This paper represents the performance analysis of the different shapes of antenna balun and feeding techniques for step constant tapered slot antenna. This work also addresses the benefits of antenna balun (circular a...This paper represents the performance analysis of the different shapes of antenna balun and feeding techniques for step constant tapered slot antenna. This work also addresses the benefits of antenna balun (circular and rectangular) along with two types of feeding techniques (Microstrip line L-shape and Microstrip line I-shape). The performance of the antenna for each technique is thoroughly investigated using Computer Simulation Technology (CST) Microwave Studio software simulation under the resonant frequency of 5.9 GHz. Results demonstrate that the proposed model is an effective tool for improving antenna performance. Moreover, an extensive comparison has been carried out between the two different shapes, with and without antenna balun and between two feeding techniques focusing on return losses, gain, directivity, and voltage standing wave ratio (VSWR).展开更多
Antennas are an indispensable element in wireless networks. For long-distance wireless communication, antenna gains need to be very strong (highly directive) because the signal from the antenna loses a lot of str...Antennas are an indispensable element in wireless networks. For long-distance wireless communication, antenna gains need to be very strong (highly directive) because the signal from the antenna loses a lot of strength as it travels over long distances. This is true in the military with missile, radar, and satellite systems, etc. Antenna arrays are commonly employed to focus electromagnetic waves in a certain direction that cannot be achieved perfectly with a single-element antenna. The goal of this study is to design a rectangular microstrip high-gain 2 × 1 array antenna using ADS Momentum. This microstrip patch array design makes use of the RT-DUROID 5880 as a substrate with a dielectric constant of 2.2, substrate height of 1.588 mm, and tangent loss of 0.001. To achieve efficient gain and return loss characteristics for the proposed array antenna, RT-Duroid is a good choice of dielectric material. The designed array antenna is made up of two rectangular patches, which have a resonance frequency of 3.3 GHz. These rectangular patches are excited by microstrip feed lines with 13 mm lengths and 4.8 mm widths. The impedance of the patches is perfectly matched by these transmission lines, which helps to get better antenna characteristics. At a resonance frequency of 3.3 GHz, the suggested antenna array has a directivity of 10.50 dB and a maximum gain of 9.90 dB in the S-band. The S parameters, 3D radiation pattern, directivity, gain, and efficiency of the constructed array antenna are all available in ADS Momentum.展开更多
A proposed circular patch antenna with notch-cut fed by a simple microstrip line is described in this paper. It is designed for ultra-wideband (UWB) wireless communications and applications over the band 3.1-10.6 GH...A proposed circular patch antenna with notch-cut fed by a simple microstrip line is described in this paper. It is designed for ultra-wideband (UWB) wireless communications and applications over the band 3.1-10.6 GHz. This antenna consists of a circular patch with notch-cut fed by a microstrip line, one transition step, and a partial ground plane. The 2: l voltage standing wave ratio (VSWR) bandwidth (Sll 〈-10dB) of the proposed antenna covers the entire UWB application range specified by Federal Communications Commission (FCC) that is from 3.1 to 10.6GHz. The proposed antenna is able to achieve an impedance bandwidth about 8.6 GHz (2.4-11 GHz). The return loss, VSWR, radiation pattern, radiation efficiency, gain, distribution of the proposed group delay, and current antenna are included in this paper. The simulation results and proposed antenna design details are presented by CST Microwave Studio.展开更多
文摘This paper represents the performance analysis of the different shapes of antenna balun and feeding techniques for step constant tapered slot antenna. This work also addresses the benefits of antenna balun (circular and rectangular) along with two types of feeding techniques (Microstrip line L-shape and Microstrip line I-shape). The performance of the antenna for each technique is thoroughly investigated using Computer Simulation Technology (CST) Microwave Studio software simulation under the resonant frequency of 5.9 GHz. Results demonstrate that the proposed model is an effective tool for improving antenna performance. Moreover, an extensive comparison has been carried out between the two different shapes, with and without antenna balun and between two feeding techniques focusing on return losses, gain, directivity, and voltage standing wave ratio (VSWR).
文摘Antennas are an indispensable element in wireless networks. For long-distance wireless communication, antenna gains need to be very strong (highly directive) because the signal from the antenna loses a lot of strength as it travels over long distances. This is true in the military with missile, radar, and satellite systems, etc. Antenna arrays are commonly employed to focus electromagnetic waves in a certain direction that cannot be achieved perfectly with a single-element antenna. The goal of this study is to design a rectangular microstrip high-gain 2 × 1 array antenna using ADS Momentum. This microstrip patch array design makes use of the RT-DUROID 5880 as a substrate with a dielectric constant of 2.2, substrate height of 1.588 mm, and tangent loss of 0.001. To achieve efficient gain and return loss characteristics for the proposed array antenna, RT-Duroid is a good choice of dielectric material. The designed array antenna is made up of two rectangular patches, which have a resonance frequency of 3.3 GHz. These rectangular patches are excited by microstrip feed lines with 13 mm lengths and 4.8 mm widths. The impedance of the patches is perfectly matched by these transmission lines, which helps to get better antenna characteristics. At a resonance frequency of 3.3 GHz, the suggested antenna array has a directivity of 10.50 dB and a maximum gain of 9.90 dB in the S-band. The S parameters, 3D radiation pattern, directivity, gain, and efficiency of the constructed array antenna are all available in ADS Momentum.
文摘A proposed circular patch antenna with notch-cut fed by a simple microstrip line is described in this paper. It is designed for ultra-wideband (UWB) wireless communications and applications over the band 3.1-10.6 GHz. This antenna consists of a circular patch with notch-cut fed by a microstrip line, one transition step, and a partial ground plane. The 2: l voltage standing wave ratio (VSWR) bandwidth (Sll 〈-10dB) of the proposed antenna covers the entire UWB application range specified by Federal Communications Commission (FCC) that is from 3.1 to 10.6GHz. The proposed antenna is able to achieve an impedance bandwidth about 8.6 GHz (2.4-11 GHz). The return loss, VSWR, radiation pattern, radiation efficiency, gain, distribution of the proposed group delay, and current antenna are included in this paper. The simulation results and proposed antenna design details are presented by CST Microwave Studio.