期刊文献+
共找到72,951篇文章
< 1 2 250 >
每页显示 20 50 100
Relationship between the unique microstructures and behaviors of high-entropy alloys 被引量:2
1
作者 Yaqi Wu Peter KLiaw +5 位作者 Ruixuan Li Weiran Zhang Guihong Geng Xuehui Yan Guiqun Liu Yong Zhang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1350-1363,共14页
High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness... High-entropy alloys(HEAs),which were introduced as a pioneering concept in 2004,have captured the keen interest of nu-merous researchers.Entropy,in this context,can be perceived as representing disorder and randomness.By contrast,elemental composi-tions within alloy systems occupy specific structural sites in space,a concept referred to as structure.In accordance with Shannon entropy,structure is analogous to information.Generally,the arrangement of atoms within a material,termed its structure,plays a pivotal role in dictating its properties.In addition to expanding the array of options for alloy composites,HEAs afford ample opportunities for diverse structural designs.The profound influence of distinct structural features on the exceptional behaviors of alloys is underscored by numer-ous examples.These features include remarkably high fracture strength with excellent ductility,antiballistic capability,exceptional radi-ation resistance,and corrosion resistance.In this paper,we delve into various unique material structures and properties while elucidating the intricate relationship between structure and performance. 展开更多
关键词 high-entropy alloys unique microstructure special properties alloy design
下载PDF
Microstructure and water-swelling mechanism of red-bed mudstone in the Xining region,Northeastern Tibetan Plateau 被引量:1
2
作者 Huan Guan Yong Ren +5 位作者 Sixiang Ling Xiyong Wu Tao Yu Xian Li Sen Wang Chunwei Sun 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第7期2537-2551,共15页
This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plate... This paper examines the effect of the microstructure and electrical conductivity(EC)on the swelling ratio and pressure in red-bed mudstone sampled from arid areas in the Xining region in the northeastern Tibetan Plateau.A series of laboratory tests,including swelling experiments,X-ray diffraction(XRD),and scanning electron microscope(SEM),was carried out for mechanical and microstructural analysis.The coupled influence of the EC and microstructural parameters on the expansion ratio and pressure was investigated,and the weight coefficients were discussed by the entropy weight method.The results revealed an increasing exponential trend in EC,and the maximum swelling speed occurred at an EC of approximately 10 μS/cm.In addition,a method for predicting the expansion potential is proposed based on the microstructure,and its reliability is verified by comparing with swelling experimental results.In addition,according to the image analysis results,the ranges of the change in the clay minerals content(CMC),the fractal dimension(FD),the average diameter(AD)of pores,and the plane porosity(PP)are 23.75%-53%,1.08-1.17,7.53-22.45 mm,and 0.62%-1.25%,respectively.Moreover,mudstone swelling is negatively correlated with the plane porosity,fractal dimension and average diameter and is linearly correlated with the clay mineral content.Furthermore,the weight values prove that the microstructural characteristics,including FD,AD,and PP,are the main factors influencing the expansion properties of red-bed mudstones in the Xining region.Based on the combination of macro and micro-analyses,a quantitative analysis of the swelling process of mudstones can provide a better reference for understanding the mechanism of expansion behavior. 展开更多
关键词 MUDSTONES microstructure Swelling characteristics Electrical conductivity(EC) Scanning electron microscope Water-swelling
下载PDF
Role of heterogenous microstructure and deformation behavior in achieving superior strength-ductility synergy in zinc fabricated via laser powder bed fusion 被引量:1
3
作者 Zhi Dong Changjun Han +7 位作者 Yanzhe Zhao Jinmiao Huang Chenrong Ling Gaoling Hu Yunhui Wang Di Wang Changhui Song Yongqiang Yang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第4期225-245,共21页
Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturin... Zinc(Zn)is considered a promising biodegradable metal for implant applications due to its appropriate degradability and favorable osteogenesis properties.In this work,laser powder bed fusion(LPBF)additive manufacturing was employed to fabricate pure Zn with a heterogeneous microstructure and exceptional strength-ductility synergy.An optimized processing window of LPBF was established for printing Zn samples with relative densities greater than 99%using a laser power range of 80∼90 W and a scanning speed of 900 mm s−1.The Zn sample printed with a power of 80 W at a speed of 900 mm s−1 exhibited a hierarchical heterogeneous microstructure consisting of millimeter-scale molten pool boundaries,micrometer-scale bimodal grains,and nanometer-scale pre-existing dislocations,due to rapid cooling rates and significant thermal gradients formed in the molten pools.The printed sample exhibited the highest ductility of∼12.1%among all reported LPBF-printed pure Zn to date with appreciable ultimate tensile strength(∼128.7 MPa).Such superior strength-ductility synergy can be attributed to the presence of multiple deformation mechanisms that are primarily governed by heterogeneous deformation-induced hardening resulting from the alternative arrangement of bimodal Zn grains with pre-existing dislocations.Additionally,continuous strain hardening was facilitated through the interactions between deformation twins,grains and dislocations as strain accumulated,further contributing to the superior strength-ductility synergy.These findings provide valuable insights into the deformation behavior and mechanisms underlying exceptional mechanical properties of LPBF-printed Zn and its alloys for implant applications. 展开更多
关键词 laser powder bed fusion ZINC heterogeneous microstructure bimodal grains strength-ductility synergy
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys 被引量:1
4
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment microstructure Damping properties.
下载PDF
Microstructures,corrosion behavior and mechanical properties of as-cast Mg-6Zn-2X(Fe/Cu/Ni)alloys for plugging tool applications 被引量:1
5
作者 Baosheng Liu Jiali Wei +4 位作者 Shaohua Zhang Yuezhong Zhang Pengpeng Wu Daqing Fang Guorui Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第4期697-711,共15页
Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess t... Mg-6Zn-2X(Fe/Cu/Ni)alloys were prepared through semi-continuous casting,with the aim of identifying a degradable magnesium(Mg)alloy suitable for use in fracturing balls.A comparative analysis was conducted to assess the impacts of adding Cu and Ni,which result in finer grains and the formation of galvanic corrosion sites.Scanner electronic microscopy examination revealed that precipitated phases concentrated at grain boundaries,forming a semi-continuous network structure that facilitated corrosion penetration in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Pitting corrosion was observed in Mg-6Zn-2Fe,while galvanic corrosion was identified as the primary mechanism in Mg-6Zn-2Cu and Mg-6Zn-2Ni alloys.Among the tests,the Mg-6Zn-2Ni alloy exhibited the highest corrosion rate(approximately 932.9 mm/a)due to its significant potential difference.Mechanical testing showed that Mg-6Zn-2Ni alloy possessed suitable ultimate compressive strength,making it a potential candidate material for degradable fracturing balls,effectively addressing the challenges of balancing strength and degradation rate in fracturing applications. 展开更多
关键词 magnesium alloys microstructure micro-galvanic corrosion mechanical properties
下载PDF
Toward understanding the microstructure characteristics,phase selection and magnetic properties of laser additive manufactured Nd-Fe-B permanent magnets 被引量:1
6
作者 Bo Yao Nan Kang +6 位作者 Xiangyu Li Dou Li Mohamed EL Mansori Jing Chen Haiou Yang Hua Tan Xin Lin 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第1期277-294,共18页
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue... Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder. 展开更多
关键词 laser additive manufacturing(LAM) Nd-Fe-B permanent magnets numerical simulation microstructure magnetic properties
下载PDF
Multistage Microstructured Ionic Skin for Real-Time Vital Signs Monitoring and Human-Machine Interaction 被引量:1
7
作者 Xueke Wang Jinyu Zi +5 位作者 Yi Chen Qiang Wu Zhimin Xiang Yongqiang Tu Peng Yang Yanfen Wan 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期218-229,共12页
Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperce... Skin-like electronics research aiming to mimic even surpass human-like specific tactile cognition by operating perception-to-cognition-to-feedback of stimulus to build intelligent cognition systems for certain imperceptible or inappreciable signals was so attractive.Herein,we constructed an all-in-one tri-modal pressure sensing wearable device to address the issue of power supply by integrating multistage microstructured ionic skin(MM i-skin)and thermoelectric self-power staffs,which exhibits high sensitivity simultaneously.The MM i-skin with multi-stage“interlocked”configurations achieved precise recognition of subtle signals,where the sensitivity reached up to 3.95 kPa^(−1),as well as response time of 46 ms,cyclic stability(over 1500 cycles),a wide detection range of 0–200 kPa.Furthermore,we developed the thermoelectricity nanogenerator,piezoelectricity nanogenerator,and piezocapacitive sensing as an integrated tri-modal pressure sensing,denoted as P-iskin,T-iskin,and C-iskin,respectively.This multifunctional ionic skin enables real-time monitoring of weak body signals,rehab guidance,and robotic motion recognition,demonstrating potential for Internet of things(IoT)applications involving the artificial intelligence-motivated sapiential healthcare Internet(SHI)and widely distributed human-machine interaction(HMI). 展开更多
关键词 bio-template method integrated device ionic skin skin-like microstructure tri-modal pressure sensing
下载PDF
Microstructures and micromechanical behaviors of high -entropy alloys investigated by synchrotron X-ray and neutron diffraction techniques: A review 被引量:1
8
作者 Yubo Huang Ning Xu +3 位作者 Huaile Lu Yang Ren Shilei Li Yandong Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1333-1349,共17页
High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Exten... High-entropy alloys(HEAs)possess outstanding features such as corrosion resistance,irradiation resistance,and good mechan-ical properties.A few HEAs have found applications in the fields of aerospace and defense.Extensive studies on the deformation mech-anisms of HEAs can guide microstructure control and toughness design,which is vital for understanding and studying state-of-the-art structural materials.Synchrotron X-ray and neutron diffraction are necessary techniques for materials science research,especially for in situ coupling of physical/chemical fields and for resolving macro/microcrystallographic information on materials.Recently,several re-searchers have applied synchrotron X-ray and neutron diffraction methods to study the deformation mechanisms,phase transformations,stress behaviors,and in situ processes of HEAs,such as variable-temperature,high-pressure,and hydrogenation processes.In this review,the principles and development of synchrotron X-ray and neutron diffraction are presented,and their applications in the deformation mechanisms of HEAs are discussed.The factors that influence the deformation mechanisms of HEAs are also outlined.This review fo-cuses on the microstructures and micromechanical behaviors during tension/compression or creep/fatigue deformation and the application of synchrotron X-ray and neutron diffraction methods to the characterization of dislocations,stacking faults,twins,phases,and intergrain/interphase stress changes.Perspectives on future developments of synchrotron X-ray and neutron diffraction and on research directions on the deformation mechanisms of novel metals are discussed. 展开更多
关键词 high-entropy alloys microstructureS micromechanical behaviors synchrotron X-ray diffraction neutron diffraction
下载PDF
Microstructure and Properties of AlCoCrFeNiTi High-Entropy Alloy Coatings Prepared by Laser Cladding 被引量:1
9
作者 Mengxian Li Zhiping Sun +1 位作者 Zhaomin Xu Zhiming Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第2期50-61,共12页
21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosi... 21-4N(5Cr21Mn9Ni4N)is extensively employed in the production of engine valves,operating under severe conditions.Apart from withstanding high-temperature gas corrosion,it must also endure the impact of cylinder explosion pressure.The predominant failure mode of 21-4N valves is abrasive wear.Surface coatings serve as an effective approach to prevent such failures.In this investigation,Laser cladding technology was utilized to fabricate AlCoCrFeNiTi high entropy alloy coatings onto the surfaces of 21-4N valves.According to the findings,the cladding zone has a normal dendritic microstructure,a good substrate-to-cladding layer interaction,and no obvious flaws.In terms of hardness,the cladding demonstrates an average hardness of 620 HV.The hardness has increased by 140%compared to the substrate.The average hardness of the cladding remains at approximately 520 HV even at elevated temperatures.Regarding frictional wear performance,between 400℃and 800℃,the cladding layer exhibits an average friction coefficient of 0.4,with the primary wear mechanisms being abrasive wear,adhesive wear,and a minor degree of plastic deformation. 展开更多
关键词 high entropy alloy laser cladding microstructure microstructure and properties
下载PDF
Influences of shale microstructure on mechanical properties and bedding fractures distribution
10
作者 Ming-Zhe Gu Mao Sheng +2 位作者 Shi-Zhong Cheng Fan-Hao Gong Gen-Sheng Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第3期1944-1954,共11页
The difference in microstructure leads to the diversity of shale mechanical properties and bedding fractures distribution patterns.In this paper,the microstructure and mechanical properties of Longmaxi marine shale an... The difference in microstructure leads to the diversity of shale mechanical properties and bedding fractures distribution patterns.In this paper,the microstructure and mechanical properties of Longmaxi marine shale and Qingshankou continental shale were studied by X-ray diffractometer(XRD),field emission scanning electron microscope(FE-SEM)with mineral analysis system,and nanoindentation.Additionally,the typical bedding layers area was properly stratified using Focused Ion Beam(FIB),and the effects of microstructure and mechanical properties on the distribution patterns of bedding fractures were analyzed.The results show that the Longmaxi marine shale sample contains more clay mineral grains,while the Qingshankou continental shale sample contains more hard brittle mineral grains such as feldspar.For Longmaxi marine shale sample,hard brittle minerals with grain sizes larger than 20μm is18.24%and those with grain sizes smaller than 20μm is 16.22%.For Qingshankou continental shale sample,hard brittle minerals with grain sizes larger than 20μm is 40.7%and those with grain sizes smaller than 20μm is 11.82%.In comparison to the Qingshankou continental shale sample,the Longmaxi marine shale sample has a lower modulus,hardness,and heterogeneity.Laminated shales are formed by alternating coarse-grained and fine-grained layers during deposition.The average single-layer thickness of Longmaxi marine shale sample is greater than Qingshankou continental shale sample.The two types of shale have similar bedding fractures distribution patterns and fractures tend to occur in the transition zone from coarse-grained to fine-grained deposition.The orientation of the fracture is usually parallel to the bedding plane and detour occurs in the presence of hard brittle grains.The fracture distribution density of the Longmaxi marine shale sample is lower than that of the Qingshankou continental shale sample due to the strong heterogeneity of the Qingshankou continental shale.The current research provides guidelines for the effective development of shale reservoirs in various sedimentary environments. 展开更多
关键词 SHALE NANOINDENTATION microstructure Mechanical property Fracture
下载PDF
Evolution of Biofilm and Its Effect on Microstructure of Mortar Surfaces in Simulated Seawater
11
作者 荣辉 YU Chenglong 张颖 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期234-243,共10页
To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstru... To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater. 展开更多
关键词 biofilm attachment MORTAR sulfur-oxidizing bacteria GYPSUM simulated seawater microstructure
下载PDF
Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Containedβ-solidifiedγ-TiAl Alloy
12
作者 王秀琦 GUO Ruiqi +5 位作者 刘国怀 LI Tianrui YANG Yuxuan CHEN Yang XIN Meiling WANG Zhaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期738-746,共9页
The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac... The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation. 展开更多
关键词 TiAl alloy phase transformation heat treatment BORIDE microstructure mechanical properties
下载PDF
Effect of annealing treatment on the microstructure and mechanical properties of warm-rolled Mg-Zn-Gd-Ca-Mn alloys
13
作者 Yifan Song Xihai Li +5 位作者 Jinliang Xu Kai Zhang Yaozong Mao Hong Yan Huiping Li Rongshi Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2208-2220,共13页
The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)all... The basal texture of traditional magnesium alloy AZ31 is easy to form and exhibits poor plasticity at room temperature.To address these problems,a multi-micro-alloyed high-plasticity Mg-1.8Zn-0.8Gd-0.1Ca-0.2Mn(wt%)alloy was developed using the unique role of rare earth and Ca solute atoms.In addition,the influence of the annealing process on the grain size,second phase,texture,and mechanical properties of the warm-rolled sheet at room temperature was analyzed with the goal of developing high-plasticity mag-nesium alloy sheets and obtaining optimal thermal-mechanical treatment parameters.The results show that the annealing temperature has a significant effect on the microstructure and properties due to the low alloying content:there are small amounts of larger-sized block and long string phases along the rolling direction(RD),as well as several spherical and rodlike particle phases inside the grains.With increas-ing annealing temperature,the grain size decreases and then increases,and the morphology,number,and size of the second phase also change correspondingly.The particle phase within the grains vanishes at 450℃,and the grain size increases sharply.In the full recrystal-lization stage at 300-350℃,the optimum strength-plasticity comprehensive mechanical properties are presented,with yield strengths of 182.1 and 176.9 MPa,tensile strengths of 271.1 and 275.8 MPa in the RD and transverse direction(TD),and elongation values of 27.4%and 32.3%,respectively.Moreover,there are still some larger-sized phases in the alloy that influence its mechanical properties,which offers room for improvement. 展开更多
关键词 Mg-Zn-Gd-Ca-Mn alloy annealing treatment microstructure TEXTURE dynamic recrystallization mechanical properties
下载PDF
Investigation of Microstructure, Microhardness and Thermal Properties of Ag-In Intermetallic Alloys Prepared by Vacuum Arc Meltings
14
作者 ÇELİK Erçevik ATA ESENER Pınar +1 位作者 ÖZTÜRK Esra AKSÖZ Sezen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期182-187,共6页
Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical com... Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical composition of the phases respectively. Microhardness values of Ag-In intermetallics were calculated with Vickers hardness measurement method. According to the experimental results, Ag-34 wt%In intermetallic system generated the best results of energy saving and storage compared to other intermetallic systems. Also from the microhardness results, it was observed that intermetallic alloys were harder than pure silver and Ag-26 wt%In system had the highest microhardness value with 143.45 kg/mm^(2). 展开更多
关键词 thermal properties microstructure characterization MICROHARDNESS ALLOYS material characterization
下载PDF
Improvement of Microstructure and Mechanical Properties of Rapid Cooling Friction Stir-welded A1050 Pure Aluminum
15
作者 许楠 LIU Lutao +2 位作者 SONG Qining ZHAO Jianhua BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期134-141,共8页
Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were inves... Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored. 展开更多
关键词 aluminum alloy friction stir welding RECRYSTALLIZATION microstructure mechanical properties
下载PDF
Comparative analysis of microstructure,mechanical,and corrosion properties of biodegradable Mg-3Y alloy prepared by selective laser melting and spark plasma sintering
16
作者 P.Minárik M.Zemková +6 位作者 S.Šašek J.Dittrich M.Knapek F.Lukáˇc D.Koutný J.Jaroš R.Král 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1496-1510,共15页
This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was conso... This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was consolidated by both methods utilising optimised parameters,which led to very low porosity(∼0.3%)in the SLM material and unmeasurably low porosity in the SPS material.The main aim of the study was the thorough microstructure characterisation and interrelation between the microstructure and the functional properties,such as mechanical strength,deformability,and corrosion resistance.Both materials showed comparable strength of∼110 MPa in tension and compression and relatively good deformability of∼9%and∼21%for the SLM and SPS materials,respectively.The corrosion resistance of the SPS material in 0.1 M NaCl solution was superior to the SLM one and comparable to the conventional extruded material.The digital image correlation during loading and the cross-section analysis of the corrosion layers revealed that the residual porosity and large strained grains have the dominant negative effect on the functional properties of the SLM material.On the other hand,one of the primary outcomes of this study is that the SPS consolidation method is very effective in the preparation of the W3 biodegradable alloy,resulting in material with convenient mechanical and degradation properties that might find practical applications. 展开更多
关键词 Magnesium YTTRIUM Powder metallurgy microstructure Mechanical strength Corrosion resistance
下载PDF
Microstructure,Corrosion and Mechanical Properties of Medium-Thick 6061-T6 Alloy/T2 Pure Cu Dissimilar Joints Produced by Double Side Friction Stir Z Shape Lap-Butt Welding
17
作者 Jiuxing Tang Guoxin Dai +5 位作者 Lei Shi Chuansong Wu Sergey Mironov Surendra Kumar Patel Song Gao Mingxiao Wu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第2期385-400,共16页
A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld mi... A novel double side friction stir Z shape lap-butt welding(DS-FSZW)process was proposed to achieve excellent mechanical properties of Al/Cu medium-thick dissimilar joints.The influence of welding parameters on weld microstructure and properties of DS-FSZW joint were systematically investigated.It indicated that defect-free medium-thick Al/Cu DS-FSZW joint could be achieved under an optimal welding parameter.DS-FSZW joint was prone to form void defects in the bottom of the second-pass weld.The recrystallization mechanisms at the top and middle of the weld nugget zone(WNZ)were continuous dynamic recrystallization(CDRX)and geometric dynamic recrystallization(GDRX).While the major recrystallization mechanism at the bottom of the WNZ was GDRX.DS-FSZW joint of the optimal welding condition with 850 r/min-400 mm/min was produced with a continuous thin and crack-free IMCs layer at the Al/Cu interface,and the maximum tensile strength of this joint is 160.57 MPa,which is equivalent to 65.54%of pure Cu base material.Moreover,the corrosion resistance of Al/Cu DS-FSZW joints also achieved its maximum value at the optimal welding parameter of 850 r/min-400 mm/min.It demonstrates that the DS-FSZW process can simultaneously produce medium-thick Al/Cu joints with excellent mechanical performance and corrosion resistance. 展开更多
关键词 DS-FSZW Al/Cu dissimilar joint Corrosion behaviour Intermetallic compounds microstructure Mechanical properties
下载PDF
Effects of heating temperature and atmosphere on element distribution and microstructure in high-Mn/Al austenitic low-density steel
18
作者 Qi Zhang Guanghui Chen +2 位作者 Yuemeng Zhu Zhengliang Xue Guang Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2670-2680,共11页
The elemental distribution and microstructure near the surface of high-Mn/Al austenitic low-density steel were investigated after isothermal holding at temperatures of 900-1200℃ in different atmospheres,including air... The elemental distribution and microstructure near the surface of high-Mn/Al austenitic low-density steel were investigated after isothermal holding at temperatures of 900-1200℃ in different atmospheres,including air,N_(2),and N_(2)+CO_(2).No ferrite was formed near the surface of the experimental steel during isothermal holding at 900 and 1000℃ in air,while ferrite was formed near the steel sur-face at holding temperatures of 1100 and 1200℃.The ferrite fraction was larger at 1200℃ because more C and Mn diffused to the sur-face,exuded from the steel,and then reacted with N and O to form oxidation products.The thickness of the compound scale increased owing to the higher diffusion rate at higher temperatures.In addition,after isothermal holding at 1100℃ in N_(2),the Al content near the surface slightly decreased,while the C and Mn contents did not change.Therefore,no ferrite was formed near the surface.However,the near-surface C and Al contents decreased after holding at 1100℃in the N_(2)+CO_(2)mixed atmosphere,resulting in the formation of a small amount of ferrite.The compound scale was thickest in N_(2),followed by the N_(2)+CO_(2)mixed atmosphere,and thinnest in air.Overall,the element loss and ferrite fraction were largest after holding in air at the same temperature.The differences in element loss and ferrite frac-tion between in N_(2) and N_(2)+CO_(2)atmospheres were small,but the compound scale formed in N_(2) was significantly thicker.According to these results,N_(2)+CO_(2)is the ideal heating atmosphere for the industrial production of high-Mn/Al austenitic low-density steel. 展开更多
关键词 low-density steel oxidation microstructure element distribution compound scale
下载PDF
Mechanical Property and Microstructure of Cement Mortar with Carbonated Recycled Powder
19
作者 丁亚红 张美香 +3 位作者 YANG Xiaolin XU Ping SUN Bo GUO Shuqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期689-697,共9页
Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon... Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect. 展开更多
关键词 recycled powder carbonation activation compound carbonation activity index mechanical property microstructure
下载PDF
Microstructure and mechanical properties of new Mg-Zn-Y-Zr alloys with high castability and ignition resistance
20
作者 T.A.Koltygina V.E.Bazhenov +5 位作者 A.V.Koltygin A.S.Prosviryakov N.Y.Tabachkova I.I.Baranov A.A.Komissarov A.I.Bazlov 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第12期2714-2726,共13页
Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Z... Complex studies of new Mg-Zn-Y-Zr system alloys have been carried out.The content range for the formation of the two-phase structure MgSS(Mg solid solution)+LPSO(long-period stacking ordered)in alloys of the Mg-Zn-Y-Zr system was determined by thermodynamic calculations.The effect of heat treatment regimes on microstructure,mechanical,and corrosion properties was invest-igated.The fluidity,hot tearing tendency,and ignition temperature of the alloys were determined.The best combination of castability,mechanical,and corrosion properties was found for the Mg-2.4Zn-4Y-0.8Zr alloy.The alloys studied are superior to their industrial counterparts in terms of technological properties,while maintain high corrosion and mechanical properties.The increased level of pro-perties is achieved by a suitable heat treatment regime that provides a complete transformation of the 18R to 14H modification of the LPSO phase. 展开更多
关键词 metals and alloys liquid-solid reactions microstructure FLUIDITY mechanical properties corrosion transmission electron mi-croscopy
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部