrobots by controlling the direction and strength of ex- ternally applied magnetic field, as well as orientation of the microrobots based on their polarity. In addition, multiple micro- robots are used to perform transport tasks.展开更多
This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams.The microrobot,which has a body length of 12.3 mm and a total ma...This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams.The microrobot,which has a body length of 12.3 mm and a total mass of 137 mg,can achieve reciprocating lift motion of forelegs without any intermediate linkage mechanisms due to the design of an obliquely upward body tilt angle.The gait study shows that the body tilt angle prevents the forelegs from swinging backward when the feet contact the ground,which results in a forward friction force applied on the feet.During forward movement,the microrobot utilizes the elastic deformation of the simply supported beams as driving force to slide forward and its forelegs and rear legs work as pivots alternatively in a way similar to the movement of soft worms.The gait analysis also indicates that the moving direction of the microrobot is determined by whether its body tilt angle is obliquely upward or downward,and its moving speed is also related to the body tilt angle and as well as the body height.Under an applied AC voltage of 4 V,the microrobot can achieve a moving speed at 23.2 cm s1(18.9 body lengths per second),which is comparable to the fastest speed(20 cm s-1 or 20 body lengths per second)among the published insect-scale microrobots.The high-speed locomotion performance of the microrobot validates the feasibility of the presented actuation scheme and moving mechanism.展开更多
The research of micromechanisms is rapidly developing in the world because of its wideprospect in application. At present, researches at home and abroad almost centre on theunit techniques such as the manufacturing of...The research of micromechanisms is rapidly developing in the world because of its wideprospect in application. At present, researches at home and abroad almost centre on theunit techniques such as the manufacturing of micromotors, and the machining technology ofmicromechanisms. As the unit techniques develop, research of the composition ofAncromechanism system confronts the researchers, and it should be done satisfactorily展开更多
Magnetically driven microrobots hold great potential to perform specific tasks more locally and less invasively in the human body.To reach the lesion area in vivo,microrobots should usually be navigated in flowing blo...Magnetically driven microrobots hold great potential to perform specific tasks more locally and less invasively in the human body.To reach the lesion area in vivo,microrobots should usually be navigated in flowing blood,which is much more complex than static liquid.Therefore,it is more challenging to design a corresponding precise control scheme.A considerable amount of work has been done regarding control of magnetic microrobots in a flow and the corresponding theories.In this paper,we review and summarize the state-of-the-art research progress concerning magnetic microrobots in blood flow,including the establishment of flow systems,dynamics modeling of motion,and control methods.In addition,current challenges and limitations are discussed.We hope this work can shed light on the efficient control of microrobots in complex flow environments and accelerate the study of microrobots for clinical use.展开更多
Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes a...Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution.The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape,property,or functional changes in response to external stimuli over time.The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy,thereby enhancing the capabilities and potential applications of both technologies.This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications.First,the working principles of TPP and its recent advancements are introduced.Second,the optional4D printing materials suitable for fabrication with TPP are discussed.Finally,this review paper highlights several noteworthy applications of TPP-based 4D printing,including domains such as biomedical microrobots,bioinspired microactuators,autonomous mobile microrobots,transformable devices and robots,as well as anti-counterfeiting microdevices.In conclusion,this paper provides valuable insights into the current status and future prospects of TPP-based4D printing technology,thereby serving as a guide for researchers and practitioners.展开更多
Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation.Metal-based degradable micromotor composed of magnesium(Mg),zinc(Zn),and iron(Fe)have promise due to their nontoxic fu...Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation.Metal-based degradable micromotor composed of magnesium(Mg),zinc(Zn),and iron(Fe)have promise due to their nontoxic fuel-free propulsion,favorable biocompatibility,and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media,efficient cargo delivery and favorable biocompatibility.A noteworthy number of degradable metal-based micromotors employ bubble propulsion,utilizing water as fuel to generate hydrogen bubbles.This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications.In addition,understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance.Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor.Here we review the design and recent advancements of metallic degradable micromotors.Furthermore,we describe the controlled degradation,efficient in vivo drug delivery,and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications.Moreover,we discuss micromotors’efficacy in detecting and destroying environmental pollutants.Finally,we address the limitations and future research directions of degradable metallic micromotors.展开更多
基金supported by the National Natural Science Foundation of China(No.81572187,No.81871812 and No.52205590)the Natural Science Foundation of Jiangsu Province(No.BK20220834)+1 种基金project supported by Ruihua Charity Foundation(YL20220525)the Start-up Research Fund of Southeast University(No.RF1028623098).
文摘Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy.Patients often suffer chronic pain and might eventually have to undergo end-stage surgery.Therefore,future treatments should focus on early detection and intervention of regional lesions.Microrobots have been gradually used in organisms due to their advantages of intelligent,precise and minimally invasive targeted delivery.Through the combination of control and imaging systems,microrobots with good biosafety can be delivered to the desired area for treatment.In the musculoskeletal system,microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body.Compared to traditional biomaterial and tissue engineering strategies,active motion improves the efficiency and penetration of local targeting of cells/drugs.This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system.We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.
文摘In order to develop a new type of fish-like microrobot with swimming, walking, and floating motions, in our past research, we developed a hybrid microrobot actuated by ionic conducting polymer film (ICPF) actuators. But the microrobot had some problems in walking and floating motions. In this paper, we propose a concept of hybrid microrobot (see Fig. 1). The microrobot is actuated by a pair of caudal fins, a base with legs and an array of artificial swim bladders. We have developed a prototype of the base with legs and one artificial swim bladder, respectively, and carried out experiments for evaluating their characteristics. Experimental results show the base with legs can realize walking speed of 6 mm/s and rotating speed of 7.1 degrees/s respectively, and the prototype of the artificial swim bladder has a maximum floatage of 2.6 mN. The experimental results also indicate that the microrobot has some advantages, such as walking motion with 2 degrees of freedom, the walking ability on rough surface (sand paper), the controllable floatage, etc. This kind of fish-like microrobot is expected for industrial and medical applications.
文摘It is our target to develop underwater microrobots for medical and industrial applications. This kind of underwater microrobots should have the characteristics of flexibility, good response and safety. Its structure should be simple and it can be driven by low voltage and produces no pollution or noise. The low actuating voltage and quick bending responses of Ionic Conducting Polymer Film (ICPF) are considered very useful and attractive for constructing various types of actuators and sensors. In this paper, we will first study the characteristics of the ICPF actuator used in underwater microrobot to realize swimming and walking. Then, we propose a new prototype model of underwater swimming microrobot utilizing only one piece of ICPF as the servo actuator. Through theoretic analysis, the motion mechanism of the microrobot is illustrated. It can swim forward and vertically. The relationships between moving speed and signal voltage amplitude and signal frequency is obtained after experimental study. Lastly, we present a novel underwater crab-like walking microrobot named crabliker-1. It has eight legs, and each leg is made up of two pieces of ICPF. Three sample processes of the octopod gait are proposed with a new analyzing method. The experimental results indicate that the crab-like underwater microrobot can perform transverse and rotation movement when the legs of the crab collaborate.
基金the National Natural Science Foundation of China(52006056)the Key-Area Research and Development Program of Guangdong Province(2020B090923003)the Natural Science Foundation of Hunan through Grant No.2020JJ3012。
文摘Hydrogels with stimuli-responsive capabilities are gaining more and more attention nowadays with prospective applications in biomedical engineering,bioelectronics,microrobot,etc.We develop a photothermal responsive hydrogel based on N-isopropylacrylamide that achieved a fast and reversible deformation manipulated only by near-infrared(NIR)light.The hydrogel was fabricated by the projection micro stereolithography based 3D printing technique,which can rapidly prototype complex 3D structures.Furthermore,with the variation of the grayscale while manufacturing the hydrogel,the deformation of the hydrogel structure can be freely tuned within a few seconds by losing and absorbing water through adjusting the intensity and the irradiation direction of the NIR light,showing a potential application in ultra-fast object grabbing and transportation.The present study provides a new method for designing ultrafast photothermal responsive hydrogel based microrobot working in water.
基金supported in part by the National Science Foundation(IIS1318638 and IIS1426752)the Shenzhen Science and Technology Project(ZDSY20120617113312191)
文摘This paper presents the formulation and practical implementation of positioning methodologies that compensate for the nonholonomic constraints of a mobile microrobot that is driven by two vibrating direct current(DC) micromotors. The open-loop and closed-loop approaches described here add the capability for net sidewise displacements of the microrobotic platform. A displacement is achieved by the execution of a number of repeating steps that depend on the desired displacement, the speed of the micromotors, and the elapsed time. Simulation and experimental results verified the performance of the proposed methodologies.
基金Supported by the National High Technology Research and Development Programme of China(No.2007AA04Z340)
文摘A simple autonomous docking method based on infrared sensors for mobile self-reconfigurable relay microrobots is proposed in the paper.The IR guidance system composed of an IR receiver and four IR emitters is designed,analyzed and developed.The autonomous docking control method based on centering alignment and dynamic motion planning is adopted so that it has high efficiency and reliability.Two basic microrobot prototypes are developed,and related docking experiments are done to verify the feasibility of the approach.
基金supported by the National Nature Science Foundation of China(Grant Nos.12072264 and 12272296)the Key International(Regional)Joint Research Program of the National Science Foundation of China(Grant No.12120101002)+1 种基金the National Science Foundation of Chongqing,China(Grant No.cstc2021jcyj-msxm X0738)the National Science Foundation of Guangdong Province,China(Grant No.2023A1515012329)。
文摘This study focuses on exploring the complex dynamical behaviors of a magnetic microrobot in a random environment.The purpose is to reveal the mechanism of influence of random disturbance on microrobot dynamics.This paper establishes stochastic dynamic models for the microrobot before and after deformation,considering the influence of Gaussian white noise.The system responses are analyzed via steady-state probability density functions and first deformation time.The effects of different magnetic field strengths and fluid viscosities on the movement speed and angular velocity of the microrobot are studied.The results indicate that random disturbances can cause deformation of microrobots in advance compared to the deterministic case.This work contributes to the design and motion control of microrobots and enhances the theoretical foundation of microrobots.
基金supported by the Shanghai professional technology service platform under Grant 19DZ2291103.
文摘Inspired by the fast,agile movements of insects,we present a 1.9 g,4.5 cm in length,piezoelectrically driven,quadrupedal microrobot.This microrobot uses a novel spatial parallel mechanism as its hip joint,which consists of two spatially orthogonal slider-crank linkages.This mechanism maps two inputs of two independent actuators to the decoupled swing and lift outputs of a leg,and each leg can produce the closed trajectories in the sagittal plane necessary for robot motion.Moreover,the kinematics of the transmission are analyzed,and the parameters of the flexure hinges are designed based on geometrical constraints and yield conditions.The hip joints,legs and exoskeletons are integrated into a five-layer standard laminate for monolithic fabrication which is composed of two layers of carbon fiber,two layers of acrylic adhesive and a polyimide film.The measured output force(15.97 mN)of each leg is enough to carry half of the robot’s weight,which is necessary for the robot to move successfully.It has been proven that the robot can successfully perform forward and turning motions.Compared to the microrobot fabricated with discrete components,the monolithically fabricated microrobot is more capable of maintaining the original direction of locomotion when driven by a forward signal and has a greater speed,whose maximum speed is 25.05 cm/s.
基金supported by the National Natural Science Foundation of China(No.3190110313 to K.Ma)Special Foundation of President of the Chinese Academy of Sciences(No.YZJJ2022QN_(4)4)+2 种基金HFIPS Director’s Fund(Nos.E16CWK123X1YZJJQY202201)the Heye Health Technology Chong Ming Project(No.HYCMP-2022012 to Y.Wang)。
文摘For a significant duration,enhancing the efficacy of cancer therapy has remained a critical concern.Magnetotactic bacteria(MTB),often likened to micro-robots,hold substantial promise as a drug delivery system.MTB,classified as anaerobic,aquatic,and gram-negative microorganisms,exhibit remarkable motility and precise control over their internal biomineralization processes.This unique ability results in the formation of magnetic nanoparticles arranged along filamentous structures in a catenary fashion,enclosed within a membrane.These bacteria possess distinctive biochemical properties that facilitate their precise positioning within complex environments.By harnessing these biochemical attributes,MTB could potentially offer substantial advantages in the realm of cancer therapy.This article reviews the drug delivery capabilities of MTB in tumor treatment and explores various applications based on their inherent properties.The objective is to provide a comprehensive understanding of MTB-driven drug delivery and stimulate innovative insights in this field.
基金the funding from National Key Research and Development Program of China,China(No.2018YFA0703000)The National Natural Science Foundation of China No.52275294.
文摘Oral administration is the most simple, noninvasive, convenient treatment. With the increasing demands on thetargeted drug delivery, the traditional oral treatment now is facing some challenges: 1) biologics how toimplement the oral treatment and ensure the bioavailability is not lower than the subcutaneous injections;2)How to achieve targeted therapy of some drugs in the gastrointestinal tract? Based on these two issues, drugdelivery microrobots have shown great application prospect in oral drug delivery due to their characteristics offlexible locomotion or driven ability. Therefore, this paper summarizes various drug delivery microrobotsdeveloped in recent years and divides them into four categories according to different driving modes: magneticcontrolleddrug delivery microrobots, anchored drug delivery microrobots, self-propelled drug delivery microrobotsand biohybrid drug delivery microrobots. As oral drug delivery microrobots involve disciplines such asmaterials science, mechanical engineering, medicine, and control systems, this paper begins by introducing thegastrointestinal barriers that oral drug delivery must overcome. Subsequently, it provides an overview of typicalmaterials involved in the design process of oral drug delivery microrobots. To enhance readers’ understanding ofthe working principles and design process of oral drug delivery microrobots, we present a guideline for designingsuch microrobots. Furthermore, the current development status of various types of oral drug delivery microrobotsis reviewed, summarizing their respective advantages and limitations. Finally, considering the significantconcerns regarding safety and clinical translation, we discuss the challenges and prospections of clinical translationfor various oral drug delivery microrobots presented in this paper, providing corresponding suggestions foraddressing some existing challenges.
基金supported by the National Natural Science Foundation of China(22275073,22005119,21731002,2197510422150004)the Guangdong Major Project of Basic and Applied Research(2019B030302009)+2 种基金the Guangdong Basic and Applied Basic Research Foundation(2020A1515110404)the Guangzhou Basic and Applied Basic Research Foundation(2024A04J3597,202102020444)the Fundamental Research Funds for the Central Universities(21622409)。
文摘Metal-organic frameworks(MOFs)hold significant potential as vehicles for drug delivery due to their expansive specific surface area,biocompatibility,and versatile attributes.Concurrently,magnetically actuated micro/nano-robots(MNRs)offer distinct advantages,such as untethered and precise manipulation.The fusion of these technologies presents a promising avenue for achieving non-invasive targeted drug delivery.Here,we report a MOF-based magnetic microrobot swarm(MMRS)for targeted therapy.Our approach overcomes limitations associated with a single MNR,including limited drug loading and the risk of loss during manipulation.We select Zeolitic Imidazolate Framework-8(ZIF-8)as the drug vehicle for its superior loading potential and p H-sensitive decomposition.Our design incorporates magnetic responsive components into the one-pot synthesis of Fe@ZIF-8,enabling collective behaviors under actuation.Tuning the yaw angle of alternating magnetic fields and nanoparticles'amount,the MMRSs with controllable size achieve instantaneous transformation among different configurations,including vortex-like swarms,chain-like swarms,and elliptical swarms,facilitating adaptation to environmental variations.Transported to the subcutaneous T24 tumor site,the MMRSs with encapsulated doxorubicin(DOX)automatically degrade and release the drug,leading to a dramatic reduction of the tumor in vivo.Our investigation signifies a significant advancement in the integration of biodegradable MOFs into microrobot swarms,ushering in new avenues for accurate and non-invasive targeted drug delivery.
基金This work was partially supported by the Research Grants Council of the Hong Kong Special Administrative Region(Nos.11103320,11215817,and 11101618)。
文摘Microrobots-assisted drug delivery and surgery have been always in the spotlight and are highly anticipated to solve the challenges of cancer in situ treatment. These versatile small biomedical robots are expected to realize direct access to the tumor or disease site for precise treatment, which requires real-time and high-resolution in vivo tracking as feedback for the microrobots’ actuation and control. Among current biomedical imaging methods, photoacoustic imaging(PAI) is presenting its outstanding performances in the tracking of microrobots in the human body derived from its great advantages of excellent imaging resolution and contrast in deep tissue. In this review, we summarize the PAI techniques, imaging systems, and their biomedical applications in microrobots tracking in vitro and in vivo. From a robotic tracking perspective,we also provide some insight into the future of PAI technology in clinical applications.
文摘When developing microscale robotic systems it is desired that they are capable of performing microscale tasks such as small scale manipulation and transport. In this paper, we demonstrate the transport of microscale objects using single or multiple microrobots in low Reynolds number fluidic environment. The microrobot is composed of a ‘U' shaped SU-8 body, coated on one side with nickel. Once the nickel coating is magnetized, the motion of the microrobots can be driven by external magnetic fields. To invoke different responses from two microrobots under a global magnetic field, two batches of microrobots were fabricated with different thicknesses of nickel coating as a way to promote heterogeneity within the microrobot population. The heterogeneity in magnetic content induces different spatial and temporal responses under the same control input, resulting in differences in movement speed. The nickel coated microstructure is manually controlled through a user interface developed using C++. This paper presents a control strategy to navigate the microrobots by controlling the direction and strength of ex- ternally applied magnetic field, as well as orientation of the microrobots based on their polarity. In addition, multiple micro- robots are used to perform transport tasks.
基金This work is supported by the National Natural Science Foundation of China(Grant No.12002017)China Postdoctoral Science Foundation(Grant No.2019M650441)the 111 Project(Grant No.B08009).
文摘This paper presents the moving mechanism of a high-speed insect-scale microrobot via electromagnetically induced vibration of two simply supported beams.The microrobot,which has a body length of 12.3 mm and a total mass of 137 mg,can achieve reciprocating lift motion of forelegs without any intermediate linkage mechanisms due to the design of an obliquely upward body tilt angle.The gait study shows that the body tilt angle prevents the forelegs from swinging backward when the feet contact the ground,which results in a forward friction force applied on the feet.During forward movement,the microrobot utilizes the elastic deformation of the simply supported beams as driving force to slide forward and its forelegs and rear legs work as pivots alternatively in a way similar to the movement of soft worms.The gait analysis also indicates that the moving direction of the microrobot is determined by whether its body tilt angle is obliquely upward or downward,and its moving speed is also related to the body tilt angle and as well as the body height.Under an applied AC voltage of 4 V,the microrobot can achieve a moving speed at 23.2 cm s1(18.9 body lengths per second),which is comparable to the fastest speed(20 cm s-1 or 20 body lengths per second)among the published insect-scale microrobots.The high-speed locomotion performance of the microrobot validates the feasibility of the presented actuation scheme and moving mechanism.
基金Project supported by the National Natural Science Foundation of China, and the Climbing Plan Funds.
文摘The research of micromechanisms is rapidly developing in the world because of its wideprospect in application. At present, researches at home and abroad almost centre on theunit techniques such as the manufacturing of micromotors, and the machining technology ofmicromechanisms. As the unit techniques develop, research of the composition ofAncromechanism system confronts the researchers, and it should be done satisfactorily
基金supported by the Shenzhen Institute of Artificial Intelligence and Robotics for Society,China (No.AC01202101106)。
文摘Magnetically driven microrobots hold great potential to perform specific tasks more locally and less invasively in the human body.To reach the lesion area in vivo,microrobots should usually be navigated in flowing blood,which is much more complex than static liquid.Therefore,it is more challenging to design a corresponding precise control scheme.A considerable amount of work has been done regarding control of magnetic microrobots in a flow and the corresponding theories.In this paper,we review and summarize the state-of-the-art research progress concerning magnetic microrobots in blood flow,including the establishment of flow systems,dynamics modeling of motion,and control methods.In addition,current challenges and limitations are discussed.We hope this work can shed light on the efficient control of microrobots in complex flow environments and accelerate the study of microrobots for clinical use.
基金the National Natural Science Foundation of China(No.12072142)the Key Talent Recruitment Program of Guangdong Province(No.2019QN01Z438)+2 种基金the Science Technology and Innovation Commission of Shenzhen Municipality(ZDSYS20210623092005017)the China Postdoctoral Science Foundation(No.2022M721471)the Natural Science Foundation of Guangdong Province under the Grant(No.2022A1515010047)。
文摘Two-photon polymerization(TPP)is a cutting-edge micro/nanoscale three-dimensional(3D)printing technology based on the principle of two-photon absorption.TPP surpasses the diffraction limit in achieving feature sizes and excels in fabricating intricate 3D micro/nanostructures with exceptional resolution.The concept of 4D entails the fabrication of structures utilizing smart materials capable of undergoing shape,property,or functional changes in response to external stimuli over time.The integration of TPP and 4D printing introduces the possibility of producing responsive structures with micro/nanoscale accuracy,thereby enhancing the capabilities and potential applications of both technologies.This paper comprehensively reviews TPP-based 4D printing technology and its diverse applications.First,the working principles of TPP and its recent advancements are introduced.Second,the optional4D printing materials suitable for fabrication with TPP are discussed.Finally,this review paper highlights several noteworthy applications of TPP-based 4D printing,including domains such as biomedical microrobots,bioinspired microactuators,autonomous mobile microrobots,transformable devices and robots,as well as anti-counterfeiting microdevices.In conclusion,this paper provides valuable insights into the current status and future prospects of TPP-based4D printing technology,thereby serving as a guide for researchers and practitioners.
基金the National Convergence Research of Scientific Challenges through the National Research Foundation of Korea(NRF)the DGIST R&D Program(No.2021M3F7A1082275 and 23-CoE-BT-02)funded by the Ministry of Science and ICT.
文摘Synthetic micromotor has gained substantial attention in biomedicine and environmental remediation.Metal-based degradable micromotor composed of magnesium(Mg),zinc(Zn),and iron(Fe)have promise due to their nontoxic fuel-free propulsion,favorable biocompatibility,and safe excretion of degradation products Recent advances in degradable metallic micromotor have shown their fast movement in complex biological media,efficient cargo delivery and favorable biocompatibility.A noteworthy number of degradable metal-based micromotors employ bubble propulsion,utilizing water as fuel to generate hydrogen bubbles.This novel feature has projected degradable metallic micromotors for active in vivo drug delivery applications.In addition,understanding the degradation mechanism of these micromotors is also a key parameter for their design and performance.Its propulsion efficiency and life span govern the overall performance of a degradable metallic micromotor.Here we review the design and recent advancements of metallic degradable micromotors.Furthermore,we describe the controlled degradation,efficient in vivo drug delivery,and built-in acid neutralization capabilities of degradable micromotors with versatile biomedical applications.Moreover,we discuss micromotors’efficacy in detecting and destroying environmental pollutants.Finally,we address the limitations and future research directions of degradable metallic micromotors.