期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Ageing Effect on Hardness and Microstructure of Al-Zn-Mg Alloys 被引量:5
1
作者 M.Iqbal, M.A.Shaikh, M.Ahmad and K.A.Shoaib (Nuclear Physics Division, Pakistan Institute of Nuclear Science and Technology P.O.Nilore, Islamabad, Pakistan) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第3期319-322,共4页
Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to ... Experimental results of the investigation on the hardness of two Al-Zn-Mg alloys [Al-10.0 Zn-4.0 Mg and Al-8.5 Zn-3.0 Mg (wt pct)] aged in the temperature range 60~310℃ for different intervals of time from 1/4 h to 168 h are presented. Both the alloys were found to show identical behaviour of hardness with ageing time. Alloy with higher Zn and Mg content had higher hardness than the alloy with lower solute content. There were three ranges of temperature in which different types of precipitates formed and affected the hardness. Some of the grain boundaries were found to migrate and precipitate free zone has been observed. 展开更多
关键词 ZN ageing Effect on Hardness and microstructure of Al-Zn-Mg Alloys AL
下载PDF
Evolution of Microstructure and Mechanical Property during Long-Term Aging in Udimet 720Li 被引量:6
2
作者 Lanzhang ZHOU and Valentino LUPINC CNR-TeMPE, Via R. Cozzi 53, 20125 Milano, Italy Jianting GUO Institute of Metal Research, CAS, 72 Wenhua Road, Shenyang 110016, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期633-637,共5页
Thermal stabilities of microstructure and mechanical property have been investigated on superalloy U720Li, which is of great interest of application for jet engine and land-based turbine disc. The results showed that,... Thermal stabilities of microstructure and mechanical property have been investigated on superalloy U720Li, which is of great interest of application for jet engine and land-based turbine disc. The results showed that, the primary and secondary gamma' particles maintain good thermal stability at 650 and 700 degreesC with aging time up to 3000 h, while the tertiary gamma' is apparently dependent on aging temperature and time. The tertiary gamma' particles undergo a procedure of coarsening, dissolution and eventually complete disappearance with the increasing of aging time and temperature. They exhibit unusual high sensibility upon aging temperature, which is attributed to the lattice misfit between the gamma' precipitates and the matrix in the alloy. The grain boundary phase M23C6 remains stable without forming of sigma phase even with aging time up to 3000 h at 700 degreesC. Microhardness decreases apparently with increasing aging time and aging temperature. Theoretical analysis based on dislocation mechanism indicates that the change of microhardness should be attributed to the evolution of the tertiary gamma' during aging. 展开更多
关键词 Evolution of microstructure and Mechanical Property during Long-Term Aging in Udimet 720Li LONG
下载PDF
Effect of aging temperature on the microstructures and mechanical properties of ZG12Cr9Mo1Co1NiVNbNB ferritic heat-resistant steel 被引量:1
3
作者 Xue Yang Lan Sun +3 位作者 Ji Xiong Ping Zhou Hong-yuan Fan Jian-yong Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第2期168-175,共8页
The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercr... The effect of aging on the mechanical properties and microstructures of a new ZG12Cr9 MolColNiVNbNB ferritic heat resistant steel was investigated in this work to satisfy the high steam parameters of the ultra-supercritical power plant.The results show that the main precipitates during aging are Fe(Cr,Mo)23C6,V(Nb)C,and(Fe2Mo) Laves in the steel.The amounts of the precipitated phases increase during aging,and correspondingly,the morphologies of phases are similar to be round.Fe(Cr,Mo)23C6 appears along boundaries and grows with increasing temperature.In addition,it is revealed that the martensitic laths are coarsened and eventually happen to be polygonization.The hardness and strength decrease gradually,whereas the plasticity of the steel increases.What's more,the hardness of this steel after creep is similar to that of other 9%-12%Cr ferritic steels.Thus,ZG12Cr9 MolColNiVNbNB can be used in the project. 展开更多
关键词 heat resistant steel aging temperature precipitates microstructure mechanical properties
下载PDF
Microstructure and Performance Analysis of Organic Coating under High Temperature and High CO_2 Partial Pressure
4
作者 李琼伟 ZHANG Jianxun +2 位作者 LI Mingxing XI Yuntao ZHANG Zhengyun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第6期1181-1186,共6页
To evaluate the property of the organic coatings in oil and gas plants, the aging process was studied in high temperature and high CO_2 partial pressure environment. Correlations were developed between the macroscopic... To evaluate the property of the organic coatings in oil and gas plants, the aging process was studied in high temperature and high CO_2 partial pressure environment. Correlations were developed between the macroscopic properties and microstructure of the organic coatings. The surface appearance, mechanical properties, and permeability of the organic coatings were measured. Furthermore, the crystal structure of the organic coatings was investigated through synchrotron radiation grazing incidence X-ray diffraction(GIXRD) on the BL14B1 beam line in Shanghai Synchrotron Radiation Facility. Combined with the Fourier transform infrared spectroscopy, the molecular structure of the organic coatings was investigated. The experimental results indicate that the thickness variation and weight loss of the organic coatings increase with the immersion time, and the penetration resistance of the coating obviously decreases as the temperature rises. Moreover, the degradation of the organic coatings with immersion time in high temperature and high CO_2 partial pressure environment is caused by the amorphization of the organic coatings as the groups and bonds of the organic coatings were not damaged. 展开更多
关键词 coating aging process microstructure mechanical property permeability
下载PDF
Effect of Cd on matrix structure ordering and aging precipitation evolution in a Mg-Gd-Cd solid-solution alloy
5
作者 Lin-Lin Liu Wei Sun +1 位作者 Cuixiu Liu Pengyang Sun 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2833-2852,共20页
The formation and evolution of Gd-rich precipitates companying with the matrix structure ordering in a Mg_(97)Gd_(2)Cd_(1)(at.%)solid-solution alloy aged at 200℃have been systemically investigated using high-angle an... The formation and evolution of Gd-rich precipitates companying with the matrix structure ordering in a Mg_(97)Gd_(2)Cd_(1)(at.%)solid-solution alloy aged at 200℃have been systemically investigated using high-angle annular dark-field scanning transmission electron microscopy(HAADF-STEM).The results show that Gd-rich precipitation dynamics during the aging treatment are noticeably affected by a continuous ordering transformation in the matrix.The ordering transformation process involving mainly re-distribution of Cd atoms was revealed to occur in the following way:random super-saturated solid solution(S.S.S.S.)→B19-type ordered domains→D019-type ordered domains.Four Gd(Cd)-rich precipitates,G.P.Ⅰ zone,G.P.Ⅱ zone,β′andβ_(1)phases,have been observed to be formed in sequence to coexist with the various ordered domains.Based on the HAADF-STEM characterization on the aging microstructures at different aging stages,it can be concluded that the Cd-addition and related matrix structure ordering can play significant roles in modifying the early-stage G.P.zone structure,altering the morphology ofβ′precipitates and promoting the forming ability of theβ_(1)precipitate. 展开更多
关键词 Mg-Gd-Cd alloy Ordering transformation Aging microstructure Precipitation evolution HAADF-STEM
下载PDF
Effect of Ageing at 700℃ on Microstructure and Mechanical Properties of S31042 Heat Resistant Steel 被引量:10
6
作者 WANG Jing-zhong LIU Zheng-dong +2 位作者 BAO Han-sheng CHENG Shi-chang WANG Bin 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2013年第4期54-58,共5页
To investigate the effect of high temperature ageing on the microstructure and mechanical properties of S31042steel,solid solution treatment at 700℃ was carried out for various time from 10to 6 000h.Experimental resu... To investigate the effect of high temperature ageing on the microstructure and mechanical properties of S31042steel,solid solution treatment at 700℃ was carried out for various time from 10to 6 000h.Experimental results showed that the change of mechanical properties is closely related to the amount of precipitated phases.During ageing from 10to 300h,precipitation in the tested steel increases rapidly,and correspondingly,the high temperature yield strength and room temperature hardness of tested steel increase rapidly.Meanwhile,the thickness of the secondary phase on grain boundaries widens sharply and the room temperature Charpy impact absorb energy decreases.Ageing beyond 300h,the precipitation in the steel increases gradually and the precipitates coarsen to a certain extent.The high temperature yield strength of the steel keeps stable,and the room temperature Charpy impact energy and hardness decrease slowly.Ageing beyond 3 000h,the mechanical properties of the steel tend to be stable.The main precipitates are M23C6,NbCrN and NbC in the tested steel. 展开更多
关键词 ageing microstructure mechanical property precipitated phase
原文传递
Microstructure and Mechanical Properties of a Spray-Formed Superalloy 被引量:1
7
作者 Fuwei Kang Fuyang Cao +2 位作者 Xuemin Zhang Hongyan Yue Yicheng Feng 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2014年第6期1063-1069,共7页
The microstructural evolution and mechanical properties of a spray-formed superalloy were studied in this paper. Based on a better understanding of the microstructural evolution of the spray-formed superalloy during s... The microstructural evolution and mechanical properties of a spray-formed superalloy were studied in this paper. Based on a better understanding of the microstructural evolution of the spray-formed superalloy during solution treatment, an optimum solution treatment process was obtained, namely, at 1,140 °C for 6 h, and air cooling(AC). The effects of the ageing treatments on the mechanical properties of the post-solution-treated spray-formed superalloy were evaluated using ageing harden curves and tensile testing. The results indicated that the maximum hardness value was achieved at 850 °C for 8 h, AC. Due to co-precipitation of primary and secondary c0 precipitates during the heat treatment,the spray-formed superalloy obtained an excellent combination of yield strength(YS = 1,110 MPa), ultimate tensile strength(UTS = 1,503 MPa), ductility(elongation, EL = 21%) and excellent stress rupture properties at 650 °C(UTS = 1,209 MPa, EL = 15.8%). The heat treatment also improved the rupture life at 650 °C/950 MPa and 750 °C/539 MPa up to 140 h without rupturing. The tensile-fractured surfaces exhibit ductile transgranular failure feature. The optimum heat treatment process was determined to be 1,140 °C/6 h+850 °C/8 h+AC. 展开更多
关键词 Spray-formed superalloy microstructure ageing harden Mechanical properties
原文传递
Microstructure Evolution and Mechanical Properties of HR3C Steel during Long-term Aging at High Temperature 被引量:15
8
作者 Bin WANG Zheng-dong LIU +2 位作者 Shi-chang CHENG Chun-ming LIU Jing-zhong WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2014年第8期765-773,共9页
Microstructure evolution and the changes in mechanical properties of HR3 Csteel during long-term aging at650,700 and 750℃ were investigated.The precipitated phases of the aging steel included M23C6 carbides,Z-phase a... Microstructure evolution and the changes in mechanical properties of HR3 Csteel during long-term aging at650,700 and 750℃ were investigated.The precipitated phases of the aging steel included M23C6 carbides,Z-phase and a trace amount of Nb(C,N).The M23C6 carbides were distributed mainly at the grain boundary,while Z-phase was mainly inside the grains.Amounts of both M23C6 carbides and Z-phase during the aging process increased with increasing aging period and temperature.Coarsening of M23C6 carbides was influenced significantly by aging time and temperature,while the size of the Z-phase was relatively less affected by the aging time and temperature,which had a steady strengthening effect.Coarsening of the M23C6 carbides was the main reason for the decline in high temperature yield strength during long-term aging at 750℃.The M23C6 carbides were linked into a continuous chain along the grain boundary which accounted for the decrease of toughness during aging. 展开更多
关键词 HR3C steels microstructure evolutions mechanical propertys aging
原文传递
Effect of Different Aging Processes on the Microstructure and Mechanical Properties of a Novel Al–Cu–Li Alloy 被引量:8
9
作者 Hongying Li Desheng Huang +3 位作者 Wei Kang Jiaojiao Liu Yangxun Ou Dewang Li 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第10期1049-1053,共5页
The effects of different aging processes on the microstructure and mechanical properties of a novel Al-Cu-Li alloy have been investigated by X-ray diffraction, scanning electron microscopy and transmission electron mi... The effects of different aging processes on the microstructure and mechanical properties of a novel Al-Cu-Li alloy have been investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It is found that the tensile properties of a novel Al-Cu-Li alloy are sensitive to aging processes, which correspond to different microstructures. σ(Al_5Cu_6Mg_2) and T_1(Al_2CuLi) phases are the major precipitates for the alloy in T6 aging condition(165 ℃/60 h). After duplex aging condition(150 ℃/24 h + 180 ℃/12 h), σ, θ'(Al_2Cu) and T_1 phases are detected. Only the T_1 phases can be found in the T8 state alloy(6% pre-strain+135 ℃/60 h). The failure modes of alloy in T6 and duplex aging conditions are dimple-intergranular fracture, while typical quasi-cleavage fracture in T8 condition. 展开更多
关键词 Al-Cu-Li alloy Aging process microstructure Mechanical properties
原文传递
Microstructure Evolution and Mechanical Properties of Spray-deposited Al-21.47Si-4.73Fe-2.5Cu-0.9Mg Alloy 被引量:1
10
作者 Yan-dong JIA Fu-yang CAO +3 位作者 Pan MA Jing-shun LIU Jian-fei SUN Gang WANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第1期14-18,共5页
Al-Si-Fe-Cu-Mg alloy was prepared by spray deposition and was further processed by hot extrusion as well as T6heat-treatment.The results indicate that the microstructure of the deposited alloy is composed of primary S... Al-Si-Fe-Cu-Mg alloy was prepared by spray deposition and was further processed by hot extrusion as well as T6heat-treatment.The results indicate that the microstructure of the deposited alloy is composed of primary Si particles with average size of less than 5μm,α-Al,Al_2CuMg,β-Al_5FeSi andδ-Al_4FeSi_2(rectangular shape),and no eutectic silicon is found due to the special solidification behavior.The age hardening curves reveal two peaks.The uniform ultimate tensile strength(UTS)and the elongation of the peak-aged Al-Si-Fe-Cu-Mg alloy are 468.3 MPa,0.61% at 298 Kand 267.4MPa,6.42% at 573 K,respectively.The fracture surfaces display brittle fracture morphology at 298 K,whereas it varies to mixture of brittle and ductile failure with increasing the temperature. 展开更多
关键词 spray deposition hypereutectic Al-Si alloy microstructure aging mechanical property
原文传递
Precipitation Behavior of Cu-1.9Be-0.3Ni-0.15Co Alloy During Aging 被引量:5
11
作者 Yan-Chuan Tang Yong-Lin Kang +1 位作者 Li-Juan Yue Xiao-Liang Jiao 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2015年第3期307-315,共9页
In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) ... In this paper,the evolutions of microstructure and mechanical properties of Cu-l.9Be-0.3Ni-0.15Co alloy were studied.The alloys in the condition of the solution treated(soft state) and 37% cold rolled(hard state) were aged at 320 ℃for different time,respectively.The mechanical properties,electrical conductivity and microstructure of the alloy aged for different time were analyzed.Additionally,the precipitation kinetics of Cu-1.9Be-0.3Ni-0.15Co alloys was investigated.X-ray diffraction and transmission electron microscopy results reveal that both continuous precipitation and discontinuous precipitation existed in the hard-state Cu-l.9Be-0.3Ni-0.15Co alloy during the whole aging process;the sequence of continuous precipitation is G.P.zone →γ″→γ′→γ.Furthermore,the precipitation transformation mechanism of softstate alloy is homogeneous nucleation,while hard-state alloy shows the heterogeneous nucleation(interface nucleation)with the nucleation rate of both states decaying rapidly to zero during aging at 320 ℃. 展开更多
关键词 Cu-1.9Be-0.3Ni-0.15Co alloy Aging microstructure Mechanical property Electrical property Precipitation kinetics
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部