期刊文献+
共找到493篇文章
< 1 2 25 >
每页显示 20 50 100
Computer Simulating Calculation on the Microstructure Evolutions during Hot Strip Rolling of C-Mn Steels
1
作者 Zhenyu LIU Guodong WANG and Qiaing ZHANG(Northeastern University, Shenyang, 110006, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第3期221-224,共4页
The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were ana... The program to predict the microstructure evolutions during hot strip rolling of C-M n steels has been developed in this paper, BV using this program, the microstructure changes with the processing parameters were analysed in detail. showing not only a good agreement of prediction with the measured values, but also entirely possibility to optimize hot strip rolling precess by computer simulation 展开更多
关键词 MN Computer Simulating Calculation on the microstructure evolutions during Hot Strip Rolling of C-Mn Steels FIGURE
下载PDF
Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy
2
作者 HUANG Ke YI You-ping +4 位作者 HUANG Shi-quan HE Hai-lin LIU Jie HUA Hong-en TANG Yun-jian 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第7期2167-2180,共14页
In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using ... In this study,the cooling rate was manipulated by quenching with water of different temperatures(30,60 and 100℃).Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods,respectively.Then,the processability of the quenched samples was evaluated at cryogenic temperatures.The mechanical properties of the as-aged samples were assessed,and microstructure evolution was analyzed.The surface residual stresses of samples W30℃,W60℃and W100℃is−178.7,−161.7 and−117.2 MPa,respectively along x-direction,respectively;and−191.2,−172.1 and−126.2 MPa,respectively along y-direction.The sample quenched in boiling water displaying the lowest residual stress(~34%and~60%reduction in the surface and core).The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient.Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures.The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30℃to 100℃.Fine and homogeneous β"phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones(GP zones)premature precipitated during quenching process. 展开更多
关键词 6061 aluminum alloy residual stress cooling rate cryogenic cooling mechanical properties microstructure evolution
下载PDF
Frost deformation and microstructure evolution of porous rock under uniform and unidirectional freeze-thaw conditions
3
作者 LV Zhitao LIU Jintao +1 位作者 WAN Ling LIU Weiping 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2855-2869,共15页
The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has rece... The frost deterioration and deformation of porous rock are commonly investigated under uniform freeze-thaw(FT)conditions.However,the unidirectional FT condition,which is also prevalent in engineering practice,has received limited attention.Therefore,a comparative study on frost deformation and microstructure evolution of porous rock under both uniform and unidirectional FT conditions was performed.Firstly,frost deformation experiments of rock were conducted under cyclic uniform and unidirectional FT action,respectively.Results illustrate that frost deformation of saturated rock exhibits isotropic characteristics under uniform FT cycles,while it shows anisotropic characteristics under unidirectional FT condition with both the frost heaving strain and residual strain along FT direction much higher than those perpendicular to FT direction.Moreover,the peak value and residual value of cumulative frost strain vary as logarithmic functions with cycle number under both uniform and unidirectional FT conditions.Subsequently,the microstructure evolution of rock suffered cyclic uniform and unidirectional FT action were measured.Under uniform FT cycles,newly generated pores uniformly distribute in rock and pore structure of rock remains isotropic in micro scale,and thus the frost deformation shows isotropic characteristics in macro scale.Under unidirectional FT cycles,micro-cracks or pore belts generate with their orientation nearly perpendicular to the FT direction,and rock structure gradually becomes anisotropic in micro scale,resulting in the anisotropic characteristics of frost deformation in macro scale. 展开更多
关键词 Frost deformation microstructure evolution Porous rock Unidirectional freeze-thaw cycles Uniform freeze-thaw cycles
下载PDF
Effects of Strain Rate,Temperature and Grain Size on the Mechanical Properties and Microstructure Evolutions of Polycrystalline Nickel Nanowires:A Molecular Dynamics Simulation
4
作者 RUAN Zhigang WU Wenping LI Nanlin 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2018年第3期251-258,共8页
Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to... Through molecular dynamics(MD) simulation, the dependencies of temperature, grain size and strain rate on the mechanical properties were studied. The simulation results demonstrated that the strain rate from 0.05 to 2 ns–1 affected the Young's modulus of nickel nanowires slightly, whereas the yield stress increased. The Young's modulus decreased approximately linearly; however, the yield stress firstly increased and subsequently dropped as the temperature increased. The Young's modulus and yield stress increased as the mean grain size increased from 2.66 to 6.72 nm. Moreover, certain efforts have been made in the microstructure evolution with mechanical properties association under uniaxial tension. Certain phenomena such as the formation of twin structures, which were found in nanowires with larger grain size at higher strain rate and lower temperature, as well as the movement of grain boundaries and dislocation, were detected and discussed in detail. The results demonstrated that the plastic deformation was mainly accommodated by the motion of grain boundaries for smaller grain size. However, for larger grain size, the formations of stacking faults and twins were the main mechanisms of plastic deformation in the polycrystalline nickel nanowire. 展开更多
关键词 Effects of Strain Rate Temperature and Grain Size on the Mechanical Properties and microstructure evolutions of Polycrystalline Nickel Nanowires A Molecular Dynamics Simulation
原文传递
Cross-sectional structure, microstructure and mechanical property evolutions of brass cladding pure copper stranded wire composite during drawing 被引量:7
5
作者 Yan-bin JIANG Yong-shuai LI +1 位作者 Yu LEI Jian-xin XIE 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第7期1857-1872,共16页
A solid/liquid continuous casting and composite technology was used to produce d8.5 mm brass cladding pure copper stranded wire composite billet and the composite billet was then drawn. The results showed that the com... A solid/liquid continuous casting and composite technology was used to produce d8.5 mm brass cladding pure copper stranded wire composite billet and the composite billet was then drawn. The results showed that the composite billet had good surface quality, metallurgical bonding interface between brass and pure copper as well as elongation of 53.1%. Synergistic deformation degree between pure copper wire and brass cladding layer was high during drawing. With an increase of the total deformation amount, the plastic deformation of the pure copper wire reduced triangular arc gaps between the pure copper wires and the triangular arc gaps were fully filled at 50%. When the total deformation amount was increased to 63%, dislocation cells and microbands successively formed in the pure copper wire. In the brass cladding layer, planar dislocation networks, twins and shear bands formed successively, and the main deformation mechanisms were dislocation sliding, twinning and shear deformation. The tensile strength increased from 240 MPa of the composite billet to 519 MPa of the one with the deformation amount of 63%, but the elongation decreased from 53.1% to 3.2%. A process of solid/liquid continuous casting and composite forming→drawing can work as a new compact method to produce brass cladding pure copper stranded wire composite as railway through grounding wire. 展开更多
关键词 solid/liquid continuous casting composite wire deformation microstructure evolution mechanical properties
下载PDF
Influence of bimodal non-basal texture on microstructure characteristics,texture evolution and deformation mechanisms of AZ31 magnesium alloy sheet rolled at liquid-nitrogen temperature 被引量:3
6
作者 Shouzuo Zhang Li Hu +7 位作者 Yutao Ruan Tao Zhou Qiang Chen Yang Zhong Laixin Shi Mingao Li Mingbo Yang Shuyong Jiang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第7期2600-2609,共10页
Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending pr... Cryogenic rolling experiments have been conducted on the AZ31 magnesium(Mg)alloy sheet with bimodal non-basal texture,which is fabricated via the newly developed equal channel angular rolling and continuous bending process with subsequent annealing(ECAR-CB-A)process.Results demonstrate that this sheet shows no edge cracks until the accumulated thickness reduction reaches about 18.5%,which is about 105.6%larger than that of the sheet with traditional basal texture.Characterization experiments including optical microstructure(OM),X-ray diffractometer(XRD),and electron backscatter diffraction(EBSD)measurements are then performed to explore the microstructure characteristics,texture evolution and deformation mechanisms during cryogenic rolling.Experimental observations confirm the occurrence of abundant{10–12}extension twins(ETs),twin-twin interactions among{10–12}ET variants and{10–12}-{10–12}double twins(DTs).The twinning behaviors as for{10–12}ETs are responsible for the concentration of c-axes of grains towards normal direction(ND)and the formation of transverse direction(TD)-component texture at the beginning of cryogenic rolling.The twinning behaviors with respect to{10–12}-{10–12}DTs are responsible for the disappearance of TD-component texture at the later stage of cryogenic rolling.The involved deformation mechanisms can be summarized as follows:Firstly{10–12}ETs dominate the plastic deformation.Subsequently,dislocation slip,especially basal<a>slip,starts to sustain more plastic strain,while{10–12}ETs occur more frequently and enlarge continuously,resulting in the formation of twin-twin interaction among{10–12}ET variants.With the increasing rolling passes,{10–12}-{10–12}DTs incorporate in the plastic deformation and dislocation slip serves as the major one to sustain plastic strain.The activities of basal<a>slip,{10–12}ETs and{10–12}-{10–12}DTs benefit in accommodating the plastic strain in sheet thickness,which contributes to the improved rolling formability in AZ31 Mg alloy sheet with bimodal non-basal texture during cryogenic rolling. 展开更多
关键词 AZ31 Mg alloy Bimodal non-basal texture Cryogenic rolling microstructure evolution Deformation mechanism
下载PDF
Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel 被引量:2
7
作者 Lingzhi Xie Zhigang Xu +4 位作者 Yunzhe Qi Jinrong Liang Peng He Qiang Shen Chuanbin Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期917-929,共13页
In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicat... In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased. 展开更多
关键词 powder metallurgy porous steel ball milling time microstructure evolution compressive properties
下载PDF
Microstructure Distribution Characteristics of High-Strength Aluminum Alloy Thin-Walled Tubes during Multi-Passes Hot Power Backward Spinning Process
8
作者 Yuan Tian Ranyang Zhang +1 位作者 Gangyao Zhao Zhenghua Guo 《Journal of Materials Science and Chemical Engineering》 2023年第7期114-121,共8页
The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning pro... The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. . 展开更多
关键词 Cast High-Strength Aluminum Alloy Tube Multi-Pass Hot Power Backward Spinning FE Simulation microstructure Evolution
下载PDF
Flow softening behavior and microstructure evolution of Al-5Zn-2Mg aluminum alloy during dynamic recovery 被引量:13
9
作者 李落星 王冠 +1 位作者 刘杰 姚再起 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第1期42-48,共7页
The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 &#176;C and strain rates between 0.05-50... The flow stress behavior and microstructure development of Al-5Zn-2Mg (7005) aluminum alloy were studied by hot compression tests at deformation temperatures between 300-500 &#176;C and strain rates between 0.05-50 s-1. The deformed structures of the samples were observed by optical microscopy (OM), transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) analysis. The calculated activation energy is 147 kJ/mol, which is very close to the activation energy for lattice self-diffusion in aluminum (142 kJ/mol). Dynamic recovery is the dominant restoration mechanism during the deformation. At high strain rate of 50 s-1, temperature rise due to deformation heating leads to a significant flow softening. Microstructure observations indicated that the remaining softening after deformation heating correction at high strain rate and the softening observed at high temperature are associated with grain coarsening induced by grain boundary migration during dynamic recovery process. 展开更多
关键词 7005 aluminum alloy DEFORMATION dynamic recovery flow softening microstructure evolution
下载PDF
Effect of heat treatment on microstructure and tensile properties of A356 alloys 被引量:27
10
作者 彭继华 唐小龙 +1 位作者 何健亭 许德英 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期1950-1956,共7页
Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment ... Two heat treatments of A356 alloys with combined addition of rare earth and strontium were conducted.T6 treatment is a long time treatment(solution at 535 ℃ for 4 h + aging at 150 ℃ for 15 h).The other treatment is a short time treatment(solution at 550 ℃ for 2 h + aging at 170 ℃ for 2 h).The effects of heat treatment on microstructure and tensile properties of the Al-7%Si-0.3%Mg alloys were investigated by optical microscopy,scanning electronic microscopy and tension test.It is found that a 2 h solution at 550 ℃ is sufficient to make homogenization and saturation of magnesium and silicon in α(Al) phase,spheroid of eutectic Si phase.Followed by solution,a 2 h artificial aging at 170 ℃ is almost enough to produce hardening precipitates.Those samples treated with T6 achieve the maximum tensile strength and fracture elongation.With short time treatment(ST),samples can reach 90% of the maximum yield strength,95% of the maximum strength,and 80% of the maximum elongation. 展开更多
关键词 Al-Si casting alloys heat treatment tensile property microstructural evolution
下载PDF
Effect of homogenization treatment on microstructure and mechanical properties of DC cast 7X50 aluminum alloy 被引量:11
11
作者 丛福官 赵刚 +2 位作者 姜锋 田昵 李瑞峰 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1027-1034,共8页
The evolution of the eutectic structures in the as-cast and homogenized 7X50 aluminum alloys was studied by scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive spectrometer(EDS)... The evolution of the eutectic structures in the as-cast and homogenized 7X50 aluminum alloys was studied by scanning electron microscopy(SEM), transmission electron microscopy(TEM), energy dispersive spectrometer(EDS), differential scanning calorimetry(DSC), X-ray diffraction(XRD) and tensile test. The results show that the main phases are S(Al2CuMg), T(Al2Mg3Zn3) and Mg Zn2, with a small amount of Al7Cu2 Fe and Al3 Zr in the as-cast 7X50 alloy. The volume fraction of the dendritic-network structure and residual phase decreases gradually during the homogenization. After homogenization at 470 °C for 24 h and then 482 °C for 12 h, the T(Al2Mg3Zn3) phase disappears and minimal S(Al2CuMg) phase remains, while almost no change has happened for Al7Cu2 Fe. There is a strong endothermic peak at 477.8 °C in the DSC curve of as-cast alloy. A new endothermic peak appears at 487.5 °C for the sample homogenized at 470 °C for 1 h. However, this endothermic peak disappears after being homogenized at 482 °C for 24 h. The T(Al2Mg3Zn3) phase cannot be observed by XRD, which is consistent with that T phase is the associated one of S(Al2CuMg) phase and Mg Zn2 phase. The volume fraction of recrystallized grains is substantially less in the plate with pre-homogenization treatment. The strength and fracture toughness of the plate with pre-homogenization treatment are about 15 MPa and 3.3 MPa·m1/2 higher than those of the material with conventional homogenization treatment. 展开更多
关键词 7X50 aluminum alloy microstructural evolution HOMOGENIZATION residual phase RECRYSTALLIZATION
下载PDF
Microstructure evolution of Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment 被引量:5
12
作者 王朝辉 杜文博 +2 位作者 王旭东 刘轲 李淑波 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第3期593-598,共6页
Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM... Microstructure evolution of the cast Mg-9Gd-2Er-0.4Zr alloy during solid solution treatment at temperature of 460-520 ℃ for 3-12 h was investigated by using optical microscope(OM),scanning electron microscope(SEM) and transmission electron microscope(TEM).The results indicated that the grain size and the shape of second phase were obviously changed with time and/or temperature going on.At 460 ℃ for 3 h,the morphology of the Mg5(GdEr) phase was changed into fragmentized island morphology and the volume faction of the phase decreased.After solution solid treatment at 460 ℃ for 6 h,the Mg5(GdEr) phase was already completely dissolved,but some cuboid-shaped RE-rich phase precipitated.As the temperature increased,the morphology of the Mg5(GdEr) phase was transformed into the same morphology as that at 460 ℃ for 6 h.It was suggested that the microstructure evolution of the alloy during the solid solution treatment was concluded as follows:Mg5(GdEr) eutectic phase→Gd/Er atom diffusing into matrix→spheroidic Mg5(GdEr) phase→cuboid-shaped RE-rich phase→grain boundary immigration. 展开更多
关键词 Mg-Gd-Er-Zr alloy microstructure evolution solution solid treatment eutectic phase
下载PDF
Creep properties and microstructure evolution of nickel-based single crystal superalloy at different conditions 被引量:5
13
作者 史振学 李嘉荣 +1 位作者 刘世忠 王效光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第8期2536-2543,共8页
The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic... The creep properties of nickel-based single crystal superalloy with [001] orientation was investigated at different test conditions. The microstructure evolution of γ′ phase, TCP phase and dislocation characteristic after creep rupture was studied by SEM and TEM. The results show that the alloy has excellent creep properties. Two different types of creep behavior can be shown in the creep curves. The primary creep is characterized by the high amplitude at test conditions of (760 °C, 600 MPa) and (850 °C, 550 MPa) and the primary creep strain is limited at (980 °C, 250 MPa), (1100 °C, 140 MPa) and (1120 °C, 120 MPa). A little change ofγ′precipitate morphology occurs at (760 °C, 600 MPa). The lateral merging of the γ′ precipitate has already begun at (850 °C, 550 MPa). Theγphase is surrounded by theγ′phase at (980 °C, 250 MPa). Theγphase is no longer continuous tested at (1070 °C, 140 MPa). At (1100 °C, 120 MPa), the thickness ofγphase continues to increase. No TCP phase precipitates in the specimens at (760 °C, 600 MPa), (850 °C, 550 MPa) and (980 °C, 250 MPa). Needle shaped TCP phase precipitates in the specimens tested at (1070 °C, 140 MPa) and (1100 °C, 120 MPa). The dislocation shear mechanism including stacking fault formation is operative at lower temperature and high stress. The dislocation by-passing mechanism occurs to form networks atγ/γ′interface under the condition of high temperature and lower stress. 展开更多
关键词 single crystal superalloy creep properties microstructure evolution γ′ phase TCP phase
下载PDF
Solidification process and microstructure evolution of bulk undercooled Co-Sn alloys 被引量:5
14
作者 刘礼 马晓丽 +3 位作者 黄起森 李金富 程先华 周尧和 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第1期289-293,共5页
A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by ... A series of Co-Sn alloys with Sn content ranging from 12% to 32%(mole fraction) were undercooled to different degrees below the equilibrium liquidus temperature and the solidification behaviors were investigated by monitoring the temperature recalescence and examing the solidification microstructures.A boundary clearly exists,which separates the coupled growth zone from the decoupled growth zone of eutectic phases for the alloys with Sn content ranging from 14% to 31%(mole fraction).The other Co-Sn alloys out of this content range are hard to be undercooled into the coupled growth zone in the experiment.It is found that the so-called non-reciprocal nucleation phenomenon does not happen in the solidification of undercooled Co-Sn off-eutectic alloys. 展开更多
关键词 Co-Sn alloy UNDERCOOLING RECALESCENCE coupled growth zone SOLIDIFICATION microstructure evolution
下载PDF
Application of novel physical picture based on artificial neural networks to predict microstructure evolution of Al-Zn-Mg-Cu alloy during solid solution process 被引量:6
15
作者 刘蛟蛟 李红英 +1 位作者 李德望 武岳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第3期944-953,共10页
The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron ... The effects of the solid solution conditions on the microstructure and tensile properties of Al?Zn?Mg?Cu aluminum alloy were investigated by in-situ resistivity measurement, optical microscopy (OM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and tensile test. A radial basis function artificial neural network (RBF-ANN) model was developed for the analysis and prediction of the electrical resistivity of the tested alloy during the solid solution process. The results show that the model is capable of predicting the electrical resistivity with remarkable success. The correlation coefficient between the predicted results and experimental data is 0.9958 and the relative error is 0.33%. The predicted data were adopted to construct a novel physical picture which was defined as “solution resistivity map”. As revealed by the map, the optimum domain for the solid solution of the tested alloy is in the temperature range of 465?475 °C and solution time range of 50?60 min. In this domain, the solution of second particles and the recrystallization phenomenon will reach equilibrium. 展开更多
关键词 aluminum alloy solution treatment electrical resistivity artificial neural network microstructure evolution
下载PDF
Microstructure evolution of Al-Zn-Mg-Cu alloy during non-linear cooling process 被引量:3
16
作者 李红英 刘蛟蛟 +2 位作者 余伟琛 赵辉 李德望 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1191-1200,共10页
The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measuremen... The microstructure evolution and properties of an Al-Zn-Mg-Cu alloy were investigated under different non-linear cooling processes from the solution temperature, combined with in-situ electrical resistivity measurements, selected area diffraction patterns (SADPs), transmission electron microscopy (TEM), and tensile tests. The relative resistivity was calculated to characterize the phase transformation of the experimental alloy during different cooling processes. The results show that at high temperatures, the microstructure evolutions change from the directional diffusion of Zn and Mg atoms to the precipitation of S phase, depending on the cooling rate. At medium temperatures, q phase nucleates on A13Zr dispersoids and grain boundaries under fast cooling conditions, while S phase precipitates under the slow cooling conditions. The strength and ductility of the aged alloy suffer a significant deterioration due to the heterogeneous precipitation in medium temperature range. At low temperatures, homogeneously nucleated GP zone, η′ and η phases precipitate. 展开更多
关键词 Al-Zn-Mg-Cu alloy microstructure evolution non-linear cooling electrical resistivity mechanical property
下载PDF
Simulation study on non-linear effects of initial melt temperatures on microstructures during solidification process of liquid Mg_7Zn_3 alloy 被引量:3
17
作者 刘让苏 梁永超 +5 位作者 刘海蓉 郑乃超 莫云飞 侯兆阳 周丽丽 彭平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1052-1060,共9页
The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstru... The non-linear effects of different initial melt temperatures on the microstructure evolution during the solidification process of liquid Mg7Zn3 alloys were investigated by molecular dynamics simulation, The microstructure transformation mechanisms were analyzed by several methods. The system was found to be solidified into amorphous structures from different initial melt temperatures at the same cooling rate of 1×10^12 K/s, and the 1551 bond-type and the icosahedron basic cluster (12 0 12 0 ) played a key role in the microstructure transition. Different initial melt temperatures had significant effects on the final microstructures. These effects only can be clearly observed below the glass transition temperature Tg; and these effects are non-linearly related to the initial melt temperatures, and fluctuated in a certain range. However, the changes of the average atomic energy of the systems are still linearly related with the initial melt temperatures, namely, the higher the initial melt temperature is, the more stable the amorphous structure is and the stronger the glass forming ability will be. 展开更多
关键词 liquid Mg-Zn alloy initial melt temperature microstructure evolution molecular dynamics simulation cluster-typeindex method
下载PDF
Deformation behavior of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy with two initial microstructures during hot working 被引量:4
18
作者 罗皎 李莲 李淼泉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第2期414-422,共9页
The effects of initial microstructure on the flow stress, strain rate sensitivity (m), strain hardening exponent (n), apparent activation energy (Q) for deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy were investiga... The effects of initial microstructure on the flow stress, strain rate sensitivity (m), strain hardening exponent (n), apparent activation energy (Q) for deformation of Ti-5Al-2Sn-2Zr-4Mo-4Cr alloy were investigated using isothermal compression tests. Results show that the alloy with Widmanst-tten alpha plates shows a higher peak stress and flow softening. Additionally, the alloy with equiaxed primary alpha exhibits an early yield drop at or above 810 ℃ and at strain rates of 0.1-5.0 s^-1. In the strain range of 0.5-0.7,m of the alloy with equiaxed primary alpha is found to be larger at 0.01 s^-1 and lower deformation temperatures. This phenomenon could be reasonably explained based on the microstructure evolution. The strain has a significant effect onn of the alloy with Widmanst-tten alpha plates, which is attributed to platelet bending/kinking and dynamic globularization ofα phase. In the strain range of 0.15-0.55,Q of the alloy with Widmanst-tten alpha plates is larger. 展开更多
关键词 titanium alloy isothermal compression flow stress microstructure evolution dynamic globularization
下载PDF
Microstructure evolution of a new directionally solidified Ni-based superalloy after long-term aging at 950 ℃ upto 1 000 h 被引量:3
19
作者 黄炎 王磊 +3 位作者 刘杨 付顺明 吴剑涛 燕平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第10期2199-2204,共6页
The microstructure evolution of a new directionally solidified(DS) Ni-based superalloy used for gas turbine blades after long-term aging at 950 ℃ was investigated.The results show that the γ ' phase becomes more ... The microstructure evolution of a new directionally solidified(DS) Ni-based superalloy used for gas turbine blades after long-term aging at 950 ℃ was investigated.The results show that the γ ' phase becomes more regular in dendritic arm and interdendritic area,while both the mass fraction and the size of γ ' phase increase gradually with increasing aging time.During long-term aging,the MC carbide dissolves on the edge to provide the carbon for the formation of M23C6 carbide by the precipitation of Cr at the grain boundary.The rose-shaped γ '/γ eutectic partly dissolves into γ matrix and the aging promotes it transform into raft-shape γ '.The microstructure is generally stable and no needle-like topologically close-packed phase(TCP) can be found after aging for 1 000 h. 展开更多
关键词 Ni-based superalloy long-term aging microstructures evolution carbides γ phase
下载PDF
Microstructure evolution of Al-Ti liquid-solid interface 被引量:5
20
作者 蒋淑英 李世春 张磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第12期3545-3552,共8页
Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. Th... Al-Ti diffusion couples were made by embedded technology and treated at the temperature between the melting points of Al and Ti. The microstructure evolution and growth mechanism of the Al-Ti DRZ were investigated. The result shows that the DRZ, the mixture of TiAl3 and Al, grows layer by layer along their chemical equilibrium zone. In the course, the growth interface moves toward the aluminum side. TiAl3 is the only new phase which forms earliest in the course of heat-treatment. The growth mechanism of the DRZ changes after the phase transition of titanium. Before the phase transition of titanium, the growth of the DRZ is controlled by the dissolution speed of the titanium to the molten aluminum, while after the phase transition of titanium, the growth is controlled by the chemical reaction speed of Al and Ti atoms, and consequently, its growth rate is greatly increased. 展开更多
关键词 Al-Ti liquid-solid interface diffusion-reaction zone microstructure evolution growth mechanism
下载PDF
上一页 1 2 25 下一页 到第
使用帮助 返回顶部