期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effects of Mierostructure Modification on Properties of MN/BN Composites 被引量:1
1
作者 李美娟 张联盟 +1 位作者 SHEN qiang ZHANG Dongming 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2008年第1期121-124,共4页
It is very difficult to prepare full-densified aluminum nitride-boron nitride (AIN/BN) composite ceramics with homogeneous microstructure and high thermal conductivity. Spark plasma sintering (SPS) was used to ful... It is very difficult to prepare full-densified aluminum nitride-boron nitride (AIN/BN) composite ceramics with homogeneous microstructure and high thermal conductivity. Spark plasma sintering (SPS) was used to fully densify the AIN/BN composites in this work. Microstructure, mechanical properties and thermal conductivity of the SPS sintered AIN/BN composites with 5-30 vol% BN were investigated. The results show that the microstructure of composites is fine and homogenous, and the AIN/BN composites exhibit high mechanical properties. To promote the growth of AIN grains and modify the distribution of grain boundary in AIN/BN composites, a heat treating methodology was introduced through gas pressure sintering (GPS). This processing was significantly beneficial to enhancing the thermal conductivity of the specimen. The thermal conductivity of AIN/BN composites with 5-30 vol% BN reached 60 W/m K after the samples were treated by GPS. 展开更多
关键词 AlN/BN composites thermal conductivity microstructure modification
下载PDF
A review of classical hydrogen isotopes storage materials
2
作者 Yang Liu Zhiyi Yang +6 位作者 Panpan Zhou Xuezhang Xiao Jiacheng Qi Jiapeng Bi Xu Huang Huaqin Kou Lixin Chen 《Materials Reports(Energy)》 EI 2024年第1期23-42,共20页
Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactiv... Hydrogen storage alloys(HSAs)are attracting widespread interest in the nuclear industry because of the generation of stable metal hydrides after tritium absorption,thus effectively preventing the leakage of radioactive tritium.Commonly used HSAs in the hydrogen isotopes field are Zr2M(M=Co,Ni,Fe)alloys,metallic Pd,depleted U,and ZrCo alloy.Specifically,Zr2M(M=Co,Ni,Fe)alloys are considered promising tritium-getter materials,and metallic Pd is utilized to separate and purify hydrogen isotopes.Furthermore,depleted U and ZrCo alloy are well suited for storing and delivering hydrogen isotopes.Notably,all the aforementioned HSAs need to modulate their hydrogen storage properties for complex operating conditions.In this review,we present a comprehensive overview of the reported modification methods applied to the above alloys.Alloying is an effective amelioration method that mainly modulates the properties of HSAs by altering their local geometrical/electronic structures.Besides,microstructural modifications such as nano-sizing and nanopores have been used to increase the specific surface area and active sites of metallic Pd and ZrCo alloys for enhancing de-/hydrogenation kinetics.The combination of metallic Pd with support materials can significantly reduce the cost and enhance the pulverization resistance.Moreover,the poisoning resistance of ZrCo alloy is improved by constructing active surfaces with selective permeability.Overall,the review is constructive for better understanding the properties and mechanisms of hydrogen isotope storage alloys and provides effective guidance for future modification research. 展开更多
关键词 Hydrogen isotopes storage alloys ALLOYING microstructural modification Surface modification Composite materials
下载PDF
Microstructure modification of Y2O3 stabilized ZrO2 thermal barrier coatings by laser glazing and the effects on the hot corrosion resistance 被引量:19
3
作者 Lei GUO Hui XIN +2 位作者 Zhao ZHANG Xinmu ZHANG Fuxing YE 《Journal of Advanced Ceramics》 SCIE CSCD 2020年第2期232-242,共11页
Y2O3 stabilized ZrO2(YSZ)thermal barrier coatings(TBCs)are prone to hot corrosion by molten salts.In this study,the microstructure of atmospheric plasma spraying YSZ TBCs is modified by laser glazing in order to impro... Y2O3 stabilized ZrO2(YSZ)thermal barrier coatings(TBCs)are prone to hot corrosion by molten salts.In this study,the microstructure of atmospheric plasma spraying YSZ TBCs is modified by laser glazing in order to improve the corrosion resistance.By optimizing the laser parameters,a^18μm smooth glazed layer with some vertical cracks was produced on the coating surfaces.The as-sprayed and modified coatings were both exposed to hot corrosion tests at 700 and 1000℃for 4 h in V2O5 molten salt,and the results revealed that the modified one had improved corrosion resistance.After hot corrosion,the glazed layer kept structural integrity,with little evidence of dissolution.However,the vertical cracks in the glazed layer acted as the paths for molten salt penetration,accelerating the corrosion of the non-modified coating.Further optimization of the glazed layer is needed in the future work. 展开更多
关键词 thermal barrier coatings(TBCs) air plasma spraying(APS) Y2O3 stabilized ZrO2 microstructure modification laser glazing V2O5 corrosion
原文传递
Mechanism and application of mechanical property improvements in engineering materials by pulsed magnetic treatment:A review
4
作者 Zhipeng CAI Chengkai QIAN +3 位作者 Xu ZHANG Ning DAI Yao WU Wen JI 《Friction》 SCIE EI CAS CSCD 2024年第10期2139-2166,共28页
Pulsed magnetic treatment(PMT)has been adopted as an effective strengthening method for engineering materials and components in recent years,and the development of its application depends on the comprehensive understa... Pulsed magnetic treatment(PMT)has been adopted as an effective strengthening method for engineering materials and components in recent years,and the development of its application depends on the comprehensive understanding of the nature of PMT.The deep mechanism was thought initially to be the magnetostrictive effect,while further investigation found that the magnetic field could lead to the change of the defect states in the crystal,which is called the magnetoplastic effect.Due to the complexity of the engineering materials,manifestations of the magnetoplastic effect become more diverse,and they were reviewed in the form of microstructure homogenization and interfacial stabilization.Further,the mechanism of the magnetoplastic effect was discussed,focusing on the changes in the spin states under the external magnetic field.Microstructure modifications could also alter material performances,especially the residual stress,plasticity,and fatigue properties.Therefore,PMT with specific parameters can be utilized to obtain an ideal combination of microstructure,residual stress,and mechanical properties for better service performance of different mechanical parts,and its applications on machining tools and bearings are perfect examples.This work reviews the effect of PMT on the microstructure and properties of different materials and the mechanism,and it also summarizes the fundamental applications of PMT on essential mechanical parts. 展开更多
关键词 pulsed magnetic treatment wear resistance microstructure modifications mechanical properties magnetoplastic effect
原文传递
Generic principles of crack-healing ceramics 被引量:3
5
作者 Peter GREIL 《Journal of Advanced Ceramics》 SCIE CAS 2012年第4期249-267,共19页
Ceramic materials able to heal manufacture or damage induced microstructure defects might trigger a change in paradigm for design and application of load bearing ceramics.This work reviews thermodynamic and kinetic as... Ceramic materials able to heal manufacture or damage induced microstructure defects might trigger a change in paradigm for design and application of load bearing ceramics.This work reviews thermodynamic and kinetic aspects governing the regeneration of solid contact able to transfer stress between disrupted crack surfaces in ceramics.Major crack healing processes include perturbation of crack-like pores followed by sintering of isolated pores,as well as reaction with an environmental atmosphere and filling of the crack space with an oxidation product.Since thermally activated solid state reactions require elevated temperatures which may exceed 1000℃,processes able to trigger crack healing at lower temperatures are of particular interest for transferring into engineering applications.Generic principles of microstructure modifications able to facilitate crack repair at lower temperatures will be considered:(i)acceleration of material transport by grain boundary decoration and grain size reduction,and(ii)reduction of thermal activation barrier by repair filler activation.Examples demonstrating crack healing capability include oxidation reaction of low energy bonded intercalation metal from nano-laminate MAX phases and catalyzed surface nitridation of polymer derived ceramics containing repair fillers. 展开更多
关键词 crack healing microstructure modifications oxidation healing MAX phases preceramic polymers
原文传递
Effect of combinative addition of mischmetal and titanium on the microstructure and mechanical properties of hypoeutectic Al-Si alloys used for brazing and/or welding consumables 被引量:3
6
作者 王博 薛松柏 +1 位作者 王俭辛 林中强 《Journal of Rare Earths》 SCIE EI CAS CSCD 2017年第2期193-202,共10页
Effects of mischmetal(RE) and/or Ti modifier on the microstructure including α-Al dendrites, eutectic Si phases and other secondary phases of Al-Si brazing and/or welding alloys were investigated by differential sc... Effects of mischmetal(RE) and/or Ti modifier on the microstructure including α-Al dendrites, eutectic Si phases and other secondary phases of Al-Si brazing and/or welding alloys were investigated by differential scanning calorimetry(DSC), optical microscopy(OM), scanning electron microscopy(SEM). The DSC results showed that an addition of RE decreased the eutectic temperature and caused supercooling, promoting the nucleation of eutectic Si crystals. In addition, the maximum temperature of the first endothermic peak varied with the different RE contents, which had a good correlation with the microstructural modification of the eutectic Si phase. The α-Al dendrites were well refined by increasing the cooling rate or adding 0.08 wt.% of Ti. When 0.05 wt.% RE was added to the Al-5Si-0.08 Ti alloy, the morphology of eutectic Si phase was transformed from coarse platelet to fine fibers and the mechanical properties of the resulting welding rod were well improved. Whereas, when excess RE was added, a large number of β-Fe phases appeared and the aspect ratios of β-Fe phases increased. The morphologies and chemical components of two kinds of RE-containing intermetallic compounds(IMCs) were also discussed. 展开更多
关键词 Al-Si alloy rare earths modification microstructure mechanical properties
原文传递
Heterogeneous particle structure formation during post-crystallization of spray-dried powder
7
作者 Nima Yazdanpanah Tim A.G. Langrish 《Particuology》 SCIE EI CAS CSCD 2016年第4期72-79,共8页
The formation of heterogeneous particle structure in skim milk powder has been investigated in a post- crystallization facility using experimental and a mathematical model. Various processing conditions were used to p... The formation of heterogeneous particle structure in skim milk powder has been investigated in a post- crystallization facility using experimental and a mathematical model. Various processing conditions were used to produce these heterogeneous structures. The experimental process parameters were used as initial and boundary conditions for the model. The modelled data agreed well with the experimental data. The experimental and modelling results show that the powder processed at high water activity (aw = 0.7) with low initial moisture content (X0 = 0.01 kg/kg) developed a crystalline surface layer while the core of the particle remained amorphous. This structure is referred to as an egg-shell structure. The powder that was processed at low water activity (αw = 0.1) with high initial moisture content (X0 = 0.2 kg/kg) developed a crystalline core while the surface of the particle remained amorphous. This structure is referred to as an egg-yolk structure. Understanding the dependency of particle microstructures on the processing conditions could be useful when developing procedures to control the drying equipment because the particle microstructure affects the physicochemical properties of the powder and potential applications and behaviour of the powder. 展开更多
关键词 Heterogeneous structure Microstructure modification Post-crystallization Phase change Complex domain matrix
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部