期刊文献+
共找到55篇文章
< 1 2 3 >
每页显示 20 50 100
Investigation of Microstructure, Microhardness and Thermal Properties of Ag-In Intermetallic Alloys Prepared by Vacuum Arc Meltings
1
作者 ÇELİK Erçevik ATA ESENER Pınar +1 位作者 ÖZTÜRK Esra AKSÖZ Sezen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期182-187,共6页
Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical com... Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical composition of the phases respectively. Microhardness values of Ag-In intermetallics were calculated with Vickers hardness measurement method. According to the experimental results, Ag-34 wt%In intermetallic system generated the best results of energy saving and storage compared to other intermetallic systems. Also from the microhardness results, it was observed that intermetallic alloys were harder than pure silver and Ag-26 wt%In system had the highest microhardness value with 143.45 kg/mm^(2). 展开更多
关键词 thermal properties microstructure characterization MICROHARDNESS ALLOYS material characterization
下载PDF
Effect of Bi modification treatment on microstructure,tensile properties,and fracture behavior of cast Al-Mg_2Si metal matrix composite 被引量:9
2
作者 Wu Xiaofeng Wang Zhe +1 位作者 Zhang Guangan Wu Fufa 《China Foundry》 SCIE CAS 2013年第1期18-23,共6页
Bi has a good modification effect on the hypoeutectic Al-Si alloy, and the morphology of eutectic Si changes from coarse acicular to fine fibrous. Based on the similarity between Mg2Si and Si phases in crystalline str... Bi has a good modification effect on the hypoeutectic Al-Si alloy, and the morphology of eutectic Si changes from coarse acicular to fine fibrous. Based on the similarity between Mg2Si and Si phases in crystalline structure and crystallization process, the present study investigated the effects of different concentrations of Bi on the microstructure, tensile properties, and fracture behavior of cast Al-15wt.%Mg2Si in-situ metal matrix composite. The results show that the addition of the proper amount of Bi has a significant modification effect on both primary and eutectic Mg2Si in the Al-15wt.%Mg2Si composite. With an increase in Bi content from 0 to lwt.%, the morphology of the primary Mg2Si is changed from irregular or dendritic to polyhedral shape; and its average particle size is significantly decreased from 70 to 6 μm. Moreover, the morphology of the eutectic Mg2Si phase is altered from flake-like to very short fibrous or dot-like. When the Bi addition exceeds 4.0wt.%, the primary Mg2Si becomes coarse again. However, the eutectic Mg2Si still exhibits the modified morphology. Tensile tests reveal that the Bi addition can improve the tensile strength and ductility of the material. Compared with those of the unmodified composite, the ultimate tensile strength and percentage elongation after fracture with 1.0wt.% Bi increase 51.2% and 100%, respectively. At the same time, the Bi addition changes the fracture behavior from brittle to ductile. 展开更多
关键词 AI/Mg2Si composites CASTING Bi addition microstructural characterization tensile properties
下载PDF
Effect of Cu on microstructure,mechanical properties,and texture evolution of ZK60 alloy fabricated by hot extrusion−shearing process 被引量:6
3
作者 Shuai DAI Feng WANG +2 位作者 Zhi WANG Zheng LIU Ping-li MAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第6期1511-1523,共13页
As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mecha... As-cast Mg-6Zn-xCu-0.6Zr(x=0,0.5,1.0,wt.%)alloys were fabricated by permanent mold casting;then,the alloys were subjected to homogenization heat treatment and extrusion-shearing(ES)process.The microstructure and mechanical properties of the alloys were evaluated by OM,SEM/EDS,XRD,TEM,EBSD and tensile tests.The results show that the hard MgZnCu phase in Cu-added alloy can strengthen particle-stimulated nucleation(PSN)effect and hinder the migration of dynamic recrystallization(DRX)grain boundary at an elevated temperature during ES.The ZK60+0.5Cu alloy shows an optimal tensile strength–ductility combination(UTS of 396 MPa,YS of 313 MPa,andδ=20.3%)owing to strong grain boundary strengthening and improvement of Schmid factor for{0001}■basal slip.The aggregation of microvoids around the MgZnCu phase mainly accounts for the lower tensile elongation of ZK60+1.0Cu alloy compared with ZK60 alloy. 展开更多
关键词 Mg-Zn-Cu-Zr alloy extrusion-shearing process microstructure characterization mechanical properties texture evolution strengthening mechanism
下载PDF
Microstructure characteristics of Ti-43Al alloy during twin-roll strip casting and heat treatment 被引量:5
4
作者 Mang XU Guo-huai LIU +2 位作者 Tian-rui LI Bing-xing WANG Zhao-dong WANG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第5期1017-1025,共9页
To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm ... To shorten the fabrication process of difficult-to-form TiAl sheets, twin-roll strip casting and microstructural control were investigated in Ti-43Al alloy. A crack-free sheet with dimensions of 1000 mm × 110 mm × 2 mm was obtained. The microstructure of stip casting sheets and heat treatments was systematically studied. The macrostructure consisted of columnar crystals extending inward and centrally located equiaxed crystals with severe Al segregation were observed along the thickness direction, due to the symmetrical solidification process and decreasing cooling rates. The strip casting alloy was characterized by fine duplex microstructure with a grain spacing of 20-30 μm and a lamellar spacing of 10-20 nm. Furthermore, multiple microstructures of near gamma, nearly lamellar and fully lamellar were obtained through heat treatment process with significantly improved homogeneity of the microstructure. 展开更多
关键词 strip casting TiAl alloy sheet fabrication microstructure characterization heat treatment
下载PDF
Effect of electromagnetic interaction on microstructure and corrosion resistance of 7075 aluminium alloy during modified indirect electric arc welding process 被引量:5
5
作者 J. S. REYNA-MONTOYA M. A. GARCIA-RENTERIA +3 位作者 V. L. CRUZ-HERNANDEZ F. F. CURIEL-LOPEZ L. R. DZIB-PEREZ L. A. FALCON-FRANCO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第3期473-484,共12页
The effects of applying an electromagnetic interaction of low intensity (EMILI) on the microstructure and corrosion resistance of 7075-T651 Al alloy plates (13 mm in thickness) during modified indirect electric arc (M... The effects of applying an electromagnetic interaction of low intensity (EMILI) on the microstructure and corrosion resistance of 7075-T651 Al alloy plates (13 mm in thickness) during modified indirect electric arc (MIEA) welding were investigated. The welding process was conducted in a single pass with a heat input of ~1.5 kJ/mm. The microstructural observations of the welds were correlated with the effect of EMILI on the local mechanical properties and the corrosion resistance in natural seawater by means of microhardness measurements and electrochemical impedance spectroscopy, respectively. Microstructural characterization of the welds revealed a grain refinement in the weld metal due to the electromagnetic stirring induced by EMILI of 3 mT during welding. In addition, observations in the scanning electron microscope showed that the precipitation of Cu-rich phases and segregation of eutectics were reduced in the heat affected zone (HAZ) also as an effect of EMILI. The high corrosion dissolution of the 7075-T651 welds in natural seawater and the extent of overaging in the HAZ were reduced when welding with EMILI of 3 mT. Thus, EMILI along with the MIEA technique may lead to welded joints with better microstructural characteristics, improved mechanical properties in the HAZ and reduced electrochemical activity. 展开更多
关键词 7075-T651 Al alloy modified indirect arc welding microstructural characterization corrosion resistance electromagnetic interaction
下载PDF
Microstructure evolution and its effect on flow stress of TC17 alloy during deformation in α+β two-phase region 被引量:3
6
作者 Jiao LUO Peng YE +1 位作者 Wen-chao HAN Miao-quan LI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第7期1430-1438,共9页
The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results... The microstructure evolution and its effect on flow stress of TC17 alloy during deformation in the α+β two-phase region were investigated via microstructure characterization and isothermal compression tests. Results showed that the spheroidized rate of α phase at 820 and 850℃ slightly increased with increasing strain. With increasing deformation temperature, the spheroidized rate of α phase showed a slight increasing trend, but the volume fraction of α phase significantly decreased. The flow stress at 780 ℃ and 1 s^-1 decreased continuously and steady state condition was not achieved up to strain of 1.2 due to dislocation annihilation and α lamellae rotation. Under this condition, the dynamic spheroidization was retarded. At the deformation temperatures of 820 and 850℃, and a strain rate of 1 s^-1, a steady state flow stress was observed at strains above 0.8 due to the balance between work hardening and dynamic softening. The dynamic softening was attributed to the α lamellae rotation, dynamic recovery and a little spheroidization. 展开更多
关键词 TC17 alloy spheroidized rate microstructure evolution flow stress microstructure characterization
下载PDF
Study on crystallization and microstructure of Li_2O-Al_2O_3-SiO_2 glass ceramics 被引量:2
7
作者 Zhaoxia Hou Yongming Zhang +3 位作者 Huashan Zhang Hongbo Zhang Jing Shao Chunhui Su 《Journal of University of Science and Technology Beijing》 CSCD 2006年第6期564-569,共6页
Lithium aluminosilicate (LAS) glasses are generally difficult to prepare because of their high melting temperature. In this study, the preparation of LAS glasses was achieved at a relatively low melting temperature.... Lithium aluminosilicate (LAS) glasses are generally difficult to prepare because of their high melting temperature. In this study, the preparation of LAS glasses was achieved at a relatively low melting temperature. The batch containing MgO-ZnO-LiEO- Al2O3-SiO2 was melted in a platinum crucible at 1550℃ for 2 h and was then followed by two- or three-step heat treatment processes for nucleation and crystal growth. The characterizations were carried out by differential thermal analysis, X-ray diffraction, infrared spectroscopy, scanning electron microscopy, and UV-Vis-NIR scanning spectrophotometry. The hexagonal stuffed β-eucryptite solid solution crystallized at 840-960℃. Most of the hexagonal β-eucryptite solid solution transformed into the tetragonal β-spodumene solid solution at 1100℃. Almost all the aluminum atoms entered into the tetrahedral sites in the aluminosilicate network of the 6- eucryptite/β-quartz solid solution. All of the Al atoms did not belong to the aluminosilicate network of the β-spodumene solid solution. The glass ceramic with a mean grain size of 10-20 nm is transparent, the transmittance reaches -85% in the visible light wavelength. 展开更多
关键词 inorganic compounds glass ceramics crystallization behavior microstructure characterization
下载PDF
Effect of extrusion ratios on hardness,microstructure,and crystal texture anisotropy in pure niobium tubes subjected to hydrostatic extrusion 被引量:1
8
作者 Jongbeom LEE Haguk JEONG Sangyong PARK 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第6期1689-1699,共11页
Nb tubes were fabricated through hydrostatic extrusion at extrusion ratios of 3.1 and 6.1 at ambient temperature,and then their microstructure,texture,and Vickers hardness were investigated based on electron back-scat... Nb tubes were fabricated through hydrostatic extrusion at extrusion ratios of 3.1 and 6.1 at ambient temperature,and then their microstructure,texture,and Vickers hardness were investigated based on electron back-scattered diffraction(EBSD)data.The fraction of low-angle boundaries(LABs)largely decreased with a sharp decrease in mean grain sizes after hydrostatic extrusion and was not proportional to extrusion ratios,assuming that mixed-asymmetrical junctions forming LABs dissociate at high extrusion ratios from the external stress(>981 MPa)with thermal activation by the generated heat.The correlation between grain size and Vickers hardness followed the Hall−Petch relationship despite the texture gradient of theá111ñcyclic fiber textural microstructure at low extrusion ratios and theá100ñtrue fiber textural microstructure at high extrusion ratios.The increase in hydrostatic pressure on the Nb tubes contributed to texture evolution in terms of extrusion ratios due to the difference between{110}<111>and{112}<111>components based on EBSD data. 展开更多
关键词 niobium tube hydrostatic extrusion microstructure characterization mechanical properties texture evolution
下载PDF
Microstructures and mechanical properties of as-cast Mg-Sm-Zn-Zr alloys with varying Gd contents 被引量:1
9
作者 Kai Guan Daisuke Egusa +4 位作者 Eiji Abe Jinghuai Zhang Xin Qiu Qiang Yang Jian Meng 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1220-1234,共15页
The effect of Gd content on the microstructure and tensile properties of as-cast Mg-Sm-Zn-Zr alloy has been systematically investigated.In the Mg-3Sm-0.5Zn-0.5Zr alloy, the intermetallic compounds with multiple morpho... The effect of Gd content on the microstructure and tensile properties of as-cast Mg-Sm-Zn-Zr alloy has been systematically investigated.In the Mg-3Sm-0.5Zn-0.5Zr alloy, the intermetallic compounds with multiple morphologies are identified as Mg_(3)Sm phase. In addition to Mg_(3)RE phase, Mg_(5)RE phase originated from Gd addition is observed in Gd-modified alloys. It should be noted that the lattice parameters of all the observed intermetallic compounds are significantly reduced by Zn segregation. The segregation behavior of Zn in Mg_(3)Sm phase is inhibited to some extent by Gd addition due to the electronegativity difference between Sm/Gd and Zn elements. In addition, the increased Gd content effectively leads to much more accumulation of solute atoms in front of the liquid-solid interface during solidification, which can prominently promote nucleation in liquid region and then refine grains. The tensile yield stress of the present alloys is thus improved with increasing Gd addition. Finally, Gd-modified alloys exhibit significantly age-hardening effect, which can be mainly attributed to the high-volume fraction and high density nano-scale precipitates. 展开更多
关键词 Magnesium alloys microstructure characterization Mechanical properties Transmission electron microscopy(TEM)
下载PDF
Material microstructures analyzed by using gray level Co-occurrence matrices 被引量:1
10
作者 胡延苏 王志军 +2 位作者 樊晓光 李俊杰 高昂 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第9期483-490,共8页
The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material ... The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties. 展开更多
关键词 microstructures quantitative characterization mechanical properties gray level Co-occurrence matrix
下载PDF
Microstructures and mechanical properties of nanocrystalline NiTi intermetallics formed by mechanosynthesis
11
作者 S.Arunkumar P.Kumaravel +1 位作者 C.Velmurugan V.Senthilkumar 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第1期80-87,共8页
The formulation of nanocrystallinc NiTi shape memory alloys has potential effects in mechanical stimulation and medical im- plantology. The present work elucidates the effect of milling time on the product's structur... The formulation of nanocrystallinc NiTi shape memory alloys has potential effects in mechanical stimulation and medical im- plantology. The present work elucidates the effect of milling time on the product's structural characteristics, chemical composition, and mi- crohardness for NiTi synthesized by mechanical alloying for different milling durations. Increasing the milling duration led to the formation of a nanocrystalline NiTi intermetallic at a higher level. The formation of nanocrystalline materials was directed through cold fusion, fractur- ing, and the development of a steady state, which were influenced by the accumulation of strain energy. In the morphological study, uninter- rupted cold diffusion and fracturing were visualized using transmission electron microscopy. Particle size analysis revealed that the mean particle size was reduced to -93 μm after 20 h of milling. The mechanical strength was enhanced by the formation of a nanocrystalline in- termetallic phase at longer milling time, which was confirmed by the results of Vickers hardness analyses. 展开更多
关键词 nickel-titanium shape memory alloy lattice strain NANO-CRYSTALLINE mechanical alloying microstructural characterization
下载PDF
Microstructure and mechanical properties of reaction-bonded B_(4)C–SiC composites
12
作者 Rong-zhen Liu Wen-wei Gu +3 位作者 Yu Yang Yuan Lu Hong-bin Tan Jian-feng Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第11期1828-1835,共8页
Reaction-bonded B_(4)C–SiC composites are highly promising materials for numerous advanced technological applications.However,their microstructure evolution mechanism remains unclear.Herein,B_(4)C–SiC composites wer... Reaction-bonded B_(4)C–SiC composites are highly promising materials for numerous advanced technological applications.However,their microstructure evolution mechanism remains unclear.Herein,B_(4)C–SiC composites were fabricated through the Si-melt infiltration process.The influences of the sintering time and the B_(4)C content on the mechanical properties,microstructure,and phase evolution were investigated.X-ray diffraction results showed the presence of SiC,boron silicon,boron silicon carbide,and boron carbide.Scanning electron microscopy results showed that with the increase in the boron carbide content,the Si content decreased and the unreacted B_(4)C amount increased when the sintering temperature reached 1650°C and the sintering time reached 1 h.The unreacted B_(4)C diminished with increasing sintering time and temperature when B_(4)C content was lower than 35wt%.Further microstructure analysis showed a transition area between B_(4)C and Si,with the C content marginally higher than in the Si area.This indicates that after the silicon infiltration,the diffusion mechanism was the primary sintering mechanism of the composites.As the diffusion process progressed,the hardness increased.The maximum values of the Vickers hardness,flexural strength,and fracture toughness of the reaction-bonded B_(4)C–SiC ceramic composite with 12wt%B_(4)C content sintered at 1600°C for 0.5 h were about HV 2400,330 MPa,and 5.2 MPa·m^(0.5),respectively. 展开更多
关键词 reaction sintering B_(4)C-SiC composites mechanical properties microstructural characterization microstructure evolution mechanism
下载PDF
Characterization of Microstructure and Stability of Precipitation in SIMP Steel Irradiated with Energetic Fe Ions
13
作者 方雪松 申铁龙 +4 位作者 崔明焕 金鹏 李炳生 朱亚滨 王志光 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第11期57-60,共4页
A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at... A type of home-made reduced activation martensitic steel, high silicon (SIMP) steel, is homogeneously irradiated with energetic Fe ions to the doses of 0.1, 0.25 and 1 displacement per atom (dpa), respectively, at 300℃ and i dpa, at 400℃. MicrostructurM changes are investigated in detail by transmission electron microscopy with cross-section technique. Interstitial defects and defect dusters induced by Fe-ion irradiation are observed in ali the specimens under different conditions. It is found that with increasing irradiation temperature, size of defect clusters increases while the density drops quickly. The results of element chemical mapping from the STEM images indicate that the Si element enrichment and Ta element depletion occur inside the precipitates in the matrix of SIMP steel irradiated to a dose of 1 dpa at 300℃. Correlations between the microstructure and irradiation conditions are briefly discussed. 展开更多
关键词 Characterization of microstructure and Stability of Precipitation in SIMP Steel Irradiated with Energetic Fe Ions FE
下载PDF
Microstructure Evolution of a Nickel-Base Alloy Resistant to High Temperature during Aging
14
作者 Alberto Carlos Picasso César Armando Lanz +1 位作者 Matías Sosa Lissarrague Aldo Daniel Garófoli 《Journal of Minerals and Materials Characterization and Engineering》 2016年第1期48-61,共14页
In the present study, the microstructural evolution during aging at 1023, 1073, 1123 and 1173 K of a 35Cr-45Ni heat resistant alloy, produced in the form of centrifugally cast tubes, was characterized by means of ligh... In the present study, the microstructural evolution during aging at 1023, 1073, 1123 and 1173 K of a 35Cr-45Ni heat resistant alloy, produced in the form of centrifugally cast tubes, was characterized by means of light optical microscopy, scanning electron microscopy (SEM) with secondary and backscattered electron imaging, energy-dispersive X-ray spectroscopy (EDS) and Vickers hardness tests. The evolution of the Vickers hardness at 1023 K for aged samples shows that the microstructure is stable during the analyzed aging period. At 1073 K, the rate of increase in hardness is lower than 1023 K and this behavior would be associated with morphological changes observed in primary interdendritic carbides and secondary carbides in the matrix. At 1123 K and 1173 K, an atypical behavior in Vickers hardness curve is presented;where it can be seen that at certain aging times, the hardness decreases significantly. A microstructural analysis of these samples indicates that they have a region free of precipitates (near interdendritic edges) where the hardness is lower. Probably, these regions are areas poor in chromium. 展开更多
关键词 Microstructural Characterization 35Cr-45Ni Alloy AGING PRECIPITATION Depleted Zones
下载PDF
Hardening effect and precipitation evolution of an isothermal aged Mg-Sm based alloy 被引量:2
15
作者 Kai Guan Chuang Li +7 位作者 Zhizheng Yang Yongsen Yu Qiang Yang Wenwen Zhang Zhiping Guan Cheng Wang Min Zha Huiyuan Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4619-4627,共9页
The age-hardening behavior and precipitation evolution of an isothermal aged Mg-5Sm-0.6Zn-0.5Zr(wt.%) alloy have been systematically investigated by means of transmission electron microscopy(TEM) and atomic-resolution... The age-hardening behavior and precipitation evolution of an isothermal aged Mg-5Sm-0.6Zn-0.5Zr(wt.%) alloy have been systematically investigated by means of transmission electron microscopy(TEM) and atomic-resolution high-angle annular dark field scanning transmission electron microscopy(HAADF-STEM). The Vickers hardness of the present alloy increases first and then decreases with ageing time. The sample aged at 200 ℃ for 10 h exhibits a peak-hardness of 90.5 HV. In addition to the dominant β_(0)’ precipitate(orthorhombic,a = 0.642 nm, b = 3.336 nm and c = 0.521 nm) formed on {11-20}α planes, a certain number of γ’’ precipitate(hexagonal, a = 0.556 nm and c = 0.431 nm) formed on basal planes are also observed in the peak-aged alloy. Significantly, the basal γ’’ precipitate is more thermostable than prismatic β_(0)’ precipitate in the present alloy. β_(0)’ precipitates gradually coarsened and were even likely to transform into β_(1) phase(face centered cubic, a = 0.73 nm) with the increase of ageing time, which accordingly led to a gradual decrease in number density of precipitates and finally resulted in the decreased hardness and mechanical property in the over-aged alloys. 展开更多
关键词 Magnesium alloys Ageing treatment microstructure characterization Age-hardening effect PRECIPITATES
下载PDF
Effect of tungsten carbide particles on microstructure and mechanical properties of Cu alloy composite bit matrix
16
作者 Ding-qian Dong Feng-yuan He +5 位作者 Xin-hui Chen Hui Li Kai-hua Shi Hui-wen Xiong Xin Xiang Li Zhang 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2024年第2期519-530,共12页
Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungst... Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungsten carbide and sintered reduced tungsten carbide particles.The effects of powder particle morphology,particle size and mass fraction of tungsten carbide on the microstructure and mechanical properties of copper alloy composite were investigated by means of scanning electron microscopy,X-ray diffraction and abrasive wear test in detail.The results show that tungsten carbide morphology and particle size have obvious effects on the mechanical properties of copper alloy composites.Cast tungsten carbide partially dissolved in the copper alloy binding phase,and layers of Cu_(0.3)W_(0.5)Ni_(0.1)Mn_(0.1)C phase with a thickness of around 8–15μm were formed on the edge of the cast tungsten carbide.When 45%irregular crushed fine cast tungsten carbide and 15%monocrystalline cast tungsten carbide were used as the skeleton,satisfactory comprehensive performance of the reinforced copper alloy composite bit matrix was obtained,with the bending strength,impact toughness and hardness reaching 1048 MPa,4.95 J/cm^(2) and 43.6 HRC,respectively.The main wear mechanism was that the tungsten carbide particles firstly protruded from the friction surface after the copper alloy matrix was worn,and then peeled off from the matrix when further wear occurred. 展开更多
关键词 Polycrystalline diamond compact Pressureless vacuum infiltration Copper alloy composite bit matrix microstructure characterization Abrasive wear behavior
原文传递
Constitutive behavior, microstructural evolution and processing map of extruded Al-1.1Mn-0.3Mg-0.25RE alloy during hot compression 被引量:1
17
作者 张添 陶友瑞 王学印 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1337-1345,共9页
Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolut... Hot compression tests of an extruded Al-1.1Mn-0.3Mg-0.25RE alloy were performed on Gleeble-1500 system in the temperature range of 300-500 ℃ and strain rate range of 0.01-10 s-l. The associated microstructural evolutions were studied by observation of optical and transmission electron microscopes. The results show that the peak stress level decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon parameter in the hyperbolic-sine equation with the hot deformation activation energy of 186.48 kJ/mol. The steady flow behavior results from dynamic recovery whereas flow softening is associated with dynamic recrystallization and dynamic transformation of constituent particles. The main constituent particles are enriched rare earth phases. Positive purifying effects on impurity elements of Fe and Si are shown in the Al-l.lMn-0.3Mg-0.25RE alloy, which increases the workability at high temperature. Processing map was calculated and an optimum processing was determined with deformation temperature of 440-450 ℃ and strain rate of 0.01 s-1. 展开更多
关键词 Al-1.1Mn-0.3Mg-0.25RE alloy flow stress constitutive behavior microstructural characterization processing map
下载PDF
An insight into microstructural heterogeneities formation between weld subregions of laser welded copper to stainless steel joints 被引量:12
18
作者 Saranarayanan RAMACHANDRAN A.K.LAKSHMINARAYANAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第3期727-745,共19页
The effect of laser beam welding(LBW) process on the microstructure-mechanical property relationship of a dissimilar weld between the copper(Cu) and stainless steel(SS) was investigated.Backscattered electron(BSE) bas... The effect of laser beam welding(LBW) process on the microstructure-mechanical property relationship of a dissimilar weld between the copper(Cu) and stainless steel(SS) was investigated.Backscattered electron(BSE) based scanning electron microscopy(SEM) imaging was used to characterize the highly heterogeneous microstructural features across the LBW(Cu-SS) weld.The BSE analysis thoroughly evidenced the complex microstructures produced at dissimilar weld interfaces and fusion zone along with the compositional information.Widely different grain growths from coarse columnar grains to equiaxed ultrafine grains were also evident along the Cu-weld interface.A highresolution electron backscattered diffraction(EBSD) analysis confirmed the existence of the grain refinement mechanism at the Cu-weld interface.Both tensile and impact properties of the dissimilar weld were found to be closely aligned with the property of Cu base metal.Microhardness gradients were spatially evident in the non-homogeneous material composition zones such as fusion zone and the Cu-weld interface regions.The heterogeneous nucleation spots across the weld sub-regions were clearly identified and interlinked with their microhardness measurements for a holistic understanding of structure-property relationships of the local weld sub-regions.The findings were effectively correlated to achieve an insight into the local microstructural gradients across the weld. 展开更多
关键词 laser beam welding copper stainless steel microstructural characterization tensile property impact toughness
下载PDF
Hot ductility behavior of a Fe-0.3C-9Mn-2Al medium Mn steel 被引量:6
19
作者 Yong-jin Wang Shuai Zhao +1 位作者 Ren-bo Song Bin Hu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第3期422-429,共8页
The hot ductility of a Fe-0.3C-9Mn-2Al medium Mn steel was investigated using a Gleeble3800 thermo-mechanical simulator.Hot tensile tests were conducted at different temperatures(600-1300℃)under a constant strain rat... The hot ductility of a Fe-0.3C-9Mn-2Al medium Mn steel was investigated using a Gleeble3800 thermo-mechanical simulator.Hot tensile tests were conducted at different temperatures(600-1300℃)under a constant strain rate of 4×10^(−3)s^(−1).The fracture behavior and mechanism of hot ductility evolution were discussed.Results showed that the hot ductility decreased as the temperature was decreased from 1000℃.The reduction of area(RA)decreased rapidly in the specimens tested below 700℃,whereas that in the specimen tested at 650℃was lower than 65%.Mixed brittle-ductile fracture feature is reflected by the coexistence of cleavage step,intergranular facet,and dimple at the surface.The fracture belonged to ductile failure in the specimens tested between 720-1000℃.Large and deep dimples could delay crack propagation.The change in average width of the dimples was in positive proportion with the change in RA.The wide austenite-ferrite intercritical temperature range was crucial for the hot ductility of medium Mn steel.The formation of ferrite film on austenite grain boundaries led to strain concentration.Yield point elongation occurred at the austenite-ferrite intercritical temperature range during the hot tensile test. 展开更多
关键词 medium Mn steel hot ductility reduction of area fracture behavior microstructure characterization
下载PDF
Formation,characteristics and control of sludge in Al-containing magnesium alloys:An overview 被引量:5
20
作者 Y.Fu G.G.Wang +4 位作者 A.Hu Y.Li K.B.Thacker J.P.Weiler H.Hu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第3期643-658,共16页
Sludge consisting of heavy element phases and oxides is often generated during the casting operation of aluminum(Al)and magnesium(Mg)alloys.With the help of the well-established Sludge Factor(SF)formula,it is relative... Sludge consisting of heavy element phases and oxides is often generated during the casting operation of aluminum(Al)and magnesium(Mg)alloys.With the help of the well-established Sludge Factor(SF)formula,it is relatively easy to control the sludge generation in aluminum alloys.But formation mechanisms and characteristics of sludge in die casting magnesium alloys are still unclear.To ensure the production of high quality die cast components at a low cost,a full understanding of sludge in die casting Mg alloys and its proper control measures need to be developed,since excessive sludge formation affects deleteriously material and operation cost,and casting performance.In the present report,the formation,characteristics and control of Mg die-casting sludge,based on the established knowledge of sludge formation and sludge factor in Al die casting alloys,are reviewed.Previous work on characterization and assessment of sludge in die cast Mg alloys are reviewed.Metallurgical principles for control of sludge in ingot production in association with die casting of Mg alloys are discussed.Rapid assessment of Mg oxide and intermetallics relevant to sludge formation in Mg alloys are highlighted. 展开更多
关键词 SLUDGE Magnesium alloys Die casting Al-Mn(-Fe)intermetallics Magnesium oxide microstructure characterization
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部