In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,...In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.展开更多
For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.He...For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.展开更多
This paper presents a high precision CMOS opamp suitable for ISFET readout. The opamp is tailored to provide a constant bias condition for ISFET as part of the readout circuits and,hence,is compatible for single chip ...This paper presents a high precision CMOS opamp suitable for ISFET readout. The opamp is tailored to provide a constant bias condition for ISFET as part of the readout circuits and,hence,is compatible for single chip integration with the sensor. A continuous time auto-zero stabilization technique is studied and employed, with the aim of suppressing the low frequency noises, including the offset voltage, 1/f noise, and temperature drift. The design is based on a 0.35μm CMOS process. With a 3.3V power supply,it maintains a DC open loop gain of more than 100dB and an offset voltage of around 11μV,while the overall power dissipation is only 1.48mW. With this opamp, a pH microsensor is constructed, of which the functionality is verified by experimental tests.展开更多
Multi-walled carbon nanotube multilayers were modified onto a newly proposed gold hair microelectrode via a simple layer-bylayer assembling method. The resulting electrode showed a sensitive oxidation response to estr...Multi-walled carbon nanotube multilayers were modified onto a newly proposed gold hair microelectrode via a simple layer-bylayer assembling method. The resulting electrode showed a sensitive oxidation response to estradiol with detection limit as low as 1.0 × 10^-8 mol/L, foreseeing a promising approach to the fabrication of high-sensitive microsensors.展开更多
Implantable electrochemical microsensors are characterized by high sensitivity, while amperometric biosensors are very selective in virtue of the biological detecting element. Each sensor, specific for every neurochem...Implantable electrochemical microsensors are characterized by high sensitivity, while amperometric biosensors are very selective in virtue of the biological detecting element. Each sensor, specific for every neurochemical species, is a miniaturized hightechnology device resulting from the combination of several factors: electrode material, shielding polymers, applied electrochemical technique, and in the case of biosensors, biological sensing material, stabilizers, and entrapping chemical nets. In this paper, we summarizethe available technology for the in vivo electrochemical monitoring of neurotransmitters(dopamine, norepinephrine, serotonin, acetylcholine, and glutamate), bioenergetic substrates(glucose, lactate, and oxygen), neuromodulators(ascorbic acid and nitric oxide), and exogenous molecules such as ethanol. We also describe the most represented biotelemetric technologies in order to wirelessly transmit the signals of the abovelisted neurochemicals. Implantable(Bio)sensors, integrated into miniaturized telemetry systems, represent a new generation of analytical tools that could be used for studying the brain's physiology and pathophysiology and the effects of different drugs(or toxic chemicals such as ethanol) on neurochemical systems.展开更多
This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mo...This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mode. The working principle of this electric field microsensor is demonstrated, and the induced charges and structural parameters of this microsensor are simulated by the finite element method. The electric field microsensor was fabricated by Micro-Electro Mechanical Systems(MEMS) technique. Each cantilever is a multilayer compound structure(Al/Si3N4/ Pt/PZT/Pt/ Ti/SiO 2/Si), and Piezoelectric, PieZ oelectric ceramic Transducer(PZT)(PbZ rxTi(1–x)O3) layer, prepared by sol-gel method, is used as the piezoelectric material to drive the cantilevers vibrating. This electric field microsensor was tested under the DC electric field with the field intensity from 0 to 5×104 V/m. The output voltage signal of the electric field microsensor has a good linear relationship to the intensity of applied electric field. The performance could be improved with the optimized design of structure, and reformative fabrication processes of PZT material.展开更多
A novel portable instrument developed for field determinations of complex mixtures of volatile organic compounds (VOCs) is described.The key features of the instrument are a miniature multi-stage adsorbent preconcentr...A novel portable instrument developed for field determinations of complex mixtures of volatile organic compounds (VOCs) is described.The key features of the instrument are a miniature multi-stage adsorbent preconcentrator/focuser,two series-coupled separation columns with pressure and temperature tunable retention control,and an integrated array of four chemiresistor (CR) sensors coated with Au-thiolate monolayer-protected nanoparticles (MPN).MPN-CR array response patterns are used with retention times to identify eluting vapors.Air is used as the carrier gas.Calibrations of 20 common indoor air contaminants gave LODs in the range of 0.05 ng/g~0.53 ng/g for a 1 L sample volume.Results of preliminary analyses of characteristic VOCs generated from U.S.currency as well as vapor-phase markers of environmental tobacco smoke (ETS) at low-or sub-ng/g levels are presented.展开更多
To address the need for the on-site measurement of aging oil, in this paper, we propose an impedance-based microsensor for analyzing the moisture content in engine oil. Using a microfabrication process, we fabricated ...To address the need for the on-site measurement of aging oil, in this paper, we propose an impedance-based microsensor for analyzing the moisture content in engine oil. Using a microfabrication process, we fabricated an interdigitated microelectrode and integrated it with a 3 D-printed microcontainer to produce a microsensor that can detect changes in the permittivity of oil. When the moisture content in oil increases, this sensor can detect the resulting change in the oil impedance, which is related to its permittivity, and then determine the degree to which the oil has aged. The test results show that the proposed microsensor has the advantages of being small and having high sensitivity, good accuracy, and the ability to be combined with hand-held instruments.The proposed method is expected to be used for the rapid, low cost, on-site determination of oil aging.展开更多
A high performance CMOS band-gap voltage reference circuit that can be used in interface integrated circuit of microsensor and compatible with 0. 6 μm ( double poly) mix process is proposed in this paper. The circuit...A high performance CMOS band-gap voltage reference circuit that can be used in interface integrated circuit of microsensor and compatible with 0. 6 μm ( double poly) mix process is proposed in this paper. The circuit can be employed in the range of 1. 8 - 8 V and carry out the first-order PTAT ( proportional to absolute temperature) temperature compensation. Through using a two-stage op-amp with a NMOS input pair as a negative feedback op-amp,the PSRR ( power supply rejection ratio) of the entire circuit is increased,and the temperature coefficient of reference voltage is decreased. Results from HSPICE simulation show that the PSRR is - 72. 76 dB in the condition of low-frequency,the temperature coefficient is 2. 4 × 10 -6 in the temperature range from - 10 ℃ to 90 ℃ and the power dissipation is only 14 μW when the supply voltage is 1. 8 V.展开更多
In this paper, the application of a homemade Nafion and Co(Salen) modified platinum microelec-trode and an ISO-NOPMC microsensor (World Precision Instruments, USA ) to measure nitric oxide in natural seawater is repor...In this paper, the application of a homemade Nafion and Co(Salen) modified platinum microelec-trode and an ISO-NOPMC microsensor (World Precision Instruments, USA ) to measure nitric oxide in natural seawater is reported. These two microelectrodes are suitable for the measurement. In natural seawater, the sensitivity and stability of the ISO-NOPMC microsensor are higher than that of the homemade Nafion and Co(Salen) modified platinum microelectrode.展开更多
In the paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via clusterhead...In the paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via clusterhead) for further processing. The key problem focuses on how to reduce the power consumption of wireless microsensor networks. The core includes the energy efficiency of clusterheads and that of cluster members. We first extend low-energy adaptive clustering hierarchy (LEACH)'s stochastic clusterhead selection algorithm by a factor with distance-based deterministic component (LEACH-D) to reduce energy consumption for energy efficiency of clusterhead. And the cost function is proposed so that it balances the energy consumption of nodes for energy efficiency of cluster member. Simulation results show that our modified scheme can extend the network life around up to 40% before first node dies. Through both theoretical analysis and numerical results, it is shown that the proposed algorithm achieves better performance than the existing representative methods.展开更多
The purpose of this paper is to study the magnetomechanicalcharacteristic of a microsensor which is composed of a cantileveredbeam-plate with ferromagnetic films in order to measure the magneticfield from the deformat...The purpose of this paper is to study the magnetomechanicalcharacteristic of a microsensor which is composed of a cantileveredbeam-plate with ferromagnetic films in order to measure the magneticfield from the deformation of plate when the microsensor is locatedin the magnetic field. To this end, a nu- merical approach made up ofthe finite element method for magnetic field and the finitedifference method for deflection of the microsensor is proposed toperform the numerical analysis of deflection under magnetoelasticinteraction. Some quantitative results of a case study for themagnetoelastic characteristic between the mag- netic field anddeflection of the microsensor in the magnetic field are given. Theresults show that this mi- crosensor can be used not only to measurethe magnitude of magnetic intensity, but also to possibly monitor thedirection of the vector of the magnetic field.展开更多
Based on the sensing mechanism of microsensor, a simulation model of a practical silicon beam resonator attached to an E-type round diaphragm and used for measuring concentrated force is established. The relationship ...Based on the sensing mechanism of microsensor, a simulation model of a practical silicon beam resonator attached to an E-type round diaphragm and used for measuring concentrated force is established. The relationship between the basic natural frequency of the beam resonator and the concentrated force is calculated, analyzed and investigated. As a microsensor FEM is used to study some important simulation results on the vibration features of the beam resonators. Based on the differential output signals, a set of optimum parameters of the proposed sensing unit is determined.展开更多
Human motion capture technologies are widely used in interactive game and learning, animation, film special effects, health care, and navigation. Because of the agility, upper limb motion estimation is the most diffic...Human motion capture technologies are widely used in interactive game and learning, animation, film special effects, health care, and navigation. Because of the agility, upper limb motion estimation is the most difficult problem in human motion capture. Traditional methods always assume that the movements of upper arm and forearm are independent and then estimate their movements separately; therefore, the estimated motion are always with serious distortion. In this paper, we propose a novel ubiquitous upper limb motion estimation method using wearable microsensors, which concentrates on modeling the relationship of the movements between upper arm and forearm. Exploration of the skeleton structure as a link structure with 5 degrees of freedom is firstly proposed to model human upper limb motion. After that, parameters are defined according to Denavit-Hartenberg convention, forward kinematic equations of upper limb are derived, and an unscented Kalman filter is invoked to estimate the defined parameters. The experimental results have shown the feasibility and effectiveness of the proposed upper limb motion capture and analysis algorithm.展开更多
The irradiation of ceils combined with the immunoconjugate of gold nanoparticles by the short pulse laser can make the plasma membrane be transiently permeabilized, which can be used to transfer exogenous molecules in...The irradiation of ceils combined with the immunoconjugate of gold nanoparticles by the short pulse laser can make the plasma membrane be transiently permeabilized, which can be used to transfer exogenous molecules into the cells. We explore this technique as a novel gene transfection method for floating cells. Three different floating cells exposed to the laser are selectively transfected with fluorescein isothiocyanatedextran, antibody, and green fluorescent protein (GFP) coding plasmids, and the viability of cells are determined by propidium iodide. For fluorescein isothiocyanate-dextran, the best transfection efficiency of 65% is obtained; for the antibody, it is 74%; whereas for the green fluorescent protein coding plasmids, a very small transfection efficiency is gained. If the transfection efficiency is improved, gold nanoparticles will be very useful as mediator for gene transfection in living cells.展开更多
This paper presents a single-chip 3D electric field microsensor, in which a sensing element is set at the center to detect the Z-axis component of an electrostatic field. Two pairs of sensing elements with the same st...This paper presents a single-chip 3D electric field microsensor, in which a sensing element is set at the center to detect the Z-axis component of an electrostatic field. Two pairs of sensing elements with the same structure are arranged in a cross-like configuration to measure the X- and Y-axis electrostatic field components. An in-plane rotary mechanism is used in the microsensor to detect the X-, Y-, and Z-axis electrostatic field components simultaneously. The proposed microsensor is compact and presents high integration. The microsensor is fabricated through a MetalMUMPS process. Experimental results show that in the range of 0-50 kV/m, the linearity errors of the microsensor are within 5.5%, and the total measure- ment errors of the three electrostatic field components are less than 14.04%.展开更多
Modern internet of things(IoTs)and ubiquitous sensor networks could potentially take advantage of chemically sensitive nanomaterials and nanostructures.However,their heterogeneous integration with other electronic mod...Modern internet of things(IoTs)and ubiquitous sensor networks could potentially take advantage of chemically sensitive nanomaterials and nanostructures.However,their heterogeneous integration with other electronic modules on a networked sensor node,such as silicon-based modulators and memories,is inherently challenging because of compatibility and integration issues.Here we report a novel paradigm for sensing modulators:a graphene field-effect transistor device that directly modulates a radio frequency(RF)electrical carrier signal when exposed to chemical agents,with a memory effect in its electrochemical history.We demonstrated the concept and implementation of this graphene-based sensing modulator through a frequency-modulation(FM)experiment conducted in a modulation cycle consisting of alternating phases of air exposure and ethanol or water treatment.In addition,we observed an analog memory effect in terms of the charge neutrality point of the graphene,Vcnp,which strongly influences the FM results,and developed a calibration method using electrochemical gate-voltage pulse sequences.This graphenebased multifunctional device shows great potential for use in a simple,low-cost,and ultracompact nanomaterial-based nodal architecture to enable continuous,real-time event-based monitoring in pervasive healthcare IoTs,ubiquitous security systems,and other chemical/molecular/gas monitoring applications.展开更多
Sulfate reducing bacteria(SRB) play significant roles in anaerobic environments in oil sands mature fine tailings(MFTs). Hydrogen sulfide(H2S) is produced during the biological sulfate reduction process. The pro...Sulfate reducing bacteria(SRB) play significant roles in anaerobic environments in oil sands mature fine tailings(MFTs). Hydrogen sulfide(H2S) is produced during the biological sulfate reduction process. The production of toxic H2S is one of the concerns because it may hinder the landscape remediation efficiency of oil sands tailing ponds. In present study, the in situ activity and the community structure of SRB in MFT and gypsum amended MFT in two settling columns were investigated. Combined techniques of H2S microsensor and dissimilatory sulfite reductase β-subunit(dsrB) genes-based real time quantitative polymerase chain reaction(qPCR) were applied to detect the in situ H2S and the abundance of SRB. A higher diversity of SRB and more H2S were observed in gypsum amended MFT than that in MFT, indicating a higher sulfate reduction activity in gypsum amended MFT; in addition, the activity of SRB varied as depth in both MFT and gypsum amended MFT: the deeper the more H2S produced. Long-term plans for tailings management can be assessed more wisely with the information provided in this study.展开更多
A novel low-pass filter that consists of a switched capacitor filter (SCF) and its antialiasing prefilter and smoothing postfilter is proposed for a microsensor signal processing system, which is used in separation ...A novel low-pass filter that consists of a switched capacitor filter (SCF) and its antialiasing prefilter and smoothing postfilter is proposed for a microsensor signal processing system, which is used in separation point detection on the surface of micro air vehicles. In the system, the filter is not only applied to finish the function of filtering but also used as the front end antialiasing filter of the over sampling analog-to-digital converter. This proposed implementation mostly relies on the design of a high-precision SCF employing a correlated double sampling technique and optimisation switches. Simultaneously, the multiple-loop feedback low pass filter with good high frequency attenuation characteristics is applied as the pre- and postfilter. The design is implemented in the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 μm double-poly three-metal (2P3M) 3 chip die area occupies only 0.39 mm2 and dissipatesl.53 mW. 3 V CMOS technology, with satisfactory results, The展开更多
To address the challenge of highly sensitive and accurate detection of biomarkers in complex environments,a rational engineering strategy for designing electrochemical immunosensing platform is proposed.Herein,we deve...To address the challenge of highly sensitive and accurate detection of biomarkers in complex environments,a rational engineering strategy for designing electrochemical immunosensing platform is proposed.Herein,we develop a microsensor chip through the combination of multiplexed electrodes and microfluidic channels for the parallel detection of human interleukins(IL-6 and IL-8).For the construction of an efficient sensing interface,the conductive silver nanowires(Ag NWs)wrapped with zeolitic imidazolate framework(ZIF-8)thin film(denoted as ZIF-8@Ag NWs)are prepared,and then employed for the multi-functionalization of electrodes.The immunodetection of ILs is based on the direct signal transduction ability of Ag NWs and specific interaction of periodically arranged Zn2+ions in ZIF-8 films with biomolecules,which offer the high assay sensitivity and good specificity.The immunosensor chip achieves a wide detection range from pg/mL to ng/mL and possesses the ability to resist non-specific proteins adsorption in biological complex media.Further clinical serum samples assay verifies that the combination of IL-6 and IL-8 levels yields high diagnostic accuracy.Principal component analysis(PCA)reveals that 18 patient samples could be fully separated from healthy control samples.The low-cost,easily fabricated electrochemical immunosensing platform provides a rapid serum test for diagnosis and personalized therapy of inflammatory diseases,and can also be generalized to other immunoreaction-based biomarkers detections.展开更多
基金the Fundamental Research Funds for the Central Universities,National Natural Science Foundation of China(No.82302345).
文摘In vivo monitoring of animal physiological information plays a crucial role in promptly alerting humans to potential diseases in animals and aiding in the exploration of mechanisms underlying human diseases.Currently,implantable electrochemical microsensors have emerged as a prominent area of research.These microsensors not only fulfill the technical requirements for monitoring animal physiological information but also offer an ideal platform for integration.They have been extensively studied for their ability to monitor animal physiological information in a minimally invasive manner,characterized by their bloodless,painless features,and exceptional performance.The development of implantable electrochemical microsensors for in vivo monitoring of animal physiological information has witnessed significant scientific and technological advancements through dedicated efforts.This review commenced with a comprehensive discussion of the construction of microsensors,including the materials utilized and the methods employed for fabrication.Following this,we proceeded to explore the various implantation technologies employed for electrochemical microsensors.In addition,a comprehensive overview was provided of the various applications of implantable electrochemical microsensors,specifically in the monitoring of diseases and the investigation of disease mechanisms.Lastly,a concise conclusion was conducted on the recent advancements and significant obstacles pertaining to the practical implementation of implantable electrochemical microsensors.
基金the financial support of the National Key R&D Program of China(Grant Nos.2021YFB3200701 and 2018YFA0208501)the National Natural Science Foundation of China(Grant Nos.21875260,21671193,91963212,51773206,21731001,and 52272098)Beijing Natural Science Foundation(No.2202069)
文摘For microelectronic devices,the on-chip microsupercapacitors with facile construction and high performance,are attracting researchers'prior consideration due to their high compatibility with modern microsystems.Herein,we proposed interchanging interdigital Au-/MnO_(2)/polyethylene dioxythiophene stacked microsupercapacitor based on a microfabrication process followed by successive electrochemical deposition.The stacked configuration of two pseudocapacitive active microelectrodes meritoriously leads to an enhanced contact area between MnO_(2)and the conductive and electroactive layer of polyethylene dioxythiophene,hence providing excellent electron transport and diffusion pathways of electrolyte ions,resulting in increased pseudocapacitance of MnO_(2)and polyethylene dioxythiophene.The stacked quasi-solid-state microsupercapacitors delivered the maximum specific capacitance of 43 mF cm^(-2)(211.9 F cm^(-3)),an energy density of 3.8μWh cm^(-2)(at a voltage window of 0.8 V)and 5.1μWh cm^(-2)(at a voltage window of 1.0 V)with excellent rate capability(96.6%at 2 mA cm^(-2))and cycling performance of 85.3%retention of initial capacitance after 10000 consecutive cycles at a current density of 5 mA cm^(-2),higher than those of ever reported polyethylene dioxythiophene and MnO_(2)-based planar microsupercapacitors.Benefiting from the favorable morphology,bilayer microsupercapacitor is utilized as a flexible humidity sensor with a response/relaxation time superior to those of some commercially available integrated microsensors.This strategy will be of significance in developing high-performance on-chip integrated microsupercapacitors/microsensors at low cost and environment-friendly routes.
文摘This paper presents a high precision CMOS opamp suitable for ISFET readout. The opamp is tailored to provide a constant bias condition for ISFET as part of the readout circuits and,hence,is compatible for single chip integration with the sensor. A continuous time auto-zero stabilization technique is studied and employed, with the aim of suppressing the low frequency noises, including the offset voltage, 1/f noise, and temperature drift. The design is based on a 0.35μm CMOS process. With a 3.3V power supply,it maintains a DC open loop gain of more than 100dB and an offset voltage of around 11μV,while the overall power dissipation is only 1.48mW. With this opamp, a pH microsensor is constructed, of which the functionality is verified by experimental tests.
基金supported by National Natural Science Foundation of China(Nos.20805035 and 90817103)
文摘Multi-walled carbon nanotube multilayers were modified onto a newly proposed gold hair microelectrode via a simple layer-bylayer assembling method. The resulting electrode showed a sensitive oxidation response to estradiol with detection limit as low as 1.0 × 10^-8 mol/L, foreseeing a promising approach to the fabrication of high-sensitive microsensors.
基金Supported by The Regione autonoma della Sardegna(fund P.O.R.SARDEGNA F.S.E.2007-2013-Obiettivo competitività regionale e occupazione,Asse ⅣCapitale umano,Linea di Attivitàl.3.1)
文摘Implantable electrochemical microsensors are characterized by high sensitivity, while amperometric biosensors are very selective in virtue of the biological detecting element. Each sensor, specific for every neurochemical species, is a miniaturized hightechnology device resulting from the combination of several factors: electrode material, shielding polymers, applied electrochemical technique, and in the case of biosensors, biological sensing material, stabilizers, and entrapping chemical nets. In this paper, we summarizethe available technology for the in vivo electrochemical monitoring of neurotransmitters(dopamine, norepinephrine, serotonin, acetylcholine, and glutamate), bioenergetic substrates(glucose, lactate, and oxygen), neuromodulators(ascorbic acid and nitric oxide), and exogenous molecules such as ethanol. We also describe the most represented biotelemetric technologies in order to wirelessly transmit the signals of the abovelisted neurochemicals. Implantable(Bio)sensors, integrated into miniaturized telemetry systems, represent a new generation of analytical tools that could be used for studying the brain's physiology and pathophysiology and the effects of different drugs(or toxic chemicals such as ethanol) on neurochemical systems.
文摘This paper presents the design, fabrication, and preliminary experimental result of an electric field microsensor based on the structure of piezoelectric interdigitated cantilevers with staggered vertical vibration mode. The working principle of this electric field microsensor is demonstrated, and the induced charges and structural parameters of this microsensor are simulated by the finite element method. The electric field microsensor was fabricated by Micro-Electro Mechanical Systems(MEMS) technique. Each cantilever is a multilayer compound structure(Al/Si3N4/ Pt/PZT/Pt/ Ti/SiO 2/Si), and Piezoelectric, PieZ oelectric ceramic Transducer(PZT)(PbZ rxTi(1–x)O3) layer, prepared by sol-gel method, is used as the piezoelectric material to drive the cantilevers vibrating. This electric field microsensor was tested under the DC electric field with the field intensity from 0 to 5×104 V/m. The output voltage signal of the electric field microsensor has a good linear relationship to the intensity of applied electric field. The performance could be improved with the optimized design of structure, and reformative fabrication processes of PZT material.
文摘A novel portable instrument developed for field determinations of complex mixtures of volatile organic compounds (VOCs) is described.The key features of the instrument are a miniature multi-stage adsorbent preconcentrator/focuser,two series-coupled separation columns with pressure and temperature tunable retention control,and an integrated array of four chemiresistor (CR) sensors coated with Au-thiolate monolayer-protected nanoparticles (MPN).MPN-CR array response patterns are used with retention times to identify eluting vapors.Air is used as the carrier gas.Calibrations of 20 common indoor air contaminants gave LODs in the range of 0.05 ng/g~0.53 ng/g for a 1 L sample volume.Results of preliminary analyses of characteristic VOCs generated from U.S.currency as well as vapor-phase markers of environmental tobacco smoke (ETS) at low-or sub-ng/g levels are presented.
基金the financial support provided by the National Natural Science Foundation of China (NSFC No. U1733120, 61601469, 61674114, 61701475, 91743110, 21861132001)National Key R&D Program of China (2017YFF0204604, 2018YFE0118700)+4 种基金Tianjin Applied Basic Research and Advanced Technology (17JCJQJC43600)the 111 Project (B07014)the Initial Scientific Research Fund of State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University (No. Pilq1902)the Foundation for Talent Scientists of Nanchang Institute for Micro-technology of Tianjin Universitythe Open Research Fund of Key Laboratory of MEMS of Ministry of Education, Southeast University。
文摘To address the need for the on-site measurement of aging oil, in this paper, we propose an impedance-based microsensor for analyzing the moisture content in engine oil. Using a microfabrication process, we fabricated an interdigitated microelectrode and integrated it with a 3 D-printed microcontainer to produce a microsensor that can detect changes in the permittivity of oil. When the moisture content in oil increases, this sensor can detect the resulting change in the oil impedance, which is related to its permittivity, and then determine the degree to which the oil has aged. The test results show that the proposed microsensor has the advantages of being small and having high sensitivity, good accuracy, and the ability to be combined with hand-held instruments.The proposed method is expected to be used for the rapid, low cost, on-site determination of oil aging.
文摘A high performance CMOS band-gap voltage reference circuit that can be used in interface integrated circuit of microsensor and compatible with 0. 6 μm ( double poly) mix process is proposed in this paper. The circuit can be employed in the range of 1. 8 - 8 V and carry out the first-order PTAT ( proportional to absolute temperature) temperature compensation. Through using a two-stage op-amp with a NMOS input pair as a negative feedback op-amp,the PSRR ( power supply rejection ratio) of the entire circuit is increased,and the temperature coefficient of reference voltage is decreased. Results from HSPICE simulation show that the PSRR is - 72. 76 dB in the condition of low-frequency,the temperature coefficient is 2. 4 × 10 -6 in the temperature range from - 10 ℃ to 90 ℃ and the power dissipation is only 14 μW when the supply voltage is 1. 8 V.
基金Supported by the NSFC (No. 40076020) National Basic Research Priority Program (973) (No.2001CB409700) and the research fund for the doctoral program for higher education.
文摘In this paper, the application of a homemade Nafion and Co(Salen) modified platinum microelec-trode and an ISO-NOPMC microsensor (World Precision Instruments, USA ) to measure nitric oxide in natural seawater is reported. These two microelectrodes are suitable for the measurement. In natural seawater, the sensitivity and stability of the ISO-NOPMC microsensor are higher than that of the homemade Nafion and Co(Salen) modified platinum microelectrode.
基金the Science and Technology Research Project of Chongqing Municipal Education Commission of China (080526)
文摘In the paper, we consider a network of energy constrained sensors deployed over a region. Each sensor node in such a network is systematically gathering and transmitting sensed data to a base station (via clusterhead) for further processing. The key problem focuses on how to reduce the power consumption of wireless microsensor networks. The core includes the energy efficiency of clusterheads and that of cluster members. We first extend low-energy adaptive clustering hierarchy (LEACH)'s stochastic clusterhead selection algorithm by a factor with distance-based deterministic component (LEACH-D) to reduce energy consumption for energy efficiency of clusterhead. And the cost function is proposed so that it balances the energy consumption of nodes for energy efficiency of cluster member. Simulation results show that our modified scheme can extend the network life around up to 40% before first node dies. Through both theoretical analysis and numerical results, it is shown that the proposed algorithm achieves better performance than the existing representative methods.
基金the NNSFC(No.19772014)the China National Foundation for Outstanding Young Researchers(No.19725207)Foundation for University Key Teacher by the Ministry of Education of China
文摘The purpose of this paper is to study the magnetomechanicalcharacteristic of a microsensor which is composed of a cantileveredbeam-plate with ferromagnetic films in order to measure the magneticfield from the deformation of plate when the microsensor is locatedin the magnetic field. To this end, a nu- merical approach made up ofthe finite element method for magnetic field and the finitedifference method for deflection of the microsensor is proposed toperform the numerical analysis of deflection under magnetoelasticinteraction. Some quantitative results of a case study for themagnetoelastic characteristic between the mag- netic field anddeflection of the microsensor in the magnetic field are given. Theresults show that this mi- crosensor can be used not only to measurethe magnitude of magnetic intensity, but also to possibly monitor thedirection of the vector of the magnetic field.
文摘Based on the sensing mechanism of microsensor, a simulation model of a practical silicon beam resonator attached to an E-type round diaphragm and used for measuring concentrated force is established. The relationship between the basic natural frequency of the beam resonator and the concentrated force is calculated, analyzed and investigated. As a microsensor FEM is used to study some important simulation results on the vibration features of the beam resonators. Based on the differential output signals, a set of optimum parameters of the proposed sensing unit is determined.
基金This work was done for the China-Singapore Institute of Digital Media (CSIDM) Project (No. CSIDM-200802)partly funded by the National Research Foundation administered by the Media Development Authority of Singaporesupported by the National Natural Science Foundation of China (No.60932001)
文摘Human motion capture technologies are widely used in interactive game and learning, animation, film special effects, health care, and navigation. Because of the agility, upper limb motion estimation is the most difficult problem in human motion capture. Traditional methods always assume that the movements of upper arm and forearm are independent and then estimate their movements separately; therefore, the estimated motion are always with serious distortion. In this paper, we propose a novel ubiquitous upper limb motion estimation method using wearable microsensors, which concentrates on modeling the relationship of the movements between upper arm and forearm. Exploration of the skeleton structure as a link structure with 5 degrees of freedom is firstly proposed to model human upper limb motion. After that, parameters are defined according to Denavit-Hartenberg convention, forward kinematic equations of upper limb are derived, and an unscented Kalman filter is invoked to estimate the defined parameters. The experimental results have shown the feasibility and effectiveness of the proposed upper limb motion capture and analysis algorithm.
基金supported by the China Scholarship Council,the National Natural Science Foundation of China (Nos.60578026 and 60878056)the Natural Science Basic Research Project in Shaanxi Province,China (No.2009JQ4013.)
文摘The irradiation of ceils combined with the immunoconjugate of gold nanoparticles by the short pulse laser can make the plasma membrane be transiently permeabilized, which can be used to transfer exogenous molecules into the cells. We explore this technique as a novel gene transfection method for floating cells. Three different floating cells exposed to the laser are selectively transfected with fluorescein isothiocyanatedextran, antibody, and green fluorescent protein (GFP) coding plasmids, and the viability of cells are determined by propidium iodide. For fluorescein isothiocyanate-dextran, the best transfection efficiency of 65% is obtained; for the antibody, it is 74%; whereas for the green fluorescent protein coding plasmids, a very small transfection efficiency is gained. If the transfection efficiency is improved, gold nanoparticles will be very useful as mediator for gene transfection in living cells.
文摘This paper presents a single-chip 3D electric field microsensor, in which a sensing element is set at the center to detect the Z-axis component of an electrostatic field. Two pairs of sensing elements with the same structure are arranged in a cross-like configuration to measure the X- and Y-axis electrostatic field components. An in-plane rotary mechanism is used in the microsensor to detect the X-, Y-, and Z-axis electrostatic field components simultaneously. The proposed microsensor is compact and presents high integration. The microsensor is fabricated through a MetalMUMPS process. Experimental results show that in the range of 0-50 kV/m, the linearity errors of the microsensor are within 5.5%, and the total measure- ment errors of the three electrostatic field components are less than 14.04%.
基金This work was supported in part by the NSF CAREER award(D.A.),the NSF-NASCENT Engineering Research Center(Cooperative Agreement No.EEC-1160494)the Southwest Academy of Nanoelectronics(SWAN).
文摘Modern internet of things(IoTs)and ubiquitous sensor networks could potentially take advantage of chemically sensitive nanomaterials and nanostructures.However,their heterogeneous integration with other electronic modules on a networked sensor node,such as silicon-based modulators and memories,is inherently challenging because of compatibility and integration issues.Here we report a novel paradigm for sensing modulators:a graphene field-effect transistor device that directly modulates a radio frequency(RF)electrical carrier signal when exposed to chemical agents,with a memory effect in its electrochemical history.We demonstrated the concept and implementation of this graphene-based sensing modulator through a frequency-modulation(FM)experiment conducted in a modulation cycle consisting of alternating phases of air exposure and ethanol or water treatment.In addition,we observed an analog memory effect in terms of the charge neutrality point of the graphene,Vcnp,which strongly influences the FM results,and developed a calibration method using electrochemical gate-voltage pulse sequences.This graphenebased multifunctional device shows great potential for use in a simple,low-cost,and ultracompact nanomaterial-based nodal architecture to enable continuous,real-time event-based monitoring in pervasive healthcare IoTs,ubiquitous security systems,and other chemical/molecular/gas monitoring applications.
基金financial supports from Natural Sciences and Engineering Research Council (NSERC) of CanadaCanadian School of Energy and the Environment (CSEE)China Scholarship Council (CSC)
文摘Sulfate reducing bacteria(SRB) play significant roles in anaerobic environments in oil sands mature fine tailings(MFTs). Hydrogen sulfide(H2S) is produced during the biological sulfate reduction process. The production of toxic H2S is one of the concerns because it may hinder the landscape remediation efficiency of oil sands tailing ponds. In present study, the in situ activity and the community structure of SRB in MFT and gypsum amended MFT in two settling columns were investigated. Combined techniques of H2S microsensor and dissimilatory sulfite reductase β-subunit(dsrB) genes-based real time quantitative polymerase chain reaction(qPCR) were applied to detect the in situ H2S and the abundance of SRB. A higher diversity of SRB and more H2S were observed in gypsum amended MFT than that in MFT, indicating a higher sulfate reduction activity in gypsum amended MFT; in addition, the activity of SRB varied as depth in both MFT and gypsum amended MFT: the deeper the more H2S produced. Long-term plans for tailings management can be assessed more wisely with the information provided in this study.
基金Project supported by the National Natural Science Foundation of China(No.60843005)the Basic Research Foundation of Beijing Institute of Technology,China(No.20070142018)
文摘A novel low-pass filter that consists of a switched capacitor filter (SCF) and its antialiasing prefilter and smoothing postfilter is proposed for a microsensor signal processing system, which is used in separation point detection on the surface of micro air vehicles. In the system, the filter is not only applied to finish the function of filtering but also used as the front end antialiasing filter of the over sampling analog-to-digital converter. This proposed implementation mostly relies on the design of a high-precision SCF employing a correlated double sampling technique and optimisation switches. Simultaneously, the multiple-loop feedback low pass filter with good high frequency attenuation characteristics is applied as the pre- and postfilter. The design is implemented in the Central Semiconductor Manufacturing Corporation (CSMC) 0.5 μm double-poly three-metal (2P3M) 3 chip die area occupies only 0.39 mm2 and dissipatesl.53 mW. 3 V CMOS technology, with satisfactory results, The
基金funded by the National Key Research and Development Program of China(No.2021YFB3200804)Shanghai“Road and Belt”International Cooperation Project(No.19520744200)the Key Basic Research Program of Science and Technology Commission of Shanghai Municipality(No.20JC1415303).
文摘To address the challenge of highly sensitive and accurate detection of biomarkers in complex environments,a rational engineering strategy for designing electrochemical immunosensing platform is proposed.Herein,we develop a microsensor chip through the combination of multiplexed electrodes and microfluidic channels for the parallel detection of human interleukins(IL-6 and IL-8).For the construction of an efficient sensing interface,the conductive silver nanowires(Ag NWs)wrapped with zeolitic imidazolate framework(ZIF-8)thin film(denoted as ZIF-8@Ag NWs)are prepared,and then employed for the multi-functionalization of electrodes.The immunodetection of ILs is based on the direct signal transduction ability of Ag NWs and specific interaction of periodically arranged Zn2+ions in ZIF-8 films with biomolecules,which offer the high assay sensitivity and good specificity.The immunosensor chip achieves a wide detection range from pg/mL to ng/mL and possesses the ability to resist non-specific proteins adsorption in biological complex media.Further clinical serum samples assay verifies that the combination of IL-6 and IL-8 levels yields high diagnostic accuracy.Principal component analysis(PCA)reveals that 18 patient samples could be fully separated from healthy control samples.The low-cost,easily fabricated electrochemical immunosensing platform provides a rapid serum test for diagnosis and personalized therapy of inflammatory diseases,and can also be generalized to other immunoreaction-based biomarkers detections.