To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a...To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.展开更多
During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at diff...During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at different stages.In this study,two types of internally heterogeneous systems,i.e.,vertical and horizontal wells are investigated experimentally through a microscopic approach.The results show that plugging agent types have a greater impact on oil recovery than well types,and foam injection can enhance oil recovery more effectively than gel injection.Additionally,the injection sequence of plugging agents significantly affects oil displacement efficiency.Injecting gel after foam is more beneficial.According to the present results,the main formation mechanisms of remaining oil in each displacement stage are influenced by:capillary force,viscous force,inertial force,shear force,microscopic fingering&channeling.展开更多
Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding ...Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding through horizontal wells is commonly used for exploiting these reservoirs.However,challenges persist,such as significant uncertainty and complex operational procedures regarding adjustment effects during the exploitation.The USH reservoir of the Cretaceous D oilfield,Oman exemplifies typical porous carbonate reservoirs.It initially underwent depletion drive using vertical wells,followed by horizontal well waterflooding in the late stage.Currently,the oilfield is confronted with substantial developmental challenges,involving the understanding of residual oil distribution,effective water cut control,and sustaining oil production since it has entered the late development stage.Employing a microscopic visualization displacement system equipped with electrodes,this study elucidated the waterflooding mechanisms and residual oil distribution in the late-stage development of the USH reservoir.The results reveal that the reservoir's vertical stacking patterns act as the main factor affecting the horizontal well waterflooding efficacy.Distinct water flow channels emerge under varying reservoir stacking patterns,with post-waterflooding residual oil predominantly distributed at the reservoir's top and bottom.The oil recovery can be enhanced by adjusting the waterflooding's flow line and intensity.The findings of this study will provide theoretical insights of waterflooding mechanisms and injection-production adjustments for exploiting other porous carbonate reservoirs in the Middle East through horizontal wells.展开更多
Photoluminescent materials play an essential part in the application of polymer systems.However,intrinsic polymer systems have rarely been intuitively interpreted based on photoluminescent regulation.A novel photolumi...Photoluminescent materials play an essential part in the application of polymer systems.However,intrinsic polymer systems have rarely been intuitively interpreted based on photoluminescent regulation.A novel photoluminescent mechanism called vibration-induced emission(VIE)has recently garnered considerable attention due to its multicolor fluorescence from a single molecular entity.展开更多
基金supported by the Major Science and Technology Project(Nos.CNOOC-KJ 135 ZDXM 38 ZJ 01 ZJ,KJGG2021-0505) of CNOOC Co.,Ltd.of Chinathe National Natural Science Foundation of China(No.42002171)+2 种基金China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of ChinaScientific Research Project of Zhanjiang Branch of CNOOC(No.ZYKY-2022-ZJ-02)。
文摘To investigate the relationship between grain sizes, seepage capacity, and oil-displacement efficiency in the Liushagang Formation of the Beibuwan Basin, this study identifies the multistage pore-throat structure as a crucial factor through a comparison of oil displacement in microscopic pore-throat experiments. The two-phase flow evaluation method based on the Li-Horne model is utilized to effectively characterize and quantify the seepage characteristics of different reservoirs, closely relating them to the distribution of microscopic pores and throats. It is observed that conglomerate sandstones at different stages exhibit significant heterogeneity and noticeable differences in seepage capacity, highlighting the crucial role played by certain large pore throats in determining seepage capacity and oil displacement efficiency. Furthermore, it was found that the displacement effects of conglomeratic sandstones with strong heterogeneity were inferior to those of conventional homogeneous sandstone, as evidenced by multiple displacement experiments conducted on core samples with varying granularities and flooding systems. Subsequently, core-based experiments on associated gas flooding after water flooding were conducted to address the challenge of achieving satisfactory results in a single displacement mode for reservoirs with significant heterogeneity. The results indicate that the oil recovery rates for associated gas flooding after water flooding increased by 7.3%-16.4% compared with water flooding alone at a gas-oil ratio of approximately 7000 m^(3)/m^(3). Therefore, considering the advantages of gas flooding in terms of seepage capacity, oil exchange ratio, and the potential for two-phase production, gas flooding is recommended as an energy supplement mode for homogeneous reservoirs in the presence of sufficient gas source and appropriate tectonic angle. On the other hand, associated gas flooding after water flooding is suggested to achieve a more favorable development effect compared to a single mode of energy supplementation for strongly heterogeneous sandstone reservoirs.
文摘During the displacement of water plugging with binary flooding in internally heterogeneous reservoirs,it is essential to understand the distributions of remaining oil as well as the oil displacement mechanisms at different stages.In this study,two types of internally heterogeneous systems,i.e.,vertical and horizontal wells are investigated experimentally through a microscopic approach.The results show that plugging agent types have a greater impact on oil recovery than well types,and foam injection can enhance oil recovery more effectively than gel injection.Additionally,the injection sequence of plugging agents significantly affects oil displacement efficiency.Injecting gel after foam is more beneficial.According to the present results,the main formation mechanisms of remaining oil in each displacement stage are influenced by:capillary force,viscous force,inertial force,shear force,microscopic fingering&channeling.
基金funded by a Major Science and Technology Project of China National Petroleum Corporation(CNPC)entitled Research on Key Technologies for Efficient Production of Overseas Large Carbonate Reservoir”(2023ZZ19-08).
文摘Porous carbonate reservoirs,prevalent in the Middle East,are lithologically dominated by bioclastic limestones,exhibiting high porosity,low permeability,intricate pore structure,and strong heterogeneity.Waterflooding through horizontal wells is commonly used for exploiting these reservoirs.However,challenges persist,such as significant uncertainty and complex operational procedures regarding adjustment effects during the exploitation.The USH reservoir of the Cretaceous D oilfield,Oman exemplifies typical porous carbonate reservoirs.It initially underwent depletion drive using vertical wells,followed by horizontal well waterflooding in the late stage.Currently,the oilfield is confronted with substantial developmental challenges,involving the understanding of residual oil distribution,effective water cut control,and sustaining oil production since it has entered the late development stage.Employing a microscopic visualization displacement system equipped with electrodes,this study elucidated the waterflooding mechanisms and residual oil distribution in the late-stage development of the USH reservoir.The results reveal that the reservoir's vertical stacking patterns act as the main factor affecting the horizontal well waterflooding efficacy.Distinct water flow channels emerge under varying reservoir stacking patterns,with post-waterflooding residual oil predominantly distributed at the reservoir's top and bottom.The oil recovery can be enhanced by adjusting the waterflooding's flow line and intensity.The findings of this study will provide theoretical insights of waterflooding mechanisms and injection-production adjustments for exploiting other porous carbonate reservoirs in the Middle East through horizontal wells.
基金support from the National Natural Science Foundation of China(NSFC nos.21788102,22125803,22020102006,and 21871083)a project supported by Shanghai Municipal Science and Technology Major Project(grant no.2018SHZDZX03)+3 种基金the Program of Shanghai Academic/Technology Research Leader(no.20XD1421300)the“Shu Guang”project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation(no.19SG26)the Innovation Program of the Shanghai Municipal Education Commission(no.2017-01-07-00-02-E00010)the Fundamental Research Funds for the Central Universities.
文摘Photoluminescent materials play an essential part in the application of polymer systems.However,intrinsic polymer systems have rarely been intuitively interpreted based on photoluminescent regulation.A novel photoluminescent mechanism called vibration-induced emission(VIE)has recently garnered considerable attention due to its multicolor fluorescence from a single molecular entity.