A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electri...A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.展开更多
Hypereutectic Al -27Si alloys were joined without flux by ultrasonic-assisted soldering at 420 ℃ in air using Zn -5Al the filler alloys, and Si particulate-reinforced Zn - Al based composites filler joints were obtai...Hypereutectic Al -27Si alloys were joined without flux by ultrasonic-assisted soldering at 420 ℃ in air using Zn -5Al the filler alloys, and Si particulate-reinforced Zn - Al based composites filler joints were obtained. The ultrasonic vibration introduced into soldering could influence the migration of Si particles and the microstructure of solidified Zn - Al based alloys. Both the distribution of Si particles and microstructure of the solidified Zn - Al based alloys affected the shear strength of joints. The shear strength increased with the ultrasonic vibration time. The highest average shear strength of joints reached to -68.5 MPa. Transcrystalline rupture mode was observed on the fracture surface.展开更多
Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The si...Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.展开更多
A1203-Si composite specimens were prepared using fused corundum, ultra-fine α-A1203 and Si powder as starting materials and resin as binder. Effects of sintering atmospheres on properties, phase composition and micro...A1203-Si composite specimens were prepared using fused corundum, ultra-fine α-A1203 and Si powder as starting materials and resin as binder. Effects of sintering atmospheres on properties, phase composition and microstructure of specimens after firing at 1 500 ℃ were investigated. The results show that: ( 1 ) after .firing in oxidizing or weak oxidizing atmosphere, there is some Si in the specimens and some glass phases containing mullite form on specimen surface, the density and strength at room temperature are relatively high, but hot modulus of rupture and thermal shock resistance are relatively poor; (2) after firing in, weak reducing or reducing atmosphere, Si reacts completely with CO or N2forming whisk-phere, Si reacts completely with CO or N2forming whisk-er-like SiC, granular Si2N20 or 0'-SiAION, and the er-like SiC, granular Si2N20 or O'-SiMON, and the thermo-mechanical properties of specimens are enhanced;(3) after firing in nitrogen atmosphere, Si reacts completely with N2, CO or G forming wbisker-like SiC and columnar β-SiA10N crystals, the hot modulus of rupture and thermal shock resistance of specimens are enhanced noticeably.展开更多
After solution treatment, the 1420 Al-Li alloy samples were aged at different temperatures in an electric field with different intensity. The measurements made showed that the electric field increased the strength of ...After solution treatment, the 1420 Al-Li alloy samples were aged at different temperatures in an electric field with different intensity. The measurements made showed that the electric field increased the strength of the 1420 Al-Li alloy, and best properties were obtained when they were aged at 120 ℃ with E=4 kV/cm for 12 hrs. The electric field promoted the nucleation of δ′ phase, increased the quantity of the δ′ phase, and made the size of the δ′ phase particles smaller. The electric field restrained the formation and growth of PFZ, and increased the intensity of the electric field while the width of the PFZ was decreased.展开更多
The effects of Ca element on the microstructure and mechanical properties of AZ61-1. 2Y alloy were investigated by microstructure observation, tensile tests and fracture analysis. The results show that, with the addit...The effects of Ca element on the microstructure and mechanical properties of AZ61-1. 2Y alloy were investigated by microstructure observation, tensile tests and fracture analysis. The results show that, with the addition of Ca element, the microstructure of AZ61-1.2Y was obviously refined, high melting point Al2Ca intermetallic compound formed, and/3-Mg17 Al12 phase disappeared. With 1. 0% Ca addition, the values of tensile strength at 25, 150 and 175 ℃ reached their maxima simultaneously, 225, 182, and 175 MPa, respectively. Meanwhile, the values of elongation at room temperature and elevated temperature were also up to their peaks. The enhancement of the mechanical properties of AZ61-1.2Y with Ca can be attributed to the functions of grain refmement strengthening and dispersion strengthening.展开更多
Engineering materials, mostly steel, are heat treated under controlled sequence of heating and cooling to alter their physical and mechanical properties to meet desired engineering applications. In this study, the eff...Engineering materials, mostly steel, are heat treated under controlled sequence of heating and cooling to alter their physical and mechanical properties to meet desired engineering applications. In this study, the effect of heat treatment (annealing, normalising, hardening, and tempering) on the microstructure and some selected mechanical properties of NST 37-2 steel were studied. Sample of steel was purchased from local market and the spectrometry analysis was carried out. The steel samples were heat treated in an electric furnace at different temperature levels and holding times;and then cooled in different media. The mechanical properties (tensile yield strength, ultimate tensile strength, Young’s modulus, percentage reduction, percentage elongation, toughness and hardness) of the treated and untreated samples were determined using standard methods and the microstructure of the samples was examined using metallographic microscope equipped with camera. Results showed that the mechanical properties of NST 37-2 steel can be changed and improved by various heat treatments for a particular application. It was also found that the annealed samples with mainly ferrite structure gave the lowest tensile strength and hardness value and highest ductility and toughness value while hardened sample which comprise martensite gave the highest tensile strength and hardness value and lowest ductility and toughness value.展开更多
Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure f...Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.展开更多
Resins PFG-4 , PFG-8 and a reference resin (resin A) were used as binders of MgO - C bricks, effects of the resins with different molecular structures on wettability of magnesia, on physical properties, mechanical p...Resins PFG-4 , PFG-8 and a reference resin (resin A) were used as binders of MgO - C bricks, effects of the resins with different molecular structures on wettability of magnesia, on physical properties, mechanical properties, oxidation resistance and thermal expansion properties of MgO- C bricks were researched. The results show that the microstructures of solidified resins with different mo- lecular structures are different, which have obvious effect on the cold mechanical properties of MgO - C brick, but little effect on the oxidation resistance, thermal perform- ance and expansion properties.展开更多
This work investigated the gradient microstructure evolution and tensile property of LPBF fabricated 15-5 precipitation hardening stainless steel in post-process direct ageing(DA)and solution treating&ageing(STA)....This work investigated the gradient microstructure evolution and tensile property of LPBF fabricated 15-5 precipitation hardening stainless steel in post-process direct ageing(DA)and solution treating&ageing(STA).The varied microstructures for austenite and small-sized oxide inclusions at different sample heights in the as-built(AB)condition was generally preserved after DA treatment.However,austenite was almost disappeared,and oxide particle grew significantly after the STA treatment.As a result,the tensile property differences in sample top and bottom for AB and DA conditions did not occur in the STA samples.For the influence of post-process heat treatment,the STA condition had the highest yield strength due to the highest volume fraction of nano-sized Cu precipitates.However,the DA specimen had the highest ultimate tensile strength and elongation owing to the considerable amount of austenite phase and associated transformation induced plasticity effect.展开更多
An AZ31-0.1Ca magnesium alloy produced by Soft-contact electromagnetic continuous casting (SEMC) was investigated. The fine homogeneous structure and the precipitated phases were obtained by SEMC. The effects of mic...An AZ31-0.1Ca magnesium alloy produced by Soft-contact electromagnetic continuous casting (SEMC) was investigated. The fine homogeneous structure and the precipitated phases were obtained by SEMC. The effects of microalloying of Ca and middle frequency electromagnetic field on AZ31-0.1Ca magnesium alloy were discussed. And the as-cast billets were extruded with different extrusion ratios subsequently. The alloy showed an ultrafine grain size of 2-5 #m due to dynamic recrytallization (DRX) in the course of hot extrusion. The comprehensive properties of the as-extruded alloy are the best at the extrusion ratio of 25, and the hardness, UTS and elongation are 73.9 HB, 356.8 MPa and 16.570, respectively.展开更多
High niobium β-γ TiAl alloy(HNBG) was diffusion bonded using spark plasma sintering with pure Ti as interlayer. The joint microstructural evolution, growth kinetics and mechanical properties were investigated. The j...High niobium β-γ TiAl alloy(HNBG) was diffusion bonded using spark plasma sintering with pure Ti as interlayer. The joint microstructural evolution, growth kinetics and mechanical properties were investigated. The joint included three diffusion zones. The β/B2 phase formed in the Zone Ⅰ, α_(2)phase in the Zone Ⅱ, and β-Ti and α-Ti phases in the Zone Ⅲ. The thickness of β/B2 phase, the average grain size of α_(2)phase and the amount of β-Ti phase increased with the increase of bonding temperature or bonding time. The growth activation energies of β/B2 and α_(2)phases were 582 and 253 kJ/mol, respectively. The joint acquired at 1000 °C, 10 min and 10 MPa showed the maximum shear strength of 308 MPa. Fracture mainly occurred along the interfaces between Zone Ⅰ and HNBG alloy, and between Zone I and Zone Ⅱ. Fracture mechanism of the joint was characterized by brittleness rupture along the phase boundary.展开更多
基金Project(20130161110007) supported by the Doctoral Program of Higher Education of China
文摘A novel process for manufacturing A1-0.70Fe-0.24Cu alloy conductor was proposed, which includes horizontal continuous casting and subsequent continuous extrusion forming (Conform). The mechanical properties, electrical conductivity and the compressed creep behaviour of the alloy were studied. The results indicate that the Conform process induces obvious grain refinement, strain-induced precipitation of AI7CuzFe phase and the transformation of crystal orientation distribution. The processed alloy has good comprehensive mechanical properties and electrical conductivity. Moreover, a better creep resistance under the conditions of 90 ~C and 76 MPa is shown compared with pure A1 and annealed copper, and the relationship between primary creep strain and time may comply with the logarithmic law. The enhanced properties are attributed to the grain refinement as well as the fine and homogeneously distributed thermally stable A1Fe and A17Cu2Fe precipitation phases.
基金sponsored by the National Natural Science Foundation of China(Grant No.51504165)the Project funded by the China Postdoctoral Science Foundation(Grant No.2016M601271)Tianjin Scince&Technology Project(Grant No.16JCQNJC02600)
文摘Hypereutectic Al -27Si alloys were joined without flux by ultrasonic-assisted soldering at 420 ℃ in air using Zn -5Al the filler alloys, and Si particulate-reinforced Zn - Al based composites filler joints were obtained. The ultrasonic vibration introduced into soldering could influence the migration of Si particles and the microstructure of solidified Zn - Al based alloys. Both the distribution of Si particles and microstructure of the solidified Zn - Al based alloys affected the shear strength of joints. The shear strength increased with the ultrasonic vibration time. The highest average shear strength of joints reached to -68.5 MPa. Transcrystalline rupture mode was observed on the fracture surface.
基金Financial assistance from Defence Research and Development Organisation
文摘Maraging steel (250) and 13-8 Mo stainless steel plates were joined by gas tungsten constricted arc welding(GTCAW) process in similar and dissimilar metal combinations using 13-8 Mo stainless steel filler wire. The similar and dissimilar metal welds made in solutionized condition were subjected to standard post weld hardening treatments direct ageing at 485 ℃, soaking for 31/2 hours followed by air cooling(ageing treatment of maraging steel) and direct ageing at 510 ℃, soaking for 4 h followed by air cooling(ageing treatment of 13-8 Mo stainless steel). The joint characterization studies include microstructure examination, microhardness survey across the weldments and transverse weld tensile test.Similar and dissimilar metal weldments responded to both the post weld ageing treatment. After post weld aging, increase in yield strength, UTS and slight reduction in % elongation of similar and dissimilar metal were observed. The observed tensile properties were correlated with microstructure and hardness distribution across the welds.
基金financially supported by Henan Scientific and Technological Research Projects (112102210095 )Science Fund for Distinguished Young Scholars of Henan Province ( No.124100510019) the Education Department of Henan Province Foundation (14A430030)
文摘A1203-Si composite specimens were prepared using fused corundum, ultra-fine α-A1203 and Si powder as starting materials and resin as binder. Effects of sintering atmospheres on properties, phase composition and microstructure of specimens after firing at 1 500 ℃ were investigated. The results show that: ( 1 ) after .firing in oxidizing or weak oxidizing atmosphere, there is some Si in the specimens and some glass phases containing mullite form on specimen surface, the density and strength at room temperature are relatively high, but hot modulus of rupture and thermal shock resistance are relatively poor; (2) after firing in, weak reducing or reducing atmosphere, Si reacts completely with CO or N2forming whisk-phere, Si reacts completely with CO or N2forming whisk-er-like SiC, granular Si2N20 or 0'-SiAION, and the er-like SiC, granular Si2N20 or O'-SiMON, and the thermo-mechanical properties of specimens are enhanced;(3) after firing in nitrogen atmosphere, Si reacts completely with N2, CO or G forming wbisker-like SiC and columnar β-SiA10N crystals, the hot modulus of rupture and thermal shock resistance of specimens are enhanced noticeably.
文摘After solution treatment, the 1420 Al-Li alloy samples were aged at different temperatures in an electric field with different intensity. The measurements made showed that the electric field increased the strength of the 1420 Al-Li alloy, and best properties were obtained when they were aged at 120 ℃ with E=4 kV/cm for 12 hrs. The electric field promoted the nucleation of δ′ phase, increased the quantity of the δ′ phase, and made the size of the δ′ phase particles smaller. The electric field restrained the formation and growth of PFZ, and increased the intensity of the electric field while the width of the PFZ was decreased.
基金Project supported by Excellent Talents of Henan Province of China (No.084200510018)
文摘The effects of Ca element on the microstructure and mechanical properties of AZ61-1. 2Y alloy were investigated by microstructure observation, tensile tests and fracture analysis. The results show that, with the addition of Ca element, the microstructure of AZ61-1.2Y was obviously refined, high melting point Al2Ca intermetallic compound formed, and/3-Mg17 Al12 phase disappeared. With 1. 0% Ca addition, the values of tensile strength at 25, 150 and 175 ℃ reached their maxima simultaneously, 225, 182, and 175 MPa, respectively. Meanwhile, the values of elongation at room temperature and elevated temperature were also up to their peaks. The enhancement of the mechanical properties of AZ61-1.2Y with Ca can be attributed to the functions of grain refmement strengthening and dispersion strengthening.
文摘Engineering materials, mostly steel, are heat treated under controlled sequence of heating and cooling to alter their physical and mechanical properties to meet desired engineering applications. In this study, the effect of heat treatment (annealing, normalising, hardening, and tempering) on the microstructure and some selected mechanical properties of NST 37-2 steel were studied. Sample of steel was purchased from local market and the spectrometry analysis was carried out. The steel samples were heat treated in an electric furnace at different temperature levels and holding times;and then cooled in different media. The mechanical properties (tensile yield strength, ultimate tensile strength, Young’s modulus, percentage reduction, percentage elongation, toughness and hardness) of the treated and untreated samples were determined using standard methods and the microstructure of the samples was examined using metallographic microscope equipped with camera. Results showed that the mechanical properties of NST 37-2 steel can be changed and improved by various heat treatments for a particular application. It was also found that the annealed samples with mainly ferrite structure gave the lowest tensile strength and hardness value and highest ductility and toughness value while hardened sample which comprise martensite gave the highest tensile strength and hardness value and lowest ductility and toughness value.
基金Project(U1637601)supported by the Joint Funds of the National Natural Science Foundation of China。
文摘Microstructural evolution and its effect on mechanical properties in different regions of 2219-C10S aluminum alloy tungsten inert gas(TIG)welded joint were analyzed in detail.In weld zone(WZ),α+θeutectic structure formed at grain boundaries with no precipitates inside the grains.In partially melted zone(PMZ),symbiotic eutectic or divorced eutectic formed at grain boundaries and needle-likeθ′phases appeared in the secondary heated zone.In over aged zone(OAZ),the coarsening and dissolution ofθ′phases occurred and mostθ′phases transformed intoθphases.In general heat affected zone(HAZ),θ′phases coarsened.Factors such as the strengthening phases,the grain size,the Cu content in matrix and the dislocation density can affect the mechanical properties in different regions of the joint.Moreover,a model describing the relationship between mechanical properties of the material and the volume fraction of precipitates,the average diameter of precipitates and the concentration of soluble elements was proposed.
文摘Resins PFG-4 , PFG-8 and a reference resin (resin A) were used as binders of MgO - C bricks, effects of the resins with different molecular structures on wettability of magnesia, on physical properties, mechanical properties, oxidation resistance and thermal expansion properties of MgO- C bricks were researched. The results show that the microstructures of solidified resins with different mo- lecular structures are different, which have obvious effect on the cold mechanical properties of MgO - C brick, but little effect on the oxidation resistance, thermal perform- ance and expansion properties.
基金Sheng Cao thanks the support from the National Natural Science Foundation of China(No.52204391)the Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province(Nos.STKJ202209021 and STKJ2023040)+1 种基金the Characteristic Innovation Project(Natural Science)for Regular University in Guangdong Province(No.2022KTSCX038)the Shantou University Research Foundation for Talents(No.NTF21013).
文摘This work investigated the gradient microstructure evolution and tensile property of LPBF fabricated 15-5 precipitation hardening stainless steel in post-process direct ageing(DA)and solution treating&ageing(STA).The varied microstructures for austenite and small-sized oxide inclusions at different sample heights in the as-built(AB)condition was generally preserved after DA treatment.However,austenite was almost disappeared,and oxide particle grew significantly after the STA treatment.As a result,the tensile property differences in sample top and bottom for AB and DA conditions did not occur in the STA samples.For the influence of post-process heat treatment,the STA condition had the highest yield strength due to the highest volume fraction of nano-sized Cu precipitates.However,the DA specimen had the highest ultimate tensile strength and elongation owing to the considerable amount of austenite phase and associated transformation induced plasticity effect.
基金supported by the National Natural Science Foundation of China(No.50475157)the Key Fund of NSFC (No.50234022)the Key Project of Ministry of Education of China (No.105052)
文摘An AZ31-0.1Ca magnesium alloy produced by Soft-contact electromagnetic continuous casting (SEMC) was investigated. The fine homogeneous structure and the precipitated phases were obtained by SEMC. The effects of microalloying of Ca and middle frequency electromagnetic field on AZ31-0.1Ca magnesium alloy were discussed. And the as-cast billets were extruded with different extrusion ratios subsequently. The alloy showed an ultrafine grain size of 2-5 #m due to dynamic recrytallization (DRX) in the course of hot extrusion. The comprehensive properties of the as-extruded alloy are the best at the extrusion ratio of 25, and the hardness, UTS and elongation are 73.9 HB, 356.8 MPa and 16.570, respectively.
基金supported by the National Natural Science Foundation of China (Nos. 51871012, 52071021)Beijing Natural Science Foundation (No. 2162024)+1 种基金Fundamental Research Funds for the Central Universities, China (No. FRF-GF-20-20B)the National Key Basic Research Program of China (No. 2011CB605502)。
文摘High niobium β-γ TiAl alloy(HNBG) was diffusion bonded using spark plasma sintering with pure Ti as interlayer. The joint microstructural evolution, growth kinetics and mechanical properties were investigated. The joint included three diffusion zones. The β/B2 phase formed in the Zone Ⅰ, α_(2)phase in the Zone Ⅱ, and β-Ti and α-Ti phases in the Zone Ⅲ. The thickness of β/B2 phase, the average grain size of α_(2)phase and the amount of β-Ti phase increased with the increase of bonding temperature or bonding time. The growth activation energies of β/B2 and α_(2)phases were 582 and 253 kJ/mol, respectively. The joint acquired at 1000 °C, 10 min and 10 MPa showed the maximum shear strength of 308 MPa. Fracture mainly occurred along the interfaces between Zone Ⅰ and HNBG alloy, and between Zone I and Zone Ⅱ. Fracture mechanism of the joint was characterized by brittleness rupture along the phase boundary.