The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte...The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.展开更多
This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was conso...This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was consolidated by both methods utilising optimised parameters,which led to very low porosity(∼0.3%)in the SLM material and unmeasurably low porosity in the SPS material.The main aim of the study was the thorough microstructure characterisation and interrelation between the microstructure and the functional properties,such as mechanical strength,deformability,and corrosion resistance.Both materials showed comparable strength of∼110 MPa in tension and compression and relatively good deformability of∼9%and∼21%for the SLM and SPS materials,respectively.The corrosion resistance of the SPS material in 0.1 M NaCl solution was superior to the SLM one and comparable to the conventional extruded material.The digital image correlation during loading and the cross-section analysis of the corrosion layers revealed that the residual porosity and large strained grains have the dominant negative effect on the functional properties of the SLM material.On the other hand,one of the primary outcomes of this study is that the SPS consolidation method is very effective in the preparation of the W3 biodegradable alloy,resulting in material with convenient mechanical and degradation properties that might find practical applications.展开更多
Degradable Mg-Zn-Ca alloys with Sr addition were prepared by vacuum melting and hot extrusion.Effect of Sr on microstructure,mechanical and corrosion properties of hot extruded Mg-2Zn-0.5Ca-xSr(x=0,0.5,1.0)alloys was ...Degradable Mg-Zn-Ca alloys with Sr addition were prepared by vacuum melting and hot extrusion.Effect of Sr on microstructure,mechanical and corrosion properties of hot extruded Mg-2Zn-0.5Ca-xSr(x=0,0.5,1.0)alloys was investigated.The results show that Sr addition into Mg-2Zn-0.5Ca alloys produced significant grain refinement in ingots and obvious texture weakening effects in extruded bars.The ultimate compressive strength increased as the Sr content increased,while the ultimate tensile strength increased firstly and then declined with the increasing of Sr content.Electrochemical tests indicated the corrosion current density of the surface parallel to extrusion direction(ED)was much lower than that of the surface perpendicular to ED.In-vitro immersion tests demonstrated the increase in the pH of solution and weight loss of Mg-2Zn-0.5Ca-0.5Sr alloy remain the lowest during immersion tests.The best comprehensive property was obtained in Mg-2Zn-0.5Ca-0.5Sr alloy,which has the largest strength and the best corrosion resistance.展开更多
The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investiga...The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.展开更多
The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the g...The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the grain size and improved mechanical properties of the Mg-1Zn alloy.At the same time,CaO reacted with molten Mg in situ to form nano-MgO,whose corrosion product in SBF solution was the same with the degradation product of Mg matrix,resulting in the enhanced compactness of the Mg(OH)_(2) layer and reduced corrosion rate of matrix.The Mg-1Zn alloy had lower corrosion resistance due to excessively large grain size and shedding of corrosion products.The composite with 0.5 wt.%CaO had the best corrosion resistance with a weight loss of 9.875 mg·y^(-1)·mm^(-2)due to the small number of Ca_(2)Mg_(6)Zn_(3) phase and suitable grain size.While for composites with high content of CaO(0.7 wt.%and 1.0 wt.%),they had lower corrosion resistance due to the coexistence of large number of Ca_(2)Mg_(6)Zn_(3) and Mg_(2)Ca at grain boundaries,especially for 1.0 wt.%CaO composite,resulting from the strong micro-galvanic corrosion.展开更多
Magnesium alloys with homogeneous degradation and controlled degradation rate are desirable for biodegradable materials.In the present work,Mg-3 wt.%Zn-0.2 wt.%Ca alloys with different columnar structures were fabrica...Magnesium alloys with homogeneous degradation and controlled degradation rate are desirable for biodegradable materials.In the present work,Mg-3 wt.%Zn-0.2 wt.%Ca alloys with different columnar structures were fabricated and the degradation in 0.9 wt.%NaCl were investigated.With the increase of the growth rate for the directional solidification,the microstructure of the directionally solidified(DSed)alloy evolved from cellular to dendritic coupled with the change of the spacing of the primary trunks(λ_(1))and the volume fraction(fv)of Ca_(2)Mg_(6)Zn_(3) phase.The results of the corrosion test suggested that the alloy with cellular structure experienced homogeneous corrosion and exhibited the lowest corrosion rate.The good corrosion resistance of the alloy with cellular structure was attributed to the protective corrosion products film(CPF),which was closely related to the fv of Ca_(2)Mg_(6)Zn_(3) phase andλ_(1).To evaluate the corrosion rates(CR)of the DSed Mg-Zn-Ca alloys with different microstructures,a parameterαwas proposed in this work,which was calculated byλ_(1) and the fv of Ca_(2)Mg_(6)Zn_(3) phase.The fitting result showed that there was a linear relationship between CR andα,which was CR=4.1899+0.00432α.This means that the CR of the DSed Mg-Zn-Ca alloy can be evaluated if the microstructure had been characterized.展开更多
This work investigated the effect of sole yttrium and neodymium alloying on the microstructure formation during severe plastic deformation by equal channel angular pressing(ECAP) and an impact on the mechanical streng...This work investigated the effect of sole yttrium and neodymium alloying on the microstructure formation during severe plastic deformation by equal channel angular pressing(ECAP) and an impact on the mechanical strength and corrosion resistance of binary Mg-3Y and Mg-3Nd alloys.The results are compared with a ternary Mg-4Y-3Nd alloy,which represents a simplified version of the commercially successful WE43 alloy.The extensive study comprises a thorough microstructural analysis performed by scanning and transmission electron microscopy,including electron backscatter diffraction and texture analysis performed by X-ray diffraction.It is shown that the presence of Nd primarily caused precipitation during the processing of the Mg-3Nd alloy,while Y remained dissolved in the magnesium matrix in the Mg-3Y alloy.This difference resulted in a significantly smaller average grain size in the Mg-3Y alloy(~0.77 nm) than in the Mg-3Nd alloy(~1.3 μm) after the final step of the processing and formation of a slightly different texture.Consequently,the composition and the processing affected the mechanical and corrosion properties of the investigated materials,measured by compression deformation tests,microhardness measurement,and electrochemical impedance spectroscopy.This study shows that the ECAP-processed W3 sample exhibits a surprisingly good combination of ultrafine-grain structure,weak crystallographic texture,high strength,and high corrosion resistance compared with the other investigated samples.These attributes make this material very interesting for utilisation in the industry and/or medicine.展开更多
Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show t...Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.展开更多
Influence of dual retrogression and re-aging(dual-RRA) temper on microstructure,strength and exfoliation corrosion(EC) behavior of Al-Zn-Mg-Cu alloy was investigated by hardness measurements,tensile properties tes...Influence of dual retrogression and re-aging(dual-RRA) temper on microstructure,strength and exfoliation corrosion(EC) behavior of Al-Zn-Mg-Cu alloy was investigated by hardness measurements,tensile properties tests,exfoliation corrosion tests,transmission electron microscopy(TEM) and scanning electron microscopy(SEM) observation combined energy dispersive X-ray detector(EDX) analysis.Dual-RRA temper maintains the matrix precipitates(MPs) similar to RRA temper,meanwhile obtains coarser and sparser grain boundary precipitates(GBPs) as well as higher Cu and lower Zn content compared with T76 temper.Therefore,dual-RRA temper not only keeps strength equivalent to the RRA temper but also obtains higher EC resistance than T76 temper.展开更多
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t...Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.展开更多
In this study,the microstructures,mechanical properties,corrosion behaviors,and biocompatibility of extruded magnesium-zirconiumstrontium-holmium(Mg-Zr-Sr-Ho)alloys were comprehensively investigated.The effect of diff...In this study,the microstructures,mechanical properties,corrosion behaviors,and biocompatibility of extruded magnesium-zirconiumstrontium-holmium(Mg-Zr-Sr-Ho)alloys were comprehensively investigated.The effect of different concentrations of Ho on the microstructural characteristics,tensile and compressive properties,corrosion resistance,and biocompatibility were investigated.The microstructures of the extruded Mg-1Zr-0.5Sr-xHo(x=0.5,1.5,and 4 wt.%)alloys consisted ofα-Mg matrix,fineα-Zr particles,and intermetallic phase particles of Mg_(17)Sr_(2) and Ho_(2)Mg mainly distributed at the grain boundaries.Extensive{1012}tensile twins were observed in the partially recrystallized samples of Mg-1Zr-0.5Sr-0.5Ho and Mg-1Zr-0.5Sr-1.5Ho.Further addition of Ho to 4 wt.%resulted in a complete recrystallization due to activation of the particle stimulated nucleation around the Mg_(17)Sr_(2) particles.The evolution of a rare earth(RE)texture was observed with the Ho addition,which resulted in the weakened basal and prismatic textures.Furthermore,a drastic increase of 200%in tensile elongation and 89%in compressive strain was observed with Ho addition increased from 0.5 to 4 wt%,respectively.The tension-compression yield asymmetry was significantly decreased from 0.62 for Mg-1Zr-0.5Sr-0.5Ho to 0.98 for Mg-1Zr-0.5Sr-4Ho due to the weakening of textures.Corrosion analysis of the extruded Mg-Zr-Sr-Ho alloys revealed the presence of pitting corrosion.A minimum corrosion rate of 4.98 mm y^(−1) was observed in Mg-1Zr-0.5Sr-0.5Ho alloy.The enhanced corrosion resistance is observed due to the presence of Ho_(2)O_(3) in the surface film which reduced galvanic effect.The formation of a stabilized surface film due to the Ho_(2)O_(3) was confirmed through the electrical impedance spectroscopy and XPS analysis.An in vitro cytotoxicity assessment revealed good biocompatibility and cell adhesion in relation to SaOS2 cells.展开更多
Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed ...Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.展开更多
The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and mea...The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms.展开更多
The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microsco...The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical test. The results show that with decreasing the quenching rate, the size and inter-particle distance of the grain boundary precipitates as well as precipitation free zone width increase, but the copper content of grain boundary precipitates decreases. The SCC resistance of the samples increases first and then decreases, which is attributed to the copper content, size and distribution of grain boundary precipitates.展开更多
Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron micros...Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.展开更多
The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron m...The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.展开更多
Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% N...Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% NaCl aqueous solution. It is found that the steels with the same chemical composition but different micmstructures exhibit obviously different corrosion behaviors. However, the corrosion behavior of the steels with different compositions but the same microstructnres may be similar in the present investigation. The corrosion rate of bainite is slower than that of ferrite and pearlite. The corrosion products of bainite are uniform and fine. The size of carbon-rich phases produces a great impact on the corrosion of the steels, whether in the initial stage or in the long tenn. It is easy to induce large pitting for carbon-rich phases with large size, which damages the compactness of the rust layer.展开更多
Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy...Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.展开更多
The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental result...The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower.展开更多
The microstructures of two kinds of Cu-Ni alloys were observed by TEM.The results show that one of the alloys is a homogeneous solid solution.The other contains discontinuous precipitates at some grain boundaries,and ...The microstructures of two kinds of Cu-Ni alloys were observed by TEM.The results show that one of the alloys is a homogeneous solid solution.The other contains discontinuous precipitates at some grain boundaries,and the precipitate is a phase rich in Fe-Ni.By monitoring the corrosion potential(E_(con))in artifical seawater and exposure to natural seawater for a long time,it is found that the E_(con)of the former alloy steadily decreases,while the E_(con)of the latter decreases a little and fluctuates,and the corrosion rate of the former is clearly lower than that of the latter.Aanalyses of SEM and EDX show that the corrosion product film of the former is thin,uniform,compact and rich in nickel,and the film of the latter is thick,loose and covered with numerous deposits.Additionally serious intergranular corrosion occurs in the underlying substrate of the latter.The author proposes that the intergraular corrosion results from preferential dissolution of discontinuous precipitates at grain boundaries.In addition,the protective characteristics of corrosion product films are related not only to the enrichment of nickel but also to their compactness.展开更多
基金Project(202302AB080024)supported by the Department of Science and Technology of Yunnan Province,China。
文摘The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries.
基金supported by the Czech Science Foundation under project no.22-21122JPartial financial support from the Ministry of Health of the Czech Republic under the grant Nr.20-08-00150+2 种基金partial financial support from the Charles University Grant Agency under project number 389422partial financial support from the Science Grant Agency of the Slovak Republic through project No.1/0153/21faculty specific research project FSI-S-23-8340.
文摘This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was consolidated by both methods utilising optimised parameters,which led to very low porosity(∼0.3%)in the SLM material and unmeasurably low porosity in the SPS material.The main aim of the study was the thorough microstructure characterisation and interrelation between the microstructure and the functional properties,such as mechanical strength,deformability,and corrosion resistance.Both materials showed comparable strength of∼110 MPa in tension and compression and relatively good deformability of∼9%and∼21%for the SLM and SPS materials,respectively.The corrosion resistance of the SPS material in 0.1 M NaCl solution was superior to the SLM one and comparable to the conventional extruded material.The digital image correlation during loading and the cross-section analysis of the corrosion layers revealed that the residual porosity and large strained grains have the dominant negative effect on the functional properties of the SLM material.On the other hand,one of the primary outcomes of this study is that the SPS consolidation method is very effective in the preparation of the W3 biodegradable alloy,resulting in material with convenient mechanical and degradation properties that might find practical applications.
基金supports from the key research and development program of Shandong Province(Grant No.2021ZLGX01).
文摘Degradable Mg-Zn-Ca alloys with Sr addition were prepared by vacuum melting and hot extrusion.Effect of Sr on microstructure,mechanical and corrosion properties of hot extruded Mg-2Zn-0.5Ca-xSr(x=0,0.5,1.0)alloys was investigated.The results show that Sr addition into Mg-2Zn-0.5Ca alloys produced significant grain refinement in ingots and obvious texture weakening effects in extruded bars.The ultimate compressive strength increased as the Sr content increased,while the ultimate tensile strength increased firstly and then declined with the increasing of Sr content.Electrochemical tests indicated the corrosion current density of the surface parallel to extrusion direction(ED)was much lower than that of the surface perpendicular to ED.In-vitro immersion tests demonstrated the increase in the pH of solution and weight loss of Mg-2Zn-0.5Ca-0.5Sr alloy remain the lowest during immersion tests.The best comprehensive property was obtained in Mg-2Zn-0.5Ca-0.5Sr alloy,which has the largest strength and the best corrosion resistance.
基金funded by Ningbo Key R&D Plan and“Unveiling and Leading”(Grant No.2023Z093)Ningbo Science and Technology Innovation 2025 Major Special Project(Grant No.2022Z106)Hezhou City Central Leading Local Science and Technology Development Special Fund Project(Grant No.HK ZY2022002).
文摘The grain boundary phase affects the magnetic properties and corrosion resistance of sintered NdFeB magnets.In this work,a small amount of In was added to NdFeB magnets by induction melting to systematically investigate its effect on the evolution of the microstructure,magnetic properties and corrosion resistance of NdFeB magnets.Microstructural analysis illustrated that minor In addition generated more grain boundary phases and an abundant amorphous phase at the triple-junction grain boundary.While the addition of In failed to enhance the magnetic isolation effect between adjacent matrix grains,its incorporation fortuitously elevated the electrochemical potential of the In-containing magnets.Besides,during corrosion,an In-rich precipitate phase formed,hindering the ingress of the corrosive medium into the magnet.Consequently,this significantly bolstered the corrosion resistance of the sintered NdFeB magnets.The phase formation,magnetic properties and corrosion resistance of In-doped NdFeB magnets are detailed in this work,which provides new prospects for the preparation of high-performance sintered NdFeB magnets.
基金the financial support for this work from the National Natural Science Foundation of China(Nos.52171241,52201301 and 51871166)。
文摘The effects of nano-CaO contents on the microstructure,mechanical properties and corrosion resistance of lean Mg-1Zn alloy were investigated.The results showed that the addition of nano-CaO significantly refined the grain size and improved mechanical properties of the Mg-1Zn alloy.At the same time,CaO reacted with molten Mg in situ to form nano-MgO,whose corrosion product in SBF solution was the same with the degradation product of Mg matrix,resulting in the enhanced compactness of the Mg(OH)_(2) layer and reduced corrosion rate of matrix.The Mg-1Zn alloy had lower corrosion resistance due to excessively large grain size and shedding of corrosion products.The composite with 0.5 wt.%CaO had the best corrosion resistance with a weight loss of 9.875 mg·y^(-1)·mm^(-2)due to the small number of Ca_(2)Mg_(6)Zn_(3) phase and suitable grain size.While for composites with high content of CaO(0.7 wt.%and 1.0 wt.%),they had lower corrosion resistance due to the coexistence of large number of Ca_(2)Mg_(6)Zn_(3) and Mg_(2)Ca at grain boundaries,especially for 1.0 wt.%CaO composite,resulting from the strong micro-galvanic corrosion.
基金This work was supported by the Key Research and Development Plan of Shandong Province(2019JZZY020329)the National Key Research and Development Program of China(grant number.2017YFB0103904)+1 种基金the National Natural Science Foundation of China(No.51701211)DongGuan Innovative Research Team Program(2020607234007).
文摘Magnesium alloys with homogeneous degradation and controlled degradation rate are desirable for biodegradable materials.In the present work,Mg-3 wt.%Zn-0.2 wt.%Ca alloys with different columnar structures were fabricated and the degradation in 0.9 wt.%NaCl were investigated.With the increase of the growth rate for the directional solidification,the microstructure of the directionally solidified(DSed)alloy evolved from cellular to dendritic coupled with the change of the spacing of the primary trunks(λ_(1))and the volume fraction(fv)of Ca_(2)Mg_(6)Zn_(3) phase.The results of the corrosion test suggested that the alloy with cellular structure experienced homogeneous corrosion and exhibited the lowest corrosion rate.The good corrosion resistance of the alloy with cellular structure was attributed to the protective corrosion products film(CPF),which was closely related to the fv of Ca_(2)Mg_(6)Zn_(3) phase andλ_(1).To evaluate the corrosion rates(CR)of the DSed Mg-Zn-Ca alloys with different microstructures,a parameterαwas proposed in this work,which was calculated byλ_(1) and the fv of Ca_(2)Mg_(6)Zn_(3) phase.The fitting result showed that there was a linear relationship between CR andα,which was CR=4.1899+0.00432α.This means that the CR of the DSed Mg-Zn-Ca alloy can be evaluated if the microstructure had been characterized.
基金supported by Czech Science Foundation under project no. 22-21122 JPartial financial support from the Ministry of Health of the Czech Republic under the grant Nr.20-08-0015A+1 种基金partial financial support from the Charles University Grant Agency under project numbers 389422 and 1172120, respectivelypartial financial support from the Ministry of Transport and Construction of the Slovak Republic,OPII,grant No. ITMS:313011AFG4, co-financed by ERDF。
文摘This work investigated the effect of sole yttrium and neodymium alloying on the microstructure formation during severe plastic deformation by equal channel angular pressing(ECAP) and an impact on the mechanical strength and corrosion resistance of binary Mg-3Y and Mg-3Nd alloys.The results are compared with a ternary Mg-4Y-3Nd alloy,which represents a simplified version of the commercially successful WE43 alloy.The extensive study comprises a thorough microstructural analysis performed by scanning and transmission electron microscopy,including electron backscatter diffraction and texture analysis performed by X-ray diffraction.It is shown that the presence of Nd primarily caused precipitation during the processing of the Mg-3Nd alloy,while Y remained dissolved in the magnesium matrix in the Mg-3Y alloy.This difference resulted in a significantly smaller average grain size in the Mg-3Y alloy(~0.77 nm) than in the Mg-3Nd alloy(~1.3 μm) after the final step of the processing and formation of a slightly different texture.Consequently,the composition and the processing affected the mechanical and corrosion properties of the investigated materials,measured by compression deformation tests,microhardness measurement,and electrochemical impedance spectroscopy.This study shows that the ECAP-processed W3 sample exhibits a surprisingly good combination of ultrafine-grain structure,weak crystallographic texture,high strength,and high corrosion resistance compared with the other investigated samples.These attributes make this material very interesting for utilisation in the industry and/or medicine.
基金Project(2012CB619505)supported by the National Basic Research Program of ChinaProject(NCET-13-0370)supported by the Program for New Century Excellent Talents in Universities of China
文摘Evolution of microstructure and stress corrosion cracking (SCC) susceptibility of 7050 aluminum alloy with 0.094%, 0.134% and 0.261% Si (mass fraction) in T7651 condition have been investigated. The results show that the area fraction of Mg2Si increases from 0.16% to 1,48% and the size becomes coarser, while the area fraction of the other coarse phases including Al2CuMg, Mg(Al,Cu,Zn)2 and A17Cu2Fe decreases from 2.42% to 0.78% with Si content increasing from 0.094% to 0.261%. The tensile strength and elongation of 7050-T7651 alloys is decreased with the increase of Si content by slow strain rate test (SSRT) in ambient air. However, electrical conductivity is improved and SCC susceptibility is reduced with the increase of Si content by SSRT in corrosion environment with 3.5% NaCl solution.
基金Projects (2010CB731701,2012CB619502) supported by the National Basic Research Program of ChinaProject (50721003) supported by the Creative Research Group of National Natural Science Foundation of China
文摘Influence of dual retrogression and re-aging(dual-RRA) temper on microstructure,strength and exfoliation corrosion(EC) behavior of Al-Zn-Mg-Cu alloy was investigated by hardness measurements,tensile properties tests,exfoliation corrosion tests,transmission electron microscopy(TEM) and scanning electron microscopy(SEM) observation combined energy dispersive X-ray detector(EDX) analysis.Dual-RRA temper maintains the matrix precipitates(MPs) similar to RRA temper,meanwhile obtains coarser and sparser grain boundary precipitates(GBPs) as well as higher Cu and lower Zn content compared with T76 temper.Therefore,dual-RRA temper not only keeps strength equivalent to the RRA temper but also obtains higher EC resistance than T76 temper.
基金financially supported by the Key Scientific Research Project in Shanxi Province,China(No.202102050201003)the National Natural Science Foundation of China(No.52071227)+2 种基金the Natural Science Foundation of Shanxi Province,China(No.202103021223293)the Central Guiding Science and Technology Development of Local Fund,China(No.YDZJSK20231A046)the Postgraduate Education Innovation Project of Shanxi Province,China(No.2023Y686)。
文摘Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications.
基金the financial support for this research by the Australian Research Council(ARC)through the Future Fellowship(FT160100252)the Discovery Project(DP170102557)。
文摘In this study,the microstructures,mechanical properties,corrosion behaviors,and biocompatibility of extruded magnesium-zirconiumstrontium-holmium(Mg-Zr-Sr-Ho)alloys were comprehensively investigated.The effect of different concentrations of Ho on the microstructural characteristics,tensile and compressive properties,corrosion resistance,and biocompatibility were investigated.The microstructures of the extruded Mg-1Zr-0.5Sr-xHo(x=0.5,1.5,and 4 wt.%)alloys consisted ofα-Mg matrix,fineα-Zr particles,and intermetallic phase particles of Mg_(17)Sr_(2) and Ho_(2)Mg mainly distributed at the grain boundaries.Extensive{1012}tensile twins were observed in the partially recrystallized samples of Mg-1Zr-0.5Sr-0.5Ho and Mg-1Zr-0.5Sr-1.5Ho.Further addition of Ho to 4 wt.%resulted in a complete recrystallization due to activation of the particle stimulated nucleation around the Mg_(17)Sr_(2) particles.The evolution of a rare earth(RE)texture was observed with the Ho addition,which resulted in the weakened basal and prismatic textures.Furthermore,a drastic increase of 200%in tensile elongation and 89%in compressive strain was observed with Ho addition increased from 0.5 to 4 wt%,respectively.The tension-compression yield asymmetry was significantly decreased from 0.62 for Mg-1Zr-0.5Sr-0.5Ho to 0.98 for Mg-1Zr-0.5Sr-4Ho due to the weakening of textures.Corrosion analysis of the extruded Mg-Zr-Sr-Ho alloys revealed the presence of pitting corrosion.A minimum corrosion rate of 4.98 mm y^(−1) was observed in Mg-1Zr-0.5Sr-0.5Ho alloy.The enhanced corrosion resistance is observed due to the presence of Ho_(2)O_(3) in the surface film which reduced galvanic effect.The formation of a stabilized surface film due to the Ho_(2)O_(3) was confirmed through the electrical impedance spectroscopy and XPS analysis.An in vitro cytotoxicity assessment revealed good biocompatibility and cell adhesion in relation to SaOS2 cells.
基金Project(NCET-11-0554)supported by the Program for New Century Excellent Talents in UniversityProject(2011BAE22B04)supportedby the National Key Technology R&D Program of ChinaProject(51271206)supported by the National Natural Science Foundation of China
文摘Mg69Zn27Ca4 alloys with diameters of 1.5, 2 and 3 mm were fabricated using copper mold injection casting method. Microstructural analysis reveals that the alloy with a diameter of 1.5 mm is almost completely composed of amorphous phase. However, with the cooling rate decline, a little α-Mg and MgZn dendrites can be found in the amorphous matrix. Based on the microstructural and tensile results, the ductile dendrites are conceived to be highly responsible for the enhanced compressive strain from 1.3% to 3.1% by increasing the sample diameter from 1.5 mm to 3 mm. In addition, the Mg69Zn27Ca4 alloy with 1.5 mm diameter has the best corrosion properties. The current Mg-based alloys show much better corrosion resistance than the traditionally commercial wrought magnesium alloy ZK60 in simulated sea-water.
基金Project (MKPT-02-18) supported by the National Defense Science and Technology Industry Committee of ChinaProject (51101171)supported by the National Natural Science Foundation of China
文摘The effects of Hg and Ga on the electrochemical corrosion behaviors of the Mg-2%Hg, Mg-2%Ga and Mg-2%Hg-2%Ga (mass fraction) alloys were investigated by measurements of polarization curves, galvanostatic tests and measurements of electrochemical impedance spectroscopy. Scanning electron microscopy, X-ray diffractometry and energy dispersive spectrometry were employed to characterize the microstructures and the corroded surface of the above alloys. The results demonstrate that the microstructure of the Mg-2%Ga alloy is solid solution and the Mg-2%Hg and Mg-2%Hg-2%Ga alloys have white second-phases at the grain boundaries. The Mg-2%Ga alloy has the worst electrochemical activity and the best corrosion resistance, showing a mean potential of -1.48 V and a corrosion current density of 0.15 mA/cm2. The Mg-2%Hg-2%Ga alloy has the best electrochemical activity and the worst corrosion resistance, showing a mean potential of -1.848 V and a corrosion current density of 2.136 mA/cm2. The activation mechanism of the Mg-Hg-Ga alloy is dissolution-deposition of the Hg and Ga atoms.
基金Projects (2010CB731701, 2012CB619502) supported by National Basic Research Program of ChinaProject (51021063) supported by the Creative Research Group of National Natural Science Foundation of China
文摘The influence of quenching rate on microstructure and stress corrosion cracking (SCC) of 7085 aluminum alloy was investigated by tensile test, slow strain rate test (SSRT), combined with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical test. The results show that with decreasing the quenching rate, the size and inter-particle distance of the grain boundary precipitates as well as precipitation free zone width increase, but the copper content of grain boundary precipitates decreases. The SCC resistance of the samples increases first and then decreases, which is attributed to the copper content, size and distribution of grain boundary precipitates.
基金The authors are grateful for the financial supports from the National Key R&D Program of China(2017YFB1104100)the New Young Teachers Initiation Plan,China(18X100040027)+1 种基金the National Natural Science Foundation of China(51971142)the China Postdoctoral Science Foundation(19Z102060057).
文摘Ti−6Al−4V alloy was fabricated via selective laser melting(SLM)to improve its corrosion resistance for implant.The microstructure and electrochemical corrosion behavior were investigated using scanning electron microscopy(SEM),electron backscatter diffraction(EBSD),transmission electron microscopy(TEM),electrochemical test and contact angle test.It can be found that the as-selective laser melted(as-SLMed)Ti−6Al−4V alloys showβcolumnar microstructure in building direction and nearly circular checkerboard microstructure in scanning direction,while the wrought and wrought+HT samples exhibit equiaxed microstructure.The as-SLMed Ti−6Al−4V alloy exhibits better corrosion resistance than the wrought and wrought+HT samples due to hydrophobicity,high grain boundary density and uniform distribution of alloying elements in simulated artificial saliva at 37℃.
基金Project(2012CB619502)supported by the National Basic Research Program of ChinaProject(2016YFB0300800)supported by the National Key Research and Development Program of China+1 种基金Project(CALT201507)supported by the CALT Research Innovation Partnership Fund,ChinaProject(HPCM-201403)supported by the State Key Laboratory of High Performance Complex Manufacturing,China
文摘The influence of a novel three-step aging on strength, stress corrosion cracking(SCC) and microstructure of AA7085 was investigated by tensile testing and slow strain rate testing combined with transmission electron microscopy(TEM). The results indicate that with the increase of second-step aging time of two-step aging, the mechanical properties increase first and then decrease, while the SCC resistance increases. Compared with two-step aging, three-step aging treatment improves SCC resistance and the strength increases by about 5%. The effects of novel three-step aging on strength and SCC resistance are explained by the role of matrix precipitates and grain boundary precipitates, respectively.
基金supported by the Major State Basic Research and Development Program of China (No.2004CB619102)
文摘Electrochemical measurement, optical microscopy, and scanning electron microscopy were employed to investigate the corrosion behavior of some low alloy steels. The steels were held under a thin liquid film of 0.5wt% NaCl aqueous solution. It is found that the steels with the same chemical composition but different micmstructures exhibit obviously different corrosion behaviors. However, the corrosion behavior of the steels with different compositions but the same microstructnres may be similar in the present investigation. The corrosion rate of bainite is slower than that of ferrite and pearlite. The corrosion products of bainite are uniform and fine. The size of carbon-rich phases produces a great impact on the corrosion of the steels, whether in the initial stage or in the long tenn. It is easy to induce large pitting for carbon-rich phases with large size, which damages the compactness of the rust layer.
基金Project(TC190H3ZV/2) supported by the National Building Project of Application Demonstration Platform on New Materials Products,China。
文摘Effects of interrupted ageing(T6I6) and asymmetric rolling on microstructures, mechanical properties, and intergranular corrosion(IGC) behaviors of Al-Mg-Si-Zn alloy were investigated. Results showed that the T6 alloy has the lowest strength and the worst IGC resistance, while the T6I6 alloy has higher strength and better IGC resistance.What’ s more, the alloy treated by pre-rolling deformation has higher strength and better IGC resistance;and the alloy treated by the pre-asymmetry rolling achieves the highest strength, the best IGC resistance and lower elongation. The mechanical properties depend on microstructures such as the grain size, texture, dislocation density and precipitation, the grain boundary misorientation and grain boundary microstructure are responsible for the IGC resistance.
基金financially supported by the National Science Fund for Distinguished Young Scholars (No. 51325401)the International Thermonuclear Experimental Reactor (ITER) Program Special Project (No. 2014GB125006)+1 种基金the Major State Basic Research Development Program of China (No. 2014CB046805)the National Natural Science Foundation of China (No. 51474156)
文摘The effect of microstructure variation on the corrosion behavior of high-strength low-alloy(HSLA) steel was investigated. The protective property of the corrosion product layer was also explored. Experimental results reveal that the type of microstructure has significant effect on the corrosion resistance of HSLA steel. The measurement results of weight loss, potentiodynamic polarization curves, and electrochemical impedance spectroscopy indicate that the steel with acicular ferrite microstructure exhibits the lowest corrosion rate. Martensite exhibits a reduced corrosion resistance compared with polygonal ferrite. It is found that the surface of the acicular ferrite specimen uniformly covered by corrosion products is seemingly denser and more compact than those of the other two microstructures, and can provide some amount of protection to the steel; thus, the charge transfer resistance and modulus values of the acicular ferrite specimen are the largest. However, corrosion products on martensite and polygonal ferrite are generally loose, porous, and defective, and can provide minor protectiveness; thus, the charge transfer resistance values for polygonal ferrite and martensite are lower.
基金supported by China National Natural Science Foundation。
文摘The microstructures of two kinds of Cu-Ni alloys were observed by TEM.The results show that one of the alloys is a homogeneous solid solution.The other contains discontinuous precipitates at some grain boundaries,and the precipitate is a phase rich in Fe-Ni.By monitoring the corrosion potential(E_(con))in artifical seawater and exposure to natural seawater for a long time,it is found that the E_(con)of the former alloy steadily decreases,while the E_(con)of the latter decreases a little and fluctuates,and the corrosion rate of the former is clearly lower than that of the latter.Aanalyses of SEM and EDX show that the corrosion product film of the former is thin,uniform,compact and rich in nickel,and the film of the latter is thick,loose and covered with numerous deposits.Additionally serious intergranular corrosion occurs in the underlying substrate of the latter.The author proposes that the intergraular corrosion results from preferential dissolution of discontinuous precipitates at grain boundaries.In addition,the protective characteristics of corrosion product films are related not only to the enrichment of nickel but also to their compactness.