The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detecti...The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.展开更多
We compare observed with predicted distributions of galaxy stellar masses M<sub>* </sub>and galaxy rest-frame ultra-violet luminosities per unit bandwidth L<sub>UV</sub>, in the redsh...We compare observed with predicted distributions of galaxy stellar masses M<sub>* </sub>and galaxy rest-frame ultra-violet luminosities per unit bandwidth L<sub>UV</sub>, in the redshift range z=2 to 13. The comparison is presented as a function of the comoving warm dark matter free-streaming cut-off wavenumber k<sub>fs</sub>. For this comparison the theory is a minimal extension of the Press-Schechter formalism with only two parameters: the star formation efficiency, and a proportionality factor between the star formation rate per galaxy and LUV</sub>. These two parameters are fixed to their values obtained prior to the James Webb Space Telescope (JWST) data. The purpose of this comparison is to identify if, and where, detailed astrophysical evolution is needed to account for the new JWST observations.展开更多
The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST sat...The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST satellite platform and payloads have been tackled, which lay solid scientific and technological foundations for engineering prototype phase of the SST project. At present the SST project undergoes evaluation by CNSA and CAS so as to enter the engineering prototype phase of the SST project if it is finally approved.展开更多
The thermal gradient is an important factor that causes degradation to the image quality of telescopes. In order to ensure the accurate alignment of the primary focus unit and the primary mirror, the hexapod platform(...The thermal gradient is an important factor that causes degradation to the image quality of telescopes. In order to ensure the accurate alignment of the primary focus unit and the primary mirror, the hexapod platform(as a corrector) is investigated in this paper. First, a ground-based telescope with 2.5 m aperture and 3.5 deg field of view is described. The telescope is under construction, and it is expected to be finished in 2023. Second, the hexapod platform with flexure hinges utilized to adjust the primary focus unit is proposed, which is applied as a corrector.Then, the inverse kinematics of the platform is established and an open-loop control system is built based on it.Finally, the cryogenic performance test for the hexapod platform is performed. The experimental results show that the resolution and repeatability of the translation for the hexapod platform can be achieved at the micrometer level.The resolution and repeatability of the rotation can be achieved at the arc-second level. Therefore, the cryogenic performance of the hexapod platform can meet the optical imaging requirements of the wide-field ground-based telescope. The kinematic analysis and cryogenic performance tests in the paper provide a technical reference for the precise alignment of the primary focus unit and the primary mirror, which can improve the imaging quality of the telescope.展开更多
China will establish a 2-meter space-based astronomical telescope. Its main science goals are performing a sky survey for research about dark matter and dark energy, and high resolution observations. Some experts sugg...China will establish a 2-meter space-based astronomical telescope. Its main science goals are performing a sky survey for research about dark matter and dark energy, and high resolution observations. Some experts suggest that this space telescope should be installed inside the Chinese space station. In accord with this suggestion we put forward our first configuration, i.e., to adopt a coude system for this telescope. This coude system comes from the Chinese 2.16 m telescope's coude system, which includes a relay mirror so that excellent image quality can be obtained. In our second configuration, we suggest that the whole space telescope fly freely as an independent satellite outside the space station. When it needs servicing, for example, changing in- struments, refilling refrigerant or propellant, etc., this space telescope can fly near or even dock with the core space station. Although some space stations have had accom- panying satellites, the one we propose is a space telescope that will be much larger than other accompanying satellites in terms of weight and volume. On the basis of the second configuration, we also put forward the following idea: the space station can be composed of several large independent modules if necessary.展开更多
The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key...The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key technical problems of SST satellite platform and payloads are tackled during pre-study stage of the mission. The laboratory assembly and calibration of the main optical telescope of 1.2 m spherical mirror and 1 m plain mirror have been carried out with the accuracy of λ/40 and λ/30, respectively. The prototype at 17.1 nm for extreme ultraviolet telescope is under development and manufacture with a diameter of 13 cm. Its primary and secondary mirrors have a manufacturing error of 5nm with a roughness degree of less than 0.5 nm and a multiplayer reflection factor of better than 20%. The on-board scientific data processing unit has been developed. Prototypes for other payloads such as H and white light telescope, wide band spectroscopy in high energy and solar and interplanetary radio spectrometer have been developed accordingly.展开更多
With the development of adaptive optics and post restore processing techniques,large aperture ground-based telescopes can obtain high-resolution images(HRIs)of targets.The pose of the space target can be estimated fro...With the development of adaptive optics and post restore processing techniques,large aperture ground-based telescopes can obtain high-resolution images(HRIs)of targets.The pose of the space target can be estimated from HRIs by several methods.As the target features obtained from the image are unstable,it is difficult to use existing methods for pose estimation.In this paper a method based on real-time target model matching to estimate the pose of space targets is proposed.First,the physicallyconstrained iterative deconvolution algorithm is used to obtain HRIs of the space target.Second,according to the 3D model,the ephemeris data,the observation time of the target,and the optical parameters of the telescope,the simulated observation image of the target in orbit is rendered by a scene simulation program.Finally,the target model searches through yaw,pitch,and roll until the correlation between the simulated observation image and the actual observation image shows an optimal match.The simulation results show that the proposed pose estimation method can converge to the local optimal value with an estimation error of about 1.6349°.展开更多
This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data...This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data and make data analysis and storage. In OBDH, the Scientific Data Unit (SDU) is a special unit that requires high speed computer. In this paper gives a brief comparison of two possible choices and discuss selection of electronic parts in the space environment.展开更多
The Center for Space Astrophysics at Yonsei university, Seoul, Korea, is actively participating in the development and operation of the Galaxy Evolution Explorer (GALEX), a NASA ultraviolet space telescope project to ...The Center for Space Astrophysics at Yonsei university, Seoul, Korea, is actively participating in the development and operation of the Galaxy Evolution Explorer (GALEX), a NASA ultraviolet space telescope project to be launched in late 2001. As the first official case of NASA Korea cooperation on major space science program, this project will greatly expand the capability of Korean astronomy into space based operations.展开更多
We describe the photometric calibration of the Lunar-based Ultraviolet Telescope(LUT), the first robotic astronomical telescope working on the lunar surface, for its first six months of operation on the lunar surfac...We describe the photometric calibration of the Lunar-based Ultraviolet Telescope(LUT), the first robotic astronomical telescope working on the lunar surface, for its first six months of operation on the lunar surface. Two spectral datasets(set A and B) from near-ultraviolet(NUV) to the optical band were constructed with 44 International Ultraviolet Explorer(IUE) standards, because of the LUT's relatively wide wavelength coverage. Set A was obtained by extrapolating the IUE NUV spectra(λ 〈 3200 ) to the optical band based upon the theoretical spectra of stellar atmosphere models. Set B was composed of theoretical spectra from 2000 to 8000 extracted from the same model grid. In total, seven standards have been observed in15 observational runs until May 2014. The calibration results show that the photometric performance of LUT is highly stable in its first six months of operation. The magnitude zero points obtained from the two spectral datasets are also consistent with each other, i.e., zp = 17.54 ± 0.09 mag(set A) and zp = 17.52 ± 0.07 mag(set B).展开更多
In this paper a unified control-oriented modeling approach is proposed to deal with the kinematics, linear and angular momentum, contact constraints and dynamics of a free-flying space robot interacting with a target ...In this paper a unified control-oriented modeling approach is proposed to deal with the kinematics, linear and angular momentum, contact constraints and dynamics of a free-flying space robot interacting with a target satellite. This developed approach combines the dynamics of both systems in one structure along with holonomic and nonholonomic constraints in a single framework. Furthermore, this modeling allows consid-ering the generalized contact forces between the space robot end-effecter and the target satellite as internal forces rather than external forces. As a result of this approach, linear and angular momentum will form holonomic and nonholonomic constraints, respectively. Meanwhile, restricting the motion of the space robot end-effector on the surface of the target satellite will impose geometric constraints. The proposed momentum of the combined system under consideration is a generalization of the momentum model of a free-flying space robot. Based on this unified model, three reduced models are developed. The first reduced dynamics can be considered as a generalization of a free-flying robot without contact with a target satellite. In this re-duced model it is found that the Jacobian and inertia matrices can be considered as an extension of those of a free-flying space robot. Since control of the base attitude rather than its translation is preferred in certain cases, a second reduced model is obtained by eliminating the base linear motion dynamics. For the purpose of the controller development, a third reduced-order dynamical model is then obtained by finding a common solution of all constraints using the concept of orthogonal projection matrices. The objective of this approach is to design a controller to track motion trajectory while regulating the force interaction between the space robot and the target satellite. Many space missions can benefit from such a modeling system, for example, autonomous docking of satellites, rescuing satellites, and satellite servicing, where it is vital to limit the con-tact force during the robotic operation. Moreover, Inverse dynamics and adaptive inverse dynamics control-lers are designed to achieve the control objectives. Both controllers are found to be effective to meet the specifications and to overcome the un-actuation of the target satellite. Finally, simulation is demonstrated by to verify the analytical results.展开更多
做好重大科技项目的组织管理是实现抢占科技制高点目标的重要前提条件。本文以美国国家航空航天局(National Aeronautics and Space Administration,NASA)系列管理文件为分析对象,剖析其项目组织管理模式,并以投资近百亿美元、持续数十...做好重大科技项目的组织管理是实现抢占科技制高点目标的重要前提条件。本文以美国国家航空航天局(National Aeronautics and Space Administration,NASA)系列管理文件为分析对象,剖析其项目组织管理模式,并以投资近百亿美元、持续数十年的詹姆斯·韦布太空望远镜项目为例,对NASA重大项目预研管理过程进行分析。NASA将项目按照成本、风险、是否属于优先事项等分为3个类别进行管理,项目生命周期可以分为从“A前”(pre-A)到A、B直至F共7个阶段。韦布望远镜从1995年进入NASA的“A前阶段”,由3家单位独立开展概念研究;1999年7月从3家单位中遴选2家开始“A阶段”研究;2002年9月正式选择1家单位牵头开展“B阶段”研究。可供我国借鉴之处包括:项目组织方应发挥好“总体”角色,凝聚多方资源、提供长期稳定支持;新项目的酝酿需充分利用前期项目的科学、技术、管理人才基础;可利用“赛马制”等分阶段推进重大项目的实施,以降低不确定性和决策风险等。展开更多
哈勃空间望远镜(Hubble Space Telescope,HST)作为首个大型且复杂的在轨空间天文观测站,其成功运行离不开NASA的主导及多个控制中心与机构的协同努力。深入探讨了哈勃任务的多机构协同管理模式,详细分析了运控中心飞行操作人员的构成及...哈勃空间望远镜(Hubble Space Telescope,HST)作为首个大型且复杂的在轨空间天文观测站,其成功运行离不开NASA的主导及多个控制中心与机构的协同努力。深入探讨了哈勃任务的多机构协同管理模式,详细分析了运控中心飞行操作人员的构成及其执行的典型操控活动。同时,针对HST的数据上下行处理及转发测控模式进行了分析,并研究了其地面软件系统的架构及其自任务实施以来的升级改造情况。全面分析了哈勃开展天文观测任务的全规划流程及周期规划模式。基于哈勃任务的成功实施经验,为我国未来开展空间望远镜任务提供了具体且有益的启示。展开更多
基金supported by the National Key Research and Development Program of China(No.2021YFA0718404)the National Natural Science Foundation of China(Nos.12220101003,12173098,U2031149)+2 种基金the Project for Young Scientists in Basic Research of Chinese Academy of Sciences(CAS)(No.YSBR-061)the Scientific Instrument Developing Project of CAS(No.GJJSTD20210009)the Youth Innovation Promotion Association of CAS,and the Young Elite Scientists Sponsorship Program by the China Association for Science and Technology(No.YESS20220197).
文摘The Very Large Area gamma-ray Space Telescope(VLAST)is a mission concept proposed to detect gamma-ray photons through both Compton scattering and electron–positron pair production mechanisms,thus enabling the detection of photons with energies ranging from MeV to TeV.This project aims to conduct a comprehensive survey of the gamma-ray sky from a low-Earth orbit using an anti-coincidence detector,a tracker detector that also serves as a low-energy calorimeter,and a high-energy imaging calorimeter.We developed a Monte Carlo simulation application of the detector using the GEANT4 toolkit to evaluate the instrument performance,including the effective area,angular resolution,and energy resolution,and explored specific optimizations of the detector configuration.Our simulation-based analysis indicates that the current design of the VLAST is physically feasible,with an acceptance above 10 m^(2)sr which is four times larger than that of the Fermi-LAT,an energy resolution better than 2%at 10 GeV,and an angular resolution better than 0.2◦at 10 GeV.The VLAST project promises to make significant contributions to the field of gamma-ray astronomy and enhance our understanding of the cosmos.
文摘We compare observed with predicted distributions of galaxy stellar masses M<sub>* </sub>and galaxy rest-frame ultra-violet luminosities per unit bandwidth L<sub>UV</sub>, in the redshift range z=2 to 13. The comparison is presented as a function of the comoving warm dark matter free-streaming cut-off wavenumber k<sub>fs</sub>. For this comparison the theory is a minimal extension of the Press-Schechter formalism with only two parameters: the star formation efficiency, and a proportionality factor between the star formation rate per galaxy and LUV</sub>. These two parameters are fixed to their values obtained prior to the James Webb Space Telescope (JWST) data. The purpose of this comparison is to identify if, and where, detailed astrophysical evolution is needed to account for the new JWST observations.
文摘The progress on Chinese Space Solar Telescope (SST) in 2004-2006 is introduced. The scientific objectives are further clarified and the ground operation system has been planned. The 7 key technical problems of SST satellite platform and payloads have been tackled, which lay solid scientific and technological foundations for engineering prototype phase of the SST project. At present the SST project undergoes evaluation by CNSA and CAS so as to enter the engineering prototype phase of the SST project if it is finally approved.
基金supported by the Jilin Scientific and Technological Development Program (No.20220204116YY)the National Natural Science Foundation of China(No.62235018 and No.12133009)。
文摘The thermal gradient is an important factor that causes degradation to the image quality of telescopes. In order to ensure the accurate alignment of the primary focus unit and the primary mirror, the hexapod platform(as a corrector) is investigated in this paper. First, a ground-based telescope with 2.5 m aperture and 3.5 deg field of view is described. The telescope is under construction, and it is expected to be finished in 2023. Second, the hexapod platform with flexure hinges utilized to adjust the primary focus unit is proposed, which is applied as a corrector.Then, the inverse kinematics of the platform is established and an open-loop control system is built based on it.Finally, the cryogenic performance test for the hexapod platform is performed. The experimental results show that the resolution and repeatability of the translation for the hexapod platform can be achieved at the micrometer level.The resolution and repeatability of the rotation can be achieved at the arc-second level. Therefore, the cryogenic performance of the hexapod platform can meet the optical imaging requirements of the wide-field ground-based telescope. The kinematic analysis and cryogenic performance tests in the paper provide a technical reference for the precise alignment of the primary focus unit and the primary mirror, which can improve the imaging quality of the telescope.
文摘China will establish a 2-meter space-based astronomical telescope. Its main science goals are performing a sky survey for research about dark matter and dark energy, and high resolution observations. Some experts suggest that this space telescope should be installed inside the Chinese space station. In accord with this suggestion we put forward our first configuration, i.e., to adopt a coude system for this telescope. This coude system comes from the Chinese 2.16 m telescope's coude system, which includes a relay mirror so that excellent image quality can be obtained. In our second configuration, we suggest that the whole space telescope fly freely as an independent satellite outside the space station. When it needs servicing, for example, changing in- struments, refilling refrigerant or propellant, etc., this space telescope can fly near or even dock with the core space station. Although some space stations have had accom- panying satellites, the one we propose is a space telescope that will be much larger than other accompanying satellites in terms of weight and volume. On the basis of the second configuration, we also put forward the following idea: the space station can be composed of several large independent modules if necessary.
文摘The progress on Chinese Space Solar Telescope (SST) in 2002-2004 is introduced. The documentations on plans and outlines based on the standards of Chinese aerospace industry for SST mission has been fulfilled. The key technical problems of SST satellite platform and payloads are tackled during pre-study stage of the mission. The laboratory assembly and calibration of the main optical telescope of 1.2 m spherical mirror and 1 m plain mirror have been carried out with the accuracy of λ/40 and λ/30, respectively. The prototype at 17.1 nm for extreme ultraviolet telescope is under development and manufacture with a diameter of 13 cm. Its primary and secondary mirrors have a manufacturing error of 5nm with a roughness degree of less than 0.5 nm and a multiplayer reflection factor of better than 20%. The on-board scientific data processing unit has been developed. Prototypes for other payloads such as H and white light telescope, wide band spectroscopy in high energy and solar and interplanetary radio spectrometer have been developed accordingly.
文摘With the development of adaptive optics and post restore processing techniques,large aperture ground-based telescopes can obtain high-resolution images(HRIs)of targets.The pose of the space target can be estimated from HRIs by several methods.As the target features obtained from the image are unstable,it is difficult to use existing methods for pose estimation.In this paper a method based on real-time target model matching to estimate the pose of space targets is proposed.First,the physicallyconstrained iterative deconvolution algorithm is used to obtain HRIs of the space target.Second,according to the 3D model,the ephemeris data,the observation time of the target,and the optical parameters of the telescope,the simulated observation image of the target in orbit is rendered by a scene simulation program.Finally,the target model searches through yaw,pitch,and roll until the correlation between the simulated observation image and the actual observation image shows an optimal match.The simulation results show that the proposed pose estimation method can converge to the local optimal value with an estimation error of about 1.6349°.
文摘This paper gives the brief view of the electronic control system of SPACE SOLAR TELESCOPE (SST), especially the On Board Data Handling unit (OBDH) on the SST which control the operation of the instrument, acquire data and make data analysis and storage. In OBDH, the Scientific Data Unit (SDU) is a special unit that requires high speed computer. In this paper gives a brief comparison of two possible choices and discuss selection of electronic parts in the space environment.
文摘The Center for Space Astrophysics at Yonsei university, Seoul, Korea, is actively participating in the development and operation of the Galaxy Evolution Explorer (GALEX), a NASA ultraviolet space telescope project to be launched in late 2001. As the first official case of NASA Korea cooperation on major space science program, this project will greatly expand the capability of Korean astronomy into space based operations.
基金Supported by the National Natural Science Foundation of China
文摘We describe the photometric calibration of the Lunar-based Ultraviolet Telescope(LUT), the first robotic astronomical telescope working on the lunar surface, for its first six months of operation on the lunar surface. Two spectral datasets(set A and B) from near-ultraviolet(NUV) to the optical band were constructed with 44 International Ultraviolet Explorer(IUE) standards, because of the LUT's relatively wide wavelength coverage. Set A was obtained by extrapolating the IUE NUV spectra(λ 〈 3200 ) to the optical band based upon the theoretical spectra of stellar atmosphere models. Set B was composed of theoretical spectra from 2000 to 8000 extracted from the same model grid. In total, seven standards have been observed in15 observational runs until May 2014. The calibration results show that the photometric performance of LUT is highly stable in its first six months of operation. The magnitude zero points obtained from the two spectral datasets are also consistent with each other, i.e., zp = 17.54 ± 0.09 mag(set A) and zp = 17.52 ± 0.07 mag(set B).
文摘In this paper a unified control-oriented modeling approach is proposed to deal with the kinematics, linear and angular momentum, contact constraints and dynamics of a free-flying space robot interacting with a target satellite. This developed approach combines the dynamics of both systems in one structure along with holonomic and nonholonomic constraints in a single framework. Furthermore, this modeling allows consid-ering the generalized contact forces between the space robot end-effecter and the target satellite as internal forces rather than external forces. As a result of this approach, linear and angular momentum will form holonomic and nonholonomic constraints, respectively. Meanwhile, restricting the motion of the space robot end-effector on the surface of the target satellite will impose geometric constraints. The proposed momentum of the combined system under consideration is a generalization of the momentum model of a free-flying space robot. Based on this unified model, three reduced models are developed. The first reduced dynamics can be considered as a generalization of a free-flying robot without contact with a target satellite. In this re-duced model it is found that the Jacobian and inertia matrices can be considered as an extension of those of a free-flying space robot. Since control of the base attitude rather than its translation is preferred in certain cases, a second reduced model is obtained by eliminating the base linear motion dynamics. For the purpose of the controller development, a third reduced-order dynamical model is then obtained by finding a common solution of all constraints using the concept of orthogonal projection matrices. The objective of this approach is to design a controller to track motion trajectory while regulating the force interaction between the space robot and the target satellite. Many space missions can benefit from such a modeling system, for example, autonomous docking of satellites, rescuing satellites, and satellite servicing, where it is vital to limit the con-tact force during the robotic operation. Moreover, Inverse dynamics and adaptive inverse dynamics control-lers are designed to achieve the control objectives. Both controllers are found to be effective to meet the specifications and to overcome the un-actuation of the target satellite. Finally, simulation is demonstrated by to verify the analytical results.
文摘做好重大科技项目的组织管理是实现抢占科技制高点目标的重要前提条件。本文以美国国家航空航天局(National Aeronautics and Space Administration,NASA)系列管理文件为分析对象,剖析其项目组织管理模式,并以投资近百亿美元、持续数十年的詹姆斯·韦布太空望远镜项目为例,对NASA重大项目预研管理过程进行分析。NASA将项目按照成本、风险、是否属于优先事项等分为3个类别进行管理,项目生命周期可以分为从“A前”(pre-A)到A、B直至F共7个阶段。韦布望远镜从1995年进入NASA的“A前阶段”,由3家单位独立开展概念研究;1999年7月从3家单位中遴选2家开始“A阶段”研究;2002年9月正式选择1家单位牵头开展“B阶段”研究。可供我国借鉴之处包括:项目组织方应发挥好“总体”角色,凝聚多方资源、提供长期稳定支持;新项目的酝酿需充分利用前期项目的科学、技术、管理人才基础;可利用“赛马制”等分阶段推进重大项目的实施,以降低不确定性和决策风险等。
文摘哈勃空间望远镜(Hubble Space Telescope,HST)作为首个大型且复杂的在轨空间天文观测站,其成功运行离不开NASA的主导及多个控制中心与机构的协同努力。深入探讨了哈勃任务的多机构协同管理模式,详细分析了运控中心飞行操作人员的构成及其执行的典型操控活动。同时,针对HST的数据上下行处理及转发测控模式进行了分析,并研究了其地面软件系统的架构及其自任务实施以来的升级改造情况。全面分析了哈勃开展天文观测任务的全规划流程及周期规划模式。基于哈勃任务的成功实施经验,为我国未来开展空间望远镜任务提供了具体且有益的启示。