期刊文献+
共找到5,234篇文章
< 1 2 250 >
每页显示 20 50 100
Effect of cooling rate on microstructure and compressive performance of AZ91 magnesium alloy 被引量:1
1
作者 杨林 冯辉 +2 位作者 邱克强 陈立佳 刘正 《中国有色金属学会会刊:英文版》 CSCD 2006年第A03期1698-1702,共5页
Effect of cooling rate on both microstructure and room temperature compressive performance of the AZ91 magnesium alloy was investigated. The experimental results show that with increasing cooling rate, the quantity of... Effect of cooling rate on both microstructure and room temperature compressive performance of the AZ91 magnesium alloy was investigated. The experimental results show that with increasing cooling rate, the quantity of the solid solution phase increases and the fraction of secondary phase Mg17Al12 decreases. The almost single solid solution phase can be obtained with using liquid nitrogen as a coolant. The compressive strengths of the rapid solidified AZ91 magnesium alloys are higher than those of normal cast alloy, and decrease with increasing cooling rate. After artificial aging treatment for 14 h at 168℃, the compressive strength of the rapidly solidified AZ91 magnesium alloy cooled in liquid nitrogen increases from 253.5 to 335.3 MPa, while the compressive yield strength increases from 138.1 to 225.91 MPa. The improvement in the compressive strength of the rapidly solidified AZ91 magnesium alloys can be attributed to the hardening effect from fine secondary phase. 展开更多
关键词 镁合金 冷却技术 微观结构 机械性能
下载PDF
Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
2
作者 丁庆军 ZHOU Changsheng +4 位作者 张高展 GUO Hong LI Yang ZHANG Yongyuan GUO Kaizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期673-681,共9页
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ... We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering. 展开更多
关键词 ultra-high performance concrete mechanical properties fine aggregates microstructure NANOINDENTATION
下载PDF
An Investigation into the Compressive Strength,Permeability and Microstructure of Quartzite-Rock-Sand Mortar
3
作者 Wei Chen Wuwen Liu Yue Liang 《Fluid Dynamics & Materials Processing》 EI 2024年第4期859-872,共14页
River sand is an essential component used as a fine aggregate in mortar and concrete.Due to unrestrained exploitation,river sand resources are gradually being exhausted.This requires alternative solutions.This study d... River sand is an essential component used as a fine aggregate in mortar and concrete.Due to unrestrained exploitation,river sand resources are gradually being exhausted.This requires alternative solutions.This study deals with the properties of cement mortar containing different levels of manufactured sand(MS)based on quartzite,used to replace river sand.The river sand was replaced at 20%,40%,60%and 80%with MS(by weight or volume).The mechanical properties,transfer properties,and microstructure were examined and compared to a control group to study the impact of the replacement level.The results indicate that the compressive strength can be improved by increasing such a level.The strength was improved by 35.1%and 45.5%over that of the control mortar at replacement levels of 60%and 80%,respectively.Although there was a weak link between porosity and gas permeability in the mortars with manufactured sand,the gas permeability decreased with growing the replacement level.The microstructure of the MS mortar was denser,and the cement paste had fewer microcracks with increasing the replacement level. 展开更多
关键词 Manufactured sand QUARTZITE compressive strength gas permeability microstructure
下载PDF
Effect of ball milling time on the microstructure and compressive properties of the Fe–Mn–Al porous steel 被引量:2
4
作者 Lingzhi Xie Zhigang Xu +4 位作者 Yunzhe Qi Jinrong Liang Peng He Qiang Shen Chuanbin Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第5期917-929,共13页
In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicat... In the present work,Fe–Mn–Al–C powder mixtures were manufactured by elemental powders with different ball milling time,and the porous high-Mn and high-Al steel was fabricated by powder sintering.The results indicated that the powder size significantly decreased,and the morphology of the Fe powder tended to be increasingly flat as the milling time increased.However,the prolonged milling duration had limited impact on the phase transition of the powder mixture.The main phases of all the samples sintered at 640℃ were α-Fe,α-Mn and Al,and a small amount of Fe2Al5 and Al8Mn5.When the sintering temperature increased to 1200℃,the phase composition was mainly comprised of γ-Fe and α-Fe.The weight loss fraction of the sintered sample decreased with milling time,i.e.,8.3wt% after 20 h milling compared to15.3wt% for 10 h.The Mn depletion region(MDR) for the 10,15,and 20 h milled samples was about 780,600,and 370 μm,respectively.The total porosity of samples sintered at 640℃ decreased from ~46.6vol% for the 10 h milled powder to ~44.2vol% for 20 h milled powder.After sintering at 1200℃,the total porosity of sintered samples prepared by 10 and 20 h milled powder was ~58.3vol% and ~51.3vol%,respectively.The compressive strength and ductility of the 1200℃ sintered porous steel increased as the milling time increased. 展开更多
关键词 powder metallurgy porous steel ball milling time microstructure evolution compressive properties
下载PDF
Effect of Cu addition on the microstructure and tribological performance of Ni60 directional structure coating
5
作者 Xiaotian Yang Xinhua Wang +3 位作者 Jun Zhou Hengli Wei Rong Zeng Wensheng Li 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第4期715-723,共9页
The Ni60/15wt% Cu directional structure coating was prepared by the composite technology of flame spraying, induction remelting,and forced cooling, and the effect of Cu on the microstructure, phase, hardness, and wear... The Ni60/15wt% Cu directional structure coating was prepared by the composite technology of flame spraying, induction remelting,and forced cooling, and the effect of Cu on the microstructure, phase, hardness, and wear performance of Ni60 coatings was investigated. Results showed that Cu addition makes the microstructure of Ni60 directional structure coating more compact, and Cu is mainly enriched within the crystal grain, resulting in the formation of Cu_(3.8)Ni as the bonding phase. Compared with Ni60 directional structure coating, Ni60/Cu directional structure coating has a lower hardness, lower friction coefficient, and lower wear rate, which indicate that Cu can effectively enhance the antifriction performance of Ni60 directional structure coating. 展开更多
关键词 induction remelting directional structure coating microstructure tribological performance
下载PDF
Effect of Modification Treatment on Chloride Ions Permeability and Microstructure of Recycled Brick-mixed Aggregate Concrete
6
作者 何子明 申爱琴 +2 位作者 WANG Xiaobin WU Jinhua WANG Lusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期728-737,共10页
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength... The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution. 展开更多
关键词 recycled aggregate concrete modification treatment compressive strength chloride permeability resistance microstructure
下载PDF
Exploring the mechanical behavior and microstructure of compacted loess subjected to dry-wet cycles and chemical contamination
7
作者 Yongpeng Nie Wankui Ni +1 位作者 Xiangfei Lü Wenxin Tuo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第9期3673-3695,共23页
Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding m... Due to climatic factors and rapid urbanization,the soil in the Loess Plateau,China,experiences the coupled effects of dry-wet cycles and chemical contamination.Understanding the mechanical behavior and corresponding microstructural evolution of contaminated loess subjected to dry-wet cycles is essential to elucidate the soil degradation mechanism.Therefore,direct shear and consolidation tests were performed to investigate the variations in mechanical properties of compacted loess contaminated with acetic acid,sodium hydroxide,and sodium sulfate during dry-wet cycles.The mechanical response mechanisms were investigated using zeta potential,mineral chemical composition,and scanning electron microscopy(SEM)tests.The results indicate that the mechanical deterioration of sodium hydroxidecontaminated loess during dry-wet cycles decreases with increasing contaminant concentration,which is mainly attributed to the thickening of the electrical double layer(EDL)by Nat and the precipitation of calcite,as well as the formation of colloidal flocs induced by OH,thus inhibiting the development of large pores during the dry-wet process.In contrast,the attenuation of mechanical properties of both acetic acid-and sodium sulfate-contaminated loess becomes more severe with increasing contaminant concentration,with the latter being more particularly significant.This is primarily due to the reduction of the EDL thickness and the erosion of cement in the acidic environment,which facilitates the connectivity of pores during dry-wet cycles.Furthermore,the salt expansion generated by the drying process of saline loess further intensifies the structural disturbance.Consequently,the mechanical performance of compacted loess is sensitive to both pollutant type and concentration,exhibiting different response patterns in the dry-wet cycling condition. 展开更多
关键词 Contaminated loess Dry-wet cycles COMPRESSIBILITY Shear strength Microstructural evolution
下载PDF
Effects of cell wall property on compressive performance of aluminum foams 被引量:4
8
作者 袁建宇 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第5期1619-1625,共7页
The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and nume... The effects of cell wall property on the compressive performance of high porosity, closed-cell aluminum foams prepared by gas injection method were investigated. The research was conducted both experimentally and numerically. Foam specimens prepared from conditioned melt were tested under uniaxial compressive loading condition. The cell wall microstructure and fracture were observed through optical microscope(OM) and scanning electron microscope(SEM), which indicates that the cell wall property is impaired by the defects in cell walls and oxide films on the cell wall surface. Subsequently, finite element(FE) models based on three-dimensional thin shell Kelvin tetrakaidecahedron were developed based on the mechanical properties of the raw material and solid material that are determined by using experimental measurements. The simulation results show that the plateau stress of the nominal stress-strain curve exhibits a linear relationship with the yield strength of the cell wall material. The simulation plateau stress is higher than the experimental data, partly owing to the substitution of solid material for cell wall material in the process of the establishment of FE models. 展开更多
关键词 aluminum foams cell wall property uniaxial compressive performance FE analysis
下载PDF
Influence of different curing regimes on the microstructure and macro performance of UHPFRCC 被引量:4
9
作者 Saly Fathy 孙伟 《Journal of Southeast University(English Edition)》 EI CAS 2014年第3期348-352,共5页
This study investigates the influence of different curing regimes on the microstructure and macro properties of ultra-high performance fiber reinforced cementitious composite (UHPFRCC), and aims to discover whether ... This study investigates the influence of different curing regimes on the microstructure and macro properties of ultra-high performance fiber reinforced cementitious composite (UHPFRCC), and aims to discover whether it is possible to produce qualified UHPFRCC using different curing regimes. A control mix of UHPFRCC is prepared. The mechanical performance and the short-term durability of the UHPFRCC matrix under three curing regimes are studied. In addition, the microstructures of the UHPFRCC matrix with different curing conditions are analyzed by combining scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP). The results explore how different UHPFRCC curing regimes affect its microstructure and how the microstructure affects its macro behavior. Heat and steam curing for 3 d is succeeded to produce the UHPFRCC with nearly the same mechanical properties and durability as those of the 90 d standard curing. However, the heat cured UHPFRCC does not show great resistance to chloride-ion penetration. 展开更多
关键词 ultra-high performance fiber reinforcedcementitious composite (UHPFRCC) curing regimes DURABILITY microstructure
下载PDF
Influence of Mg and Ti on the microstructure and electrochemical performance of aluminum alloy sacrificial anodes 被引量:9
10
作者 Ma Jingling Wen Jiuba +2 位作者 Li Xudong Zhao Shengli Yan Yanfu 《Rare Metals》 SCIE EI CAS CSCD 2009年第2期187-192,共6页
The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of th... The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chloride solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy,resulting... 展开更多
关键词 aluminum alloy sacrificial anode electrochemical performance microstructure
下载PDF
Compressive Strength Development and Microstructure of Cement-asphalt Mortar 被引量:7
11
作者 王强 阎培渝 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2011年第5期998-1003,共6页
The compressive strength developing process and the microstructure of cement-asphalt mortar (CA mortar) were investigated.The fluidity of CA mortar has a great influence on its strength.The optimum value of spread d... The compressive strength developing process and the microstructure of cement-asphalt mortar (CA mortar) were investigated.The fluidity of CA mortar has a great influence on its strength.The optimum value of spread diameter of slump flow test is in the range of 300 to 400 mm.The compressive strength of CA mortar keeps a relatively high growth rate in 56 days and grows slowly afterwards.The residual water of hydration in CA mortar freezes under minus environmental temperature which can lead to a significant reduction of the strength of CA mortar.Increasing A/C retards asphalt emulsion splitting and thus prolongs the setting process of CA mortar.The hydration products of cement form the major structural framework of hardened CA mortar and asphalt is a weak phase in the framework but improves the viscoelastic behavior of CA mortar.Therefore,asphalt emulsion should be used as much as possible on the condition that essential performance criterions of CA mortar are satisfied. 展开更多
关键词 asphalt emulsion compressive strength CA mortar microstructure
下载PDF
Effect of Pre-wetting Lightweight Aggregates on the Mechanical Performances and Microstructure of Cement Pastes 被引量:5
12
作者 丁庆军 向玮衡 +1 位作者 ZHANG Gaozhan HU Cheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2020年第1期140-146,共7页
The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase com... The water absorption and desorption processes of different types of lightweight aggregates were studied.Subsequently,the influences of pre-wetting lightweight aggregates on compressive strength,microhardness,phase composition,hydration parameters and micromorphology of the cement pastes were investigated.The results showed that the water absorption and desorption capacities of the lightweight aggregates increased with the decrease of the densification degree.With the addition of pre-wetting lightweight aggregates,the compressive strength of the cement pastes would increase.Moreover,the enhancement effect was more obviously with the desorption capacity of pre-wetting lightweight aggregates increasing.Especially,sample S1 with pre-wetting red-mud ceramisites had the highest compressive strength,of which increased to 49.4 MPa after 28 d curing age.The reason is that mainly because the addition of pre-wetting lightweight aggregates can promote the generation of C–S–H gels in the interfacial zone,and the hydration degree of the interfacial zone increases with the water desorption of pre-wetting lightweight aggregates increasing.It is contributed to optimize the microstructure to enhance microhardness of the interfacial zone,resulting in the compressive strength of the cement-based materials improving.Therefore,the pre-wetting lightweight aggregates with high porosity and strength are the potential internal curing agents for high-strength lightweight concretes. 展开更多
关键词 PRE-WETTING lightweight AGGREGATES cement PASTES INTERFACIAL zone compressive strength microstructure
下载PDF
Effect of La on Microstructure and Grain-Refining Performance of Al-Ti-C Grain Refiner 被引量:4
13
作者 许春香 梁丽萍 +2 位作者 卢斌峰 张金山 梁伟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第5期596-601,共6页
Al-Ti-C grain refiner was prepared by SHS (self-propagating high-temperature synthesis )-melting technique. The effect of La on the microstructures of grain refiner was studied by OM, TEM, SEM, XRD, and EDS. The exp... Al-Ti-C grain refiner was prepared by SHS (self-propagating high-temperature synthesis )-melting technique. The effect of La on the microstructures of grain refiner was studied by OM, TEM, SEM, XRD, and EDS. The experimental results indicate that La can improve the wettability between liquid aluminum and graphite ; the addition of La results in dispersive distribution of TiAl3 and TiC particles in the matrix. An excellent grain refining performance of Al-Ti-C grain refiner on commercially pure Al was obtained. 展开更多
关键词 Al-Ti-C grain refiner microstructure refining performance LANTHANUM rare earths
下载PDF
Effects of Heating Temperature on Interfacial Microstructure and Compressive Strength of Brazed CBN-AlN Composite Abrasive Grits 被引量:4
14
作者 丁文锋 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第6期952-956,共5页
CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optica... CBN-AlN composite abrasive grits and AISI 1045 steel were brazed using Ag-Cu-Ti active filler alloy by heating up to the temperature of 890,900 and 920 ℃,respectively,and then held at the temperature for 8 min.Optical microscope,scanning electron microscope and X-ray diffraction equipment were utilized to study the effects of heating temperature on the microstructure of the joining interface.The compressive strength of the brazed composite grits was also measured.The experimental results show that the atoms of Ti,Al,B and N have preferentially penetrated towards the joining interface of composite grits and filler alloy.The compounds of Ti-nitride,Ti-borides and Ti3AlN were formed in the reaction layer.Degradation effect was not made on the compressive strength of the CBN-AlN composite grits when the brazing process was carried out in the temperature range of 890-920 ℃. 展开更多
关键词 CBN-AlN composite grits interfacial microstructure compressive strength Ag-Cu-Ti filler alloy
下载PDF
Effect of Rapid Quenching on Microstructures and Electrochemical Performances of La_2Mg(Ni_(0.85)Co_(0.15))_9M_(0.1)(M=B, Cr) Hydrogen Storage Alloys 被引量:4
15
作者 张羊换 董小平 +3 位作者 王国清 冯猛 任江远 王新林 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第4期460-465,共6页
The La-Mg-Ni-system (PuNi3-type) La2Mg (Ni0.85 Co0.15 )9M0.1 ( M = B, Cr) hydrogen storage etectrode alloys were prepared by casting and rapid quenching. The electrochemical performances and microstructures of t... The La-Mg-Ni-system (PuNi3-type) La2Mg (Ni0.85 Co0.15 )9M0.1 ( M = B, Cr) hydrogen storage etectrode alloys were prepared by casting and rapid quenching. The electrochemical performances and microstructures of the as-cast and quenched alloys were determined and measured. The effects of rapid quenching on the microstructures and electrochemical properties of the alloys were investigated in detail. The obtained results show that the alloys are composed of the (La, Mg) Ni3 phase (PuNi3-type structure) and the LaNi5 phase, as well as the small amount of the LaNi2 phase. A trace of the Ni2B phase exists in the as-cast alloy containing boron, and the Ni2B phase in the alloy nearly disappears after rapid quenching. The relative amount of each phase in the alloys depends on the quenching rate. The rapid quenching technique can greatly improve the electrochemical performance of the alloy, and the effect of rapid quenching on the activation performances of the alloys is minor. Rapid quenching enhances the cycle stability of the alloy, and the cycle life of the alloy increases with the increase of the quenching rate. 展开更多
关键词 La-Mg-Ni system hydrogen electrode alloy rapid quenching technique electrochemical performance microstructure rarearthse
下载PDF
Hot compressive deformation behavior and microstructure evolution of HIPed FGH96 superalloy 被引量:9
16
作者 XU Wei ZHANG Li-wen +1 位作者 GU Sen-dong ZHANG Jian-lin 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第1期66-71,共6页
Hot deformation behavior and microstructure evolution of hot isostatically pressed FGH96 P/M superalloy were studied using isothermal compression tests. The tests were performed on a Gleeble-1500 simulator in a temper... Hot deformation behavior and microstructure evolution of hot isostatically pressed FGH96 P/M superalloy were studied using isothermal compression tests. The tests were performed on a Gleeble-1500 simulator in a temperature range of 1000-1150 °C and strain rate of 0.001-1.0 s-1, respectively. By regression analysis of the stress—strain data, the constitutive equation for FGH96 superalloy was developed in the form of hyperbolic sine function with hot activation energy of 693.21 kJ/mol. By investigating the deformation microstructure, it is found that partial and full dynamical recrystallization occurs in specimens deformed below and above 1100 °C, respectively, and dynamical recrystallization (DRX) happens more readily with decreasing strain rate and increasing deformation temperature. Finally, equations representing the kinetics of DRX and grain size evolution were established. 展开更多
关键词 FGH96 superalloy hot compressive deformation constitutive equation microstructure evolution dynamical recrystallization
下载PDF
Effects of foaming parameters on microstructure and compressive properties of aluminum foams produced by powder metallurgy method 被引量:6
17
作者 T.GERAMIPOUR H.OVEISI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第7期1569-1579,共11页
Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures w... Semi open-cell aluminum foams having channels between individual cells were produced using low cost CaCO3foamingagent and applying the powder compact melting process.To this end,the aluminum and CaCO3powder mixtures were coldcompacted into dense cylindrical precursors for foaming at specific temperatures under air atmosphere.The effects of severalparameters including precursor compaction pressure,foaming agent content as well as temperature and time of the foaming processon the cell microstructure,linear expansion,relative density and compressive properties were investigated.A uniform distribution ofcells with sizes less than100μm,which form semi open-cell structures with relative densities in the range of55.4%-84.4%,wasobtained.The elevation of compaction pressure between127-318MPa and blowing agent up to15%(mass fraction)led to anincrease in the linear expansion,compressive strength and densification strain.By varying the foaming temperature from800to1000°C,all of the investigated parameters increased except compressive strength and relative density.The results indicated theoptimal foaming temperature and time as900°C and10-25min,respectively. 展开更多
关键词 aluminum foam powder metallurgy CACO3 foaming agent semi open-cell microstructure EXPANSION compressive properties
下载PDF
Microstructure and magnetic performance of Ni-substituted high density MnZn ferrite 被引量:3
18
作者 YU Zhong LAN Zhongwen +2 位作者 CHEN Shengming SUN Yueming SUN Ke 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期584-587,共4页
The effects of NiO on microstructure and magnetic properties of Mn-Zn ferrite with a nominal composition of Zn_(0.32)Mn_(0.60-x)Ni_(x)Fe_(2.08)O_(4)were investigated.The calcined powder of Mn-Zn ferrite was characteri... The effects of NiO on microstructure and magnetic properties of Mn-Zn ferrite with a nominal composition of Zn_(0.32)Mn_(0.60-x)Ni_(x)Fe_(2.08)O_(4)were investigated.The calcined powder of Mn-Zn ferrite was characterized by X-ray diffraction(XRD),the fracture surface of Mn-Zn ferrite was checked by scanning electronic microscope(SEM),and then the magnetic properties were measured.As a result,the substitution of Ni can cause the crystal lattice constant of MnZn ferrite to decline,and the grain size to decrease,therefore improve the magnetic performance of MnZn ferrite whose density exceeds 5.0 g·cm^(-3). 展开更多
关键词 MnZn ferrite Ni-substitution microstructure magnetic performance
下载PDF
Microstructures and compressive properties of AZ91D/fly-ash cenospheres composites 被引量:2
19
作者 黄志求 于思荣 李慕勤 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第B07期458-462,共5页
Novel AZ91D Mg alloy/fly-ash cenospheres(AZ91D/FACs)composites were fabricated by melt stir technique.Fly-ash cenosphere particles with 4%,6%,8%,10%in mass fraction and 100μm in size were used.Hardness and compressiv... Novel AZ91D Mg alloy/fly-ash cenospheres(AZ91D/FACs)composites were fabricated by melt stir technique.Fly-ash cenosphere particles with 4%,6%,8%,10%in mass fraction and 100μm in size were used.Hardness and compressive strength of the composites were measured.The effects of mass fraction of cenospheres on the microstructure and compressive properties were characterized.The results show that the cenospheres are uniformly distributed in the matrix and there is no sign of cenosphere cluster or residual pore.The densities of the composites are 1.85-1.92 g/cm 3 .By comparing with matrix,the compressive yield strength of the composites is improved,and the cenospheres is filled with Mg matrix alloy.SEM,XRD and EDX results of the composites show clear evidence of reaction product at cenosphere/matrix interface.On the basis of XRD and EDX,composition, structure and thermodynamic analysis,the main interfacial phase between the cenosphere and AZ91D Mg alloy was identified to be MgAl2O4. 展开更多
关键词 fly ash cenosphere microstructure compressive properties interface
下载PDF
Microstructures,mechanical properties and compressive creep behaviors of as-cast Mg-5%Sn-(0-1.0)%Pb alloys 被引量:2
20
作者 王卿 陈云贵 +3 位作者 肖素芬 刘红梅 唐永柏 赵源华 《Journal of Central South University》 SCIE EI CAS 2011年第2期290-295,共6页
The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0-1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic a-Mg and Mg2Sn pha... The microstructures, tensile properties and compressive creep behaviors of Mg-5%Sn-(0-1.0)%Pb (mass fraction) alloys were studied. The microstructures of the Mg-Sn-Pb alloys consist of dendritic a-Mg and Mg2Sn phase. The addition of Pb can refine the size of Mg2Sn phase and grain size, reduce the amount of Mg2Sn phase at grain or inter-dendrite boundaries and change the distribution of Mg2Sn phase. Pb exists in the Mg2Sn phase or dissolves in a-Mg matrix. The mechanical properties of the tested alloys at room temperature are improved with the addition of Pb. When the Pb content is over 0.5%, the mechanical properties are decreased gradually. The Mg-5%Sn-0.5%Pb shows the best ultimate tensile strength and elongation, 174 MPa and 14.3%, respectively. However, the compressive creep resistance of the Mg-Sn-Pb alloys is much lower than that of the Mg-Sn binary alloy at 175℃ with applied load of 55 MPa, which means that Pb has negative effects on the compressive creep resistance of the as-cast Mg-Sn alloys. 展开更多
关键词 Mg-Sn-Pb alloy microstructureS mechanical properties compressive creep Mg2Sn phase
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部