期刊文献+
共找到71篇文章
< 1 2 4 >
每页显示 20 50 100
Effect of Quercetin on CYP1A2, CYP2E1, CYP3A2 Activities and its Inhibitory Mechanism Studies in Rat Liver Microsomes 被引量:6
1
作者 周江泉 汤致强 《Journal of Chinese Pharmaceutical Sciences》 CAS 2005年第4期231-236,共6页
Aim To assess the potential effect of quercetin (QU), an natural plant estrogen, on CYP1A2, CYP2E1, and CYP3A2 activities in rat liver microsomes; and to identify the magnitude of inhibitory effect and the probable ... Aim To assess the potential effect of quercetin (QU), an natural plant estrogen, on CYP1A2, CYP2E1, and CYP3A2 activities in rat liver microsomes; and to identify the magnitude of inhibitory effect and the probable inhibitory mechanism of QU. Methods QU and specific substrate were concurrently incubated, with HPLC detection of the substrate metabolites for data analysis. The magnitude of inhibitory effect of QU on CYP3A2 was compared with those of ketoconazole (Ket) and erythromycin (Ery). The mechanism of its inhibitory effect on CYP3A2 and CYP2E1 was derived from Lineweaver-Burk plots. Results HPLC methods were in good linear relationship with r〉0.999 1. Relative standard deviations for intra-day and inter-day were〈8.4%. Recovery of each analyte in the concentrations studied was between 91.1% and 107.6 %. QU (up to 8 μmol·L^-1) showed potent induction to CYP1A2 (338.1% of the negative control)while inhibited CYP2E1 (49.2% of the negative control) and CYP3A2 (60.3% of the negative control) activity. The magnitude of inhibitory effect for QU on CYP3A2 was between those for Ket and Ery (Ket〉QU〉Ery). QU exhibited competitive inhibition of CYP3A2 dextromethorphan N-demethylation reaction and expressed noncompetitive inhibition of CYP2E1 chlorzoxazone-6-hydroxylation reaction. Conclusion HPLC assay has been validated with precision and accuracy. QU is an effective inhibitor of several CYP isoforms. It may cause relevant drug-drug interactions with CYP3A substrates. As a plant flavonoid, QU has potential not only in molecular advantage but also in CYP450 module capability for further application in cancer chemotherapy. 展开更多
关键词 QUERCETIN cytochrome P450 liver microsome HPLC INHIBITOR
下载PDF
Effects of Diazepam,Phenobarbital,Propranolol,and Cimetidine on Diazepam Oxidizing Isoenzymes in Rat Liver Microsomes
2
作者 匡唐永 楼雅卿 赵立安 《Journal of Chinese Pharmaceutical Sciences》 CAS 1997年第2期36-42,共7页
Isolation and identification of the liver microsomal cytochrome P 450 isoen zymes responsible for the formation of diazepam main metabolites nordiazepam and temazepam in rats were studied. The effects of P 450 ind... Isolation and identification of the liver microsomal cytochrome P 450 isoen zymes responsible for the formation of diazepam main metabolites nordiazepam and temazepam in rats were studied. The effects of P 450 inducers and inhibitors on the protein contents in SDS poly acrylamide gel electrophoresis and thin layer chromatography to the corresponding diazepam me tabolizing activities of rat liver microsomes were observed. The P 450 contents were dramatically re duced by ip diazepam, cimetidine or propranolol. Diazepam and propranolol inhibited temazepam formation, high dose of propranolol also inhibited nordiazepam formation. Phenobarbital increased the P 450 contents and induced the production of both nordiazepam and temazepam. It also induced proteins with molecular weight (m) of 51 and 59 kDa in SDS PAGE and those with m ranging from 45 to 55 kDa and from 55 to 65 kDa in TLC. Propranolol inhibited both fractions, especially that of m 55~65 kDa, whereas diazepam tended to inhibit the fraction of 45~55 kDa. The protein of m 51 kDa could be mainly involved in diazepam C3 hydroxylation, whereas those of m 59 kDa could be responsible for the N demethylation of diazepam in rats. 展开更多
关键词 DIAZEPAM Nordiazepam TEMAZEPAM Demethylase Hydroxylase Cyto chrome P 450 Liver microsomes
全文增补中
Stereoselective propranolol metabolism in two drug induced rat hepatic microsomes 被引量:4
3
作者 Li X Zeng S 《World Journal of Gastroenterology》 SCIE CAS CSCD 2000年第1期74-78,共5页
AIM To study the influence of inducers BNFand PB on the stereoselective metabolism ofpropranolol in rat hepatic microsomes.METHODS Phase Ⅰ metabolism of propranololwas studied by using the microsomes induced byBNF an... AIM To study the influence of inducers BNFand PB on the stereoselective metabolism ofpropranolol in rat hepatic microsomes.METHODS Phase Ⅰ metabolism of propranololwas studied by using the microsomes induced byBNF and PB and the non-induced microsome asthe control.The enzymatic kinetic parameters ofpropranolol enantiomers were calculated byregression analysis of Lineweaver-Burk plots.Propranolol concentrations were assayed byHPLC.RESULTS A RP-HPLC method was developed todetermine propranolol concentration in rathepatic microsomes.The linearity equations forR(+)-propranolol and S(-)-propranolol wereA=705.7C+311.2C(R = 0.9987)and A= 697.2C+311.4C(R = 0.9970)respectively.Recoveriesof each enantiomer were 98.9%,99.5%,101.0%at 60 μmol/L,120 μmol/L,240 μmol/Lrespectively.At the concentration level of120 μmol/L,propranolol enantiomers weremetabolized at different rates in differentmicrosomes.The concentration ratio R(+)/S(-)of control and PB induced microsomesincreased with time,whereas that of microsomeinduced by BNF decreased.The assayed enzymeparameters were:1.Km.Control group:R(+)30+<sub>8</sub>,S(-)18+<sub>5</sub>;BNFgroup:R(+)34+3,S(-)39±7;PB group:R(+)38±17,S(-)36±10.2.Vmax.Control group:R(+)1.5+0.2,S(-)2.9±0.3;BNF group:R(+)3.8±0.3,S(-)3.3±0.5;PB group:R(+)0.07±0.03,S(-)1.94±0.07.3.Clint.Control group:R(+)60±3,S(-)170±30;BNF group:R(+)111.0±1,S(-)84± 5;PBgroup:R(+)2.0±2,S(-)56.0±1.Theenzyme.parameters compared with unpaired ttests showed that no stereoselectivity wasobserved in enzymatic affinity of threemicrosomes to enantiomers and their catalyticabilities were quite different and hadstereoselectivities.Compared with the control,microsome induced by BNF enhanced enzymeactivity to propranolol R(+)-enantiomer,andmicrosome induced by PB showed less enzymeactivity to propranolol S(-)-enantiomer whichremains the same stereoselectivities as that ofthe control.CONCLUSION Enzyme activity centers of themicrosome were changed in composition andregioselectivity after the induction of BNF andPB,and the stereoselectivities of propranololcytochrome P450 metabolism in rat hepaticmicrosomes were likely due to thestereoselectivities of the catalyzing function inenzyme.CYP1A subfamily induced by BNFexhibited pronounced contribution to propranololmetabolism with stereoselectivity to R(+)-enantiomer.CYP2B subfamily induced by PBexhibited moderate contribution to propranololmetabolism,but still had the stereoselectivity ofS(-)-enantiomer. 展开更多
关键词 Subject headings PROPRANOLOL enantiomers RAT HEPATIC microsome PHENOBARBITAL β-naphthoflavone
下载PDF
Chiral metabolism of propafenone in rat hepatic microsomes treated with two inducers 被引量:3
4
作者 Quan Zhou~(1,2) Tong-Wei Yao~1 Su Zeng~1 1 College of Pharmaceutical Sciences2 Second Hospital of Medical School,Zhejiang University,Hangzhou 310031,Zhejiang Province,China 《World Journal of Gastroenterology》 SCIE CAS CSCD 2001年第6期830-835,共6页
AIM: To study the influence of inducers of drug metabolism enzyme, beta-naphthoflavone (BNF) and dexamethasone (DEX), on the stereoselective metabolism of propafenone in the rat hepatic microsomes. METHODS: Phase I me... AIM: To study the influence of inducers of drug metabolism enzyme, beta-naphthoflavone (BNF) and dexamethasone (DEX), on the stereoselective metabolism of propafenone in the rat hepatic microsomes. METHODS: Phase I metabolism of propafenone was studied using the microsomes induced by BNF and DEX and the non-induced microsome was used as the control. The enzymatic kinetics parameters of propafenone enantiomers were calculated by regress analysis of Eadie-Hofstee Plots. Propafenone enantiomer concentrations were assayed by a chiral HPLC. RESULTS: The metabolite of propafenone, N-desalkylpropafenone, was found after incubation of propafenone with the rat hepatic microsomes induced by BNF and DEX. In these two groups, the stereoselectivity favoring R(-) isomer was observed in metabolism at low substrate concentrations of racemic propafenone, but lost the stereoselectivity at high substrate concentrations. However, in control group, no stereoselectivity was observed. The enzyme kinetic parameters were: (1) K(m). Control group: R(-) 83+/-6, S(+) 94+/-7; BNF group: R(-) 105+/-6, S(+)128+/-14; DEX group: R(-) 86+/-11, S(+) 118+/-16; (2)V(max). Control group: R(-) 0.75+/-0.16, S(+) 0.72+/-0.07; BNF group: R(-) 1.04+/-0.15, S(+)1.07+/-14; DEX group: R(-) 0.93+/-0.06, S(+) 1.04+/-0.09; (3)Cl(int). Control group: R(-) 8.9+/-1.1, S(+) 7.6+/-0.7; BNF group: R(-) 9.9+/-0.9, S(+)8.3+/-0.7; DEX group: R(-) 10.9+/-0.8, S(+) 8.9+/-0.9. The enantiomeric differences in K(m) and Cl(int) were both significant, but not in V(max), in BNF and DEX group. Whereas enantiomeric differences in three parameters were all insignificant in control group. Furthermore, K(m) and V(max) were both significantly less than those in BNF or DEX group. In the rat liver microsome induced by DEX, nimodipine (NDP) decreased the stereoselectivity in propafenone metabolism at low substrate concentration. The inhibition of NDP on the metabolism of propafenone was stereoselective with R(-)-isomer being impaired more than S(+)-isomer. The inhibition constant (Ki) of S(+)- and R(-)-propafenone, calculated from Dixon plots, was 15.4 and 8.6 mg x L(-1), respectively. CONCLUSION: CYP1A subfamily(induced by BNF) and CYP3A4 (induced by DEX) have pronounced contribution to propafenone N-desalkylation which exhibited stereoselectivity depending on substrate concentration. The molecular base for this phenomenon is the stereoselectivity in affinity of substrate to the enzyme activity centers instead of at the catalyzing sites. 展开更多
关键词 Animals Anti-Arrhythmia Agents Dexamethasone Male microsomes Liver PROPAFENONE RATS Rats Sprague-Dawley Research Support Non-U.S. Gov't STEREOISOMERISM beta-Naphthoflavone
下载PDF
Identification and interspecies characterization of UDP-glucuronosyltransferase isoforms catalyzing acacetin glucuronidation using recombinant UGT enzymes and microsomes 被引量:2
5
作者 Kangle Shi Shan Li Qinggang Meng 《Journal of Traditional Chinese Medical Sciences》 2019年第2期155-163,共9页
Objective:To explore the glucuronic acid metabolism of acacetin in human liver and intestinal microsomes to better characterize human uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT) isoforms.In addition,i... Objective:To explore the glucuronic acid metabolism of acacetin in human liver and intestinal microsomes to better characterize human uridine 5'-diphospho (UDP)-glucuronosyltransferase (UGT) isoforms.In addition,interspecies comparisons were performed to identify the most appropriate experimental animal model for an in vivo study.Methods:Liquid chromatography tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) were used to confirm the successful biosynthesis of acacetin-7-O-glucuronide.Human isoforms of UGT and isozyme-specific chemical inhibitors were used for recombinant assays.Acacetin glucuronidation kinetics were assessed by combining acacetin with recombinant human UGT isoforms or with microsomes from humans or experimental animals.Kinetic differences between species were assessed in vitro using the same approach.Results:We identified multiple UGT isoforms that facilitated acacetin glucuronidation,and found that UGT1A1 was the major isoform that catalyzed this process.Acacetin-7-O-glucuronide formation exhibited clear substrate inhibition kinetics when combined with recombinant UGTs or with liver/intestinal microsomes derived from humans,monkeys,rats,mice,dogs,or pigs.Intrinsic metabolic clearance values of human intestinal microsomes were two-fold greater than those of human liver microsomes.Among the evaluated species,the Km value of dog microsomes (0.86 μM) was greatest in acacetin glucuronidation,while mice exhibited the highest CLint value,5.05 mL/min/mg.The CLint values of microsomes derived from monkeys and minipigs were 1.99 mL/min/mg and 2.12 mL/min/mg,respectively,exhibiting similar intrinsic metabolic clearance activity to that observed in humans.Conclusion:Monkey may represent a suitable model for experimental studies of acacetin pharmacokinetics owing to a high sequence homology of UGT1A1 and similar UGT1A1 glucuronidation activity to humans. 展开更多
关键词 ACACETIN UDP-GLUCURONOSYLTRANSFERASES Human liver microsomeS GLUCURONIDATION Species differences
下载PDF
A Validated Liquid Chromatography-Mass Spectrometry Method for the Detection and Quantification of Oxidative Metabolites of 2,2',4,4'-Tetrabromodiphenyl Ether in Rat Hepatic Microsomes 被引量:1
6
作者 Sarah Catherine Moffatt Patrick Robert Edwards +1 位作者 András Szeitz Stelvio Mario Bandiera 《American Journal of Analytical Chemistry》 2011年第3期352-362,共11页
In the present study, we developed and validated an analytical method using ultra performance liquid chromatography-mass spectrometry (UPLC/MS) for the quantitative determination of 2,2',4,4'-tetrabromodipheny... In the present study, we developed and validated an analytical method using ultra performance liquid chromatography-mass spectrometry (UPLC/MS) for the quantitative determination of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) metabolism by rat hepatic microsomes. BDE-47 is a brominated flame retardant that was widely used in a variety of consumer products and has subsequently been identified as a ubiquitous environmental contaminant. Hydroxy-bromodiphenyl ethers (OH-BDEs) were isolated from rat hepatic microsomes by liquid-liquid extraction. Chromatographic separation was achieved by UPLC on a C18 column with gradient elution using a mobile phase consisting of methanol and water, each containing 0.1% formic acid, at a flow rate of 0.2 mL/min. Detection and quantification were performed using a mass spectrometer in single ion recording mode with negative electrospray ionization. The UPLC/MS method was validated for linearity, limit of quantification (LOQ), accuracy, precision and recovery. The weighted calibration curves (1/X2) were linear over a concentration range of 5 - 250 nM with LOQ values between 5 nM and 50 nM for the individual OH-BDEs. Intra- and inter- day accuracy (%DEV) and precision (%RSD) values ranged from –11.7% to 9.5% and 5.9% to 16.5%, respectively. Recovery values of 70% to 90% were obtained for all OH-BDEs. The validated method allowed us to successfully analyze metabolite formation following incubation of BDE-47 with hepatic microsomes prepared from phenobarbital-treated rats. Results demonstrate that the UPLC/MS method has sufficient sensitivity and reproducibility to fully characterize the in vitro metabolism of BDE-47 and possibly other PBDEs. 展开更多
关键词 BDE-47 HEPATIC Metabolism Polybrominated DIPHENYL ETHERS RAT HEPATIC microsomeS Ultra Performance Liquid Chromatography-Mass Spectrometry
下载PDF
Oxidative Metabolism of Estrone Modified by Genistein and Bisphenol A in Rat Liver Microsomes 被引量:1
7
作者 GHELDIU Ana-Maria POPA Daniela-Saveta +1 位作者 LOGHIN Felicia VLASE Laurian 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2015年第11期834-838,共5页
Genistein, the main isoflavone from soy, and bisphenol A (BPA), a food contaminant, are considered ubiquitous xenoestrogens. Here we investigated the influence of genistein and BPA on estrone (El) metabolism in ra... Genistein, the main isoflavone from soy, and bisphenol A (BPA), a food contaminant, are considered ubiquitous xenoestrogens. Here we investigated the influence of genistein and BPA on estrone (El) metabolism in rat liver microsomes. Both substances inhibited the 2-hydroxylation and 16a-hydroxylation of E1, but in different degrees, thereby reducing the 2-OH-E1/16a-OH-E1 ratio, 展开更多
关键词 BPA Oxidative Metabolism of Estrone Modified by Genistein and Bisphenol A in Rat Liver microsomes
下载PDF
Effects of two novel sugar drug candidates on CYP450 isoforms in different sexed Chinese human liver microsome in vitro
8
作者 SHI Jie,ZHANG Xin-hui,SU Jia-ru(Pharmacy Department of Qingdao Municipal Hospital,5 Donghai Road,Qingdao 266071,China) 《沈阳药科大学学报》 CAS CSCD 北大核心 2008年第S1期121-122,共2页
The sex-based differences between the effects of two novel sugar-based drug candidates,a sulfated polymannuroguluronate(SPMG-911)and an acidic oligosaccharide sugar chain compound(AOSC-971),on the enzymes CYP 1A2,CYP2... The sex-based differences between the effects of two novel sugar-based drug candidates,a sulfated polymannuroguluronate(SPMG-911)and an acidic oligosaccharide sugar chain compound(AOSC-971),on the enzymes CYP 1A2,CYP2E1 and CYP3A4 of Chinese human liver microsome were investigated.The results showed that neither SPMG-911 nor AOSC-971 have any effect on CYP3A4,AOSC-971 induced the CYP 2E1 in men but have no effect on CYP1A2,SPMG-911 inhibit the CYP1A2 also in men but have no effect on CYP2E1.The results are useful for their safety evaluation,as well as for the prediction of inter-drug interactions associated with the two drugs. 展开更多
关键词 NOVEL SUGAR DRUG candidates CYP 450 enzymes human liver microsome DRUG safety evaluation
下载PDF
Stereoselective glucuronidation of carvedilol by Chinese liver microsomes
9
作者 YOU Lin-ya, YU Chun-na, XIE Sheng-gu, CHEN Shu-qing, ZENG Su (Department of Drug Metabolism and Pharmaceutical Analysis, School of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China) 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2007年第10期756-764,共9页
Objective: To study the stereoselective glucuronidation of carvedilol (CARV) by three Chinese liver microsomes. Methods: The metabolites of CARV were identified by a hydrolysis reaction with β-glucuronidase and HPLC-... Objective: To study the stereoselective glucuronidation of carvedilol (CARV) by three Chinese liver microsomes. Methods: The metabolites of CARV were identified by a hydrolysis reaction with β-glucuronidase and HPLC-MS/MS. The enzyme kinetics for CARV enantiomers glucuronidation was determined by a reversed phase-high pressure liquid chromatogra-phy (RP-HPLC) assay using (S)-propafenone as internal standard after precolumn derivatization with 2,3,4,6-tetra-O-acetyl-β-D-glucopyranosylisothiocyanate. Results: Two CARV glucuronides were found in three Chinese liver microsomes incubated with CARV. The non-linear regression analysis showed that the values of Km and Vmax for (S)-CARV and (R)-CARV enantiomers were (118±44) μmol/L, (2 500±833) pmol/(min·mg protein) and (24±7) μmol/L, (953±399) pmol/(min·mg protein), respectively. Conclusion: These results suggested that there was a significant (P<0.05) stereoselective glucuronidation of CARV enantiomers in three Chinese liver microsomes, which might partly explain the enantioselective pharmacokinetics of CARV. 展开更多
关键词 CARVEDILOL (CARV) DERIVATIZATION STEREOSELECTIVITY Enzyme kinetics CHINESE liver microsomeS
下载PDF
Reductive Metabolism of Nitroaromatic Compounds by Various Liver Microsomes
10
作者 WANG Xing-yong CUI Jmg-nan +3 位作者 REN Wei-min ZHAO Guo-quan LI Feng QIAN Xu-hong 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2010年第6期981-985,共5页
Nitroaromatic compounds were reductively metabolized to the corresponding amine compounds via the intermediate hydroxylamines by liver microsomes from pig,rat,chook,cattle,sheep,paralichthys olivaceus and cyprinoid in... Nitroaromatic compounds were reductively metabolized to the corresponding amine compounds via the intermediate hydroxylamines by liver microsomes from pig,rat,chook,cattle,sheep,paralichthys olivaceus and cyprinoid in varied reactivity.Similar with baker's yeast,the pig,rat and sheep liver microsomes exhibited high reactivity toward 4-nitro-1,2-dicyanbenzen(1a),while the cyprinoid liver microsomes were inefficient.Contrasted to compound 1a,monocyannitrobenzene(2a) was difficult to reduce by pig liver microsomes.In opposition to grape cells,pig liver microsomes exhibited activities toward some aromatic hydroxylamine compounds. 展开更多
关键词 Liver microsome Reduction Nitroaromatic compound Aromatic hydroxylamine
下载PDF
Involvement of CYP2B6 in the biotransformation of propofol by human liver microsomes
11
作者 TANG Bing1,WANG Jun-ke1,FENG Wan-yu2(1.Department of Anesthesiology,First Affiliated Hospital,China Medical University,Shenyang 110001,China 2.Department of Clinical Pharmacology,the First Affiliated Hospital,China Medical University,Shenyang 110001,China) 《沈阳药科大学学报》 CAS CSCD 北大核心 2008年第S1期102-102,共1页
Objective To determine whether the cytochrome P4502B6(CYP2B6)is involved in the oxidation of propofol by human liver microsomes.Methods The change of propofol concentration in an incubation mixture with human liver mi... Objective To determine whether the cytochrome P4502B6(CYP2B6)is involved in the oxidation of propofol by human liver microsomes.Methods The change of propofol concentration in an incubation mixture with human liver microsomes was monitored by the high performance liquid chromatography(HPLC),in order to calculate the rate constants of metabolism of propofol.The correlation between the rate constants and the rate of metabolism of CYP2B6 selective substrate bupropion,and the effect of two different CYP2B6 specific inhibitors on the propofol metabolism were examined.Results The mean rate constant of propofol metabolism by liver microsomes obtained from twelve individuals was 3.9(95% confidence intervals 3.3,4.5)nmol·min-1·mg-1 protein.The rate constants of propofol metabolism by liver microsomes were significantly correlated with bupropion hydroxylation(r=0.888,P<0.001).Both selective chemical inhibitors of CYP2B6,orphenadrine and N,N',N″-triethylenethiophosphoramide(thioTEPA),reduced the rate constants of propofol metabolism by 37.5%(P<0.001)and 42.7%(P<0.001)in liver microsomes,respectively.Conclusions CYP2B6 is predominantly involved in the oxidation of propofol by human liver microsomes. 展开更多
关键词 PROPOFOL CYP2B6 LIVER microsomeS HPLC
下载PDF
Studies on the Metabolic Pathway and Structure—Activity Relationship about the Conversion of Trifluoroanilines to Carbon monoxide by Rat Hepatic Microsomes in vitro
12
作者 XuHx 《Journal of Chinese Pharmaceutical Sciences》 CAS 1995年第1期53-54,共2页
StudiesontheMetabolicPathwayandStructure-ActivityRelationshipabouttheConversionofTrifluoroanilinestoCarbonmo... StudiesontheMetabolicPathwayandStructure-ActivityRelationshipabouttheConversionofTrifluoroanilinestoCarbonmonoxidebyRatHepati... 展开更多
关键词 Carbon monoxide Derivative spectrophotometry Trifluoroaniline Drug metabolism Hepatic microsomes Cytochrome P450.
下载PDF
Inhibitory Effects of Several Fluoroquinolones on Feline CYP1A and 3A in Hepatic Microsomes
13
作者 Syed Sher Shah Sadaat Nasrin Stankzi +3 位作者 Mohammad Monir Tawfeeq Farid Ahmad Tanin Amanullah Aziz Kazuki Sasaki 《Open Journal of Veterinary Medicine》 2020年第12期219-237,共19页
In this study, the effects of several fluoroquinolones (FQs), such as Ciprofloxacin (CPFX);Orbifloxacin (OBFX);Norfloxacin (NFX);Ofloxacin (OFX);and Enerofloxacin (EFX) on activities of both Cytochrome P450 1A (CYP1A)... In this study, the effects of several fluoroquinolones (FQs), such as Ciprofloxacin (CPFX);Orbifloxacin (OBFX);Norfloxacin (NFX);Ofloxacin (OFX);and Enerofloxacin (EFX) on activities of both Cytochrome P450 1A (CYP1A) and Cytochrome P450 3A (CYP3A) of feline microsomes by <i>in vitro</i> tests were studied. Ethoxyresorufin O-deethylation (EROD) and Midazolam 1' hydroxylation and 4-hydroxylation (MDZ1'H and MDZ4H) were analyzed by High Performance Liquid Chromatography (HPLC). All the FQs inhibited the reactions by a competitive or noncompetitive and irreversible manner. The inhibitory constants (K<sub>i</sub>) were as followings: CYP1A;ranged from 0.12 to 1.23 mM for NFX, OBFX, EFX, CPFX, OFX and CYP3A, for MDZ1'H;ranged from 5.8 to 35 and MDZ4H;9 to 29 mM, respectively. As these values are higher by 24 to 200-times of given single clinical dose of serum levels after application of FQs. It indicates that if co-administrated with these FQs by reversible inhibitory manner, the inhibition of CYP1A and CYP3A effect on CYP1A and 3A actions is not very significant to cause drug interaction with above mentioned enzyme substrates. Out of the FQs tested, CPFX and NFX for CYP1A, and CPFX for CYP3A showed irreversible inhibitory effects (time-dependent), so it has been concluded that these drugs may cause drug-drug interaction by accumulation, when they are repeatedly administrated. Since EFX is biotransformed to CPFX by the liver, it could have the identical risk too. 展开更多
关键词 Several Fluoroquinolones CYP Inhibitors EROD MIDAZOLAM microsomeS
下载PDF
Flavonoids Reduce Lipid Peroxides and Increase Glutathione Levels in Pooled Human Liver Microsomes (HLMs)
14
作者 William Yaw Boadi Camille Stevenson +1 位作者 Dontrez Johnson Mohamed Adel Mohamed 《Advances in Biological Chemistry》 2021年第6期283-295,共13页
<span style="font-family:Verdana;">The effects of each of the flavonoids;genistein (G), quercetin (Q) and</span><span style="font-family:""><span style="font-family:V... <span style="font-family:Verdana;">The effects of each of the flavonoids;genistein (G), quercetin (Q) and</span><span style="font-family:""><span style="font-family:Verdana;"> kaempferol (K) at several doses on lipid peroxides (LP) and reduced glutathione (GSH) in pooled human liver microsomes (HLMs) were investigated following the oxidative damage for 4, 6, 18 and 24 hr. HLMs (1 mg/ml) were exposed to each of the above flavonoids at 0, 5, 10, 15, 20 or 25 μM and incubated for the respective times as previously stated. Our hypothesis was that HLMs exposed to the flavonoids for the respective exposure times can decrease LP and increase GSH in HLMs to better cope with the oxidative stress. </span><span style="font-family:Verdana;">The results of our studies indicate that each of the flavonoids significantly (p < 0.01) decreased LP compared to their respective controls. The highest decrease in LP was observed for K followed by Q and G. Significant increases (p < 0.01) in GSH were observed for the flavonoid doses tested with the highest</span><span style="font-family:Verdana;"> levels observed for Q for the 24-hr. incubation. The findings suggest that the flavonoids modulate oxidative stress in HLMs by decreasing LP and such decreases in LPs may be due to the increasing and or the replenished levels of GSH in the said cells to better cope with the oxidative stress.</span></span> 展开更多
关键词 FLAVONOIDS Glutathione (GSH) Human Liver microsomes (HLMs) Lipid Peroxidation Oxidative Stress
下载PDF
Biotransformation of malabaricone C by rat hepatic microsomes and cytotoxic activities against gastric cancer cells in vitro 被引量:1
15
作者 吴妮 徐嵬 +1 位作者 张友波 杨秀伟 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2014年第4期241-245,共5页
Malabaricone C (1), isolated from the seeds ofMyristicafragrans Houtt., belongs to a kind of diarylnonanoid compounds that are only found in Myristicaceae till now. In this study, biotransformation of 1 was investig... Malabaricone C (1), isolated from the seeds ofMyristicafragrans Houtt., belongs to a kind of diarylnonanoid compounds that are only found in Myristicaceae till now. In this study, biotransformation of 1 was investigated using rat hepatic microsomes for the first time and the main biotransformation product was elucidated as malabaricone B (2) according to the spectroscopic data. Further evaluation on human gastric cancer cell lines showed that the cytotoxic effects of malabaricone C and its metabolite malabaricone B were comparable to those of vinorelbine, with the values of IC50 of (42.62±3.10) and (19.80±1.70) μg/mL on NCI-N87, and (22.94±1.33) and (19.60±2.21) μg/mL on MGC803, respectively. Statistical analysis revealed that malabaricone B had significantly stronger cytotoxicity than the parent compound (P〈0.01 on NCI-N87 and P〈0.05 on MGC803), which may indicate a bioactivation of malabaricone C by hepatic microsomes. These results suggest that malabaricone C has a simple biotransformation pathway by hepatic microsomes and provide valuable information for further investigation on both the parent compound and its biotransformation product as anti-gastric cancer agents or lead compounds. 展开更多
关键词 Malabaricone C Malabaricone B Myristicafragrans BIOTRANSFORMATION Rat hepatic microsomes Human gastric cancer NCI-N87 Human gastric cancer MGC803
原文传递
Inhibitory effect of the combination of notoginseng total saponins and safflower total flavonoids on UDP-glucuronosyltransferases 1A1, 1A4, and 2B7 in human liver microsomes 被引量:3
16
作者 李岩 孟雨晴 +5 位作者 逯颖媛 常坤 高鹏 姜勇 屠鹏飞 郭晓宇 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2019年第4期229-237,共9页
In the present study, the potential inhibition behaviors of notoginseng total saponins(NS), safflower total flavonoids(SF), and their combination(CNS) towards three major isoforms of UDP-glucuronosyltransferases(UGTs)... In the present study, the potential inhibition behaviors of notoginseng total saponins(NS), safflower total flavonoids(SF), and their combination(CNS) towards three major isoforms of UDP-glucuronosyltransferases(UGTs) in human liver microsomes(HLMs) were investigated to study the mechanism of the synergistic effect of CNS.Etoposide, trifluoperazine and azidothymidine were selected as the probe drugs to elucidate the activities of UGT1A1, 1A4 and 2B7 by UPLC-MS/MS method, respectively.The results showed that CNS, NS and SF significantly inhibited the activities of UGT1A1, 1A4 and 2B7(P<0.05) with the IC_(50) values less than 30 mg/mL.Furthermore, the inhibitory effects of CNS towards UGT1A1, 1A4 and 2B7 were stronger than those of NS and SF(P<0.05).In conclusion, the combination of NS and SF could increase their inhibitory effects on UGT1A1, 1A4 and 2B7 activities in HLMs and might be conducive to reduce the phase II metabolism of the effective constituents in CNS.The potential herb-drug interactions of CNS based on UGT enzymes provided a useful experimental basis for its further research and development. 展开更多
关键词 UDP-GLUCURONOSYLTRANSFERASES Human liver microsomeS Herb-drug interaction Notoginseng RADIX et Rhizoma Carthami Flos
原文传递
Biotransformation of methyleugenol by rat hepatic microsomes 被引量:1
17
作者 曹桂云 杨秀伟 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2014年第5期311-316,共6页
Methyleugenol (1), one of the main bioactive constituents of the seeds of Myristicafragrans Houtt. (family: Myristicaceae), was incubated with rat hepatic microsomes from rats pretreated with sodium phenobarbital... Methyleugenol (1), one of the main bioactive constituents of the seeds of Myristicafragrans Houtt. (family: Myristicaceae), was incubated with rat hepatic microsomes from rats pretreated with sodium phenobarbital. Eight biotransformation products named (R)-l'-methoxymethyleugenol (2), 3-(3,4-dimethoxyphenyl)-l-methoxyprop-2-ene (3), cis-3,4-dimethoxycinnamyl acetate (4), trans-3,4-dimethoxycinnamyl acetate (5), (R)-I hydroxymethyleugenol (6), trans-3,4-dimethoxycinnamyl alcohol (7), cis-3,4-dimethoxycinnamyl alcohol (8), and (R)-3-(3,4-dimethoxyphenyl)-propane-l,2-diol (9) were obtained and their structures were elucidated by NMR and MS data analysis and by comparison with the previously reported data. The biotransformation of 1 may provide valuable information for the use of methyleugenol. The NMR data of compounds 4 and 6 were reported for the first time. 展开更多
关键词 Methyleugenol Myristicafragrans BIOTRANSFORMATION Rat hepatic microsomes
原文传递
Inhibition of Re Du Ning Injection on Enzyme Activities of Rat Liver Microsomes Using Cocktail Method 被引量:4
18
作者 Xiao-qian Xu Ting Geng +6 位作者 She-bing Zhang Dan-yu Kang Yan-jing Li Gang Ding Wen-zhe Huang Zhen-zhong Wang Wei Xiao 《Chinese Herbal Medicines》 CAS 2016年第3期231-241,共11页
Objective Re Du Ning Injection (RDN), a Chinese materia medica injection, is made from the extracts of LoniceraeJaponicae Flos, Gardeniae Fructus, and Artemisiae Annuae Herba. Since last decade, RDN has been widely ... Objective Re Du Ning Injection (RDN), a Chinese materia medica injection, is made from the extracts of LoniceraeJaponicae Flos, Gardeniae Fructus, and Artemisiae Annuae Herba. Since last decade, RDN has been widely used in China for the treatment of viral infection, fever, and inflammation. To assess the potential interacting of RDN with co-administered drugs, the inhibitory effects of RDN on the enzyme activities (CYP1A1, CYP1A2, CYP2C11, CYP2D1, and CYP3A1/2) of rat liver microsomes were investigated by a cocktail method. Methods A sensitive and specific LC-MS method capable of simultaneous quantification of five metabolites in rat liver microsomes was developed and validated. Then RDN (0.625%-1.0%) was incubated with rat liver microsomes and specific substrates. The enzyme activities were expressed as the formation rate of the specific metabolites of the substrates (pmol- mg. protein-1 . min-1). Results RDN competitively inhibited the activities of CYP1A2 and CYP2C11, with inhibition constant (/~) values determined to be 0.18% and 0.63%, respectively. RDN exhibited the mixed inhibition on the activity of CYP2D1, with a K1 value of 0.15%. The activities of CYP1A1 and CYP3A1/2 were not markedly inhibited even by 1.0% RDN. Conclusion RDN could inhibit the rat enzyme activities of CYP1A2, 2Cll, and 2D1 in vitro with different inhibition modes, which is worthy of promoting safety and efficacy of RDN. 展开更多
关键词 COCKTAIL cytochrome P450 INHIBITION rat liver microsomes Reduning Injection
原文传递
Inhibition of Magnolol and Honokiol on Cytochrome P450 Enzymes in Rat and Human Liver Microsomes 被引量:5
19
作者 Jin Duan Juan Xiao +1 位作者 Yong Chen Feng-mei Han 《Chinese Herbal Medicines》 CAS 2015年第2期167-172,共6页
Objective The purpose of this work is to evaluate the in vitro inhibitory effect of magnolol(MN) and honokiol(HN) on rat / human cytochrome P450(CYP) enzymes(1A2/1A2, 2D/2D6, 3A/3A4, 2E1/2E1, and 2C/2C9). Meth... Objective The purpose of this work is to evaluate the in vitro inhibitory effect of magnolol(MN) and honokiol(HN) on rat / human cytochrome P450(CYP) enzymes(1A2/1A2, 2D/2D6, 3A/3A4, 2E1/2E1, and 2C/2C9). Methods Rat liver microsomes(RLM) and human liver microsomes(HLM) were used as the enzyme sources. After the probe substrate of each CYP isoforms was co-incubated individually with MN or HN in RLM or HLM, the metabolite production of each probe substrate in RLM and HLM incubation medium was determined and used to evaluate the activity of corresponding CYP isoforms. Results MN inhibited rat CYP1A2 and human CYP3A4 with the IC50 values of 10.0 and 56.2 μmol/L, respectively. HN inhibited rat CYP1A2 and CYP2E1, human CYP1A2 and CYP3A4 with the IC50 values of 12.1, 12.6, 17.8, and 43.9 μmol/L, respectively. Conclusion HN is a moderate or weak inhibitor of human CYP1A2. Both MN and HN are weak or non inhibitors of the other tested human CYP isoforms. The results suggest that no significant metabolic interaction seems likely to occur when the substrate drugs of CYP isoforms tested in the present work are co-administered with MN and HN. 展开更多
关键词 cytochrome P450 honokiol inhibition liver microsomes magnolol
原文传递
Inhibition of Cytochrome P450 by Nomilin and Obacunone and Potential Mechanism in Human Liver Microsomes 被引量:1
20
作者 Yao-wen Fan Yun-long Chen +4 位作者 Jun-xiu Chen Fang-liang Zhang Gregory Ondieki Ya-zhuo Li Xin He 《Chinese Herbal Medicines》 CAS 2017年第3期295-298,共4页
Objective Nomilin and obacunone are two important limonoids that are well known for their anticancer effect. Previous studies showed that limonoids had inhibitory effect on cytochrome P450 3A4(CYP3A4). However these... Objective Nomilin and obacunone are two important limonoids that are well known for their anticancer effect. Previous studies showed that limonoids had inhibitory effect on cytochrome P450 3A4(CYP3A4). However these effects are inconclusive with regards to prediction of potential drug interactions. Methods Nomilin or obacunone was pre-incubated with HLMs for 30 min. Following 10-fold dilution from the pre-incubation concentration, a second incubation was performed in the presence of NADPH and cytochrome P450 substrates for 15 min. The reaction was quenched and the supernatants were analyzed by chromatography/mass spectrometry. Results In this study, nomilin and obacunone showed potent inhibitory effect on CYP3A4 with the IC_(50) values of 3.50 and 6.08 μmol/L, respectively. The inhibition of CYP3A4 was in a time-, concentration-and NADPH-dependent manner with Ki values of 2.92 and 1.25 μmol/L and Kinact values of 0.033 and 0.078 min^(-1) for nomilin and obacunone respectively. These results elucidated that they were time-dependent inhibitors for CYP3A4. Conclusion Concomitant use of limonoids and other drugs may call for extra caution for purposes of clinical safety. 展开更多
关键词 cytochrome P450 human liver microsomes LIMONOIDS nomilin obacunone time-dependent inhibition
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部