期刊文献+
共找到70,648篇文章
< 1 2 250 >
每页显示 20 50 100
Evolution of Biofilm and Its Effect on Microstructure of Mortar Surfaces in Simulated Seawater
1
作者 荣辉 YU Chenglong 张颖 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期234-243,共10页
To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstru... To explore the role of biofilm formation on the corrosion of marine concrete structures, we investigated the attachment of biofilm on mortar surfaces in simulated seawater and the influence of biofilm on the microstructure of mortar surfaces. The results show that the evolution of biofilm on mortar surfaces in simulated seawater is closely related to the corrosion suffered by the mortar, and the process of biofilm attachment and shedding is continuous and cyclical. It is found that the specimens in the absence of biofilm attachment are more severely eroded internally by the corrosive medium in simulated seawater than those in the presence of biofilm attachment. For the specimens without biofilm attachment, after 60 days, gypsum forms,and after 120 days, the number of pores in the mortar is reduced. In contrast, for the specimens in the presence of biofilm attachment, gypsum could only be detected after 90 days, and fewer pores are filled. Therefore, the formation of biofilm could delay the invasion of the corrosive medium into the interior of mortar during the evolution of biofilm on mortar surfaces, mitigating the corrosion of mortars in seawater. 展开更多
关键词 biofilm attachment MORTAR sulfur-oxidizing bacteria GYPSUM simulated seawater microstructure
下载PDF
Microstructure Characteristics and Elevated Temperature Mechanical Properties of a B Containedβ-solidifiedγ-TiAl Alloy
2
作者 王秀琦 GUO Ruiqi +5 位作者 刘国怀 LI Tianrui YANG Yuxuan CHEN Yang XIN Meiling WANG Zhaodong 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期738-746,共9页
The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnac... The improved microstructure and enhanced elevated temperature mechanical properties of Ti-44Al-5Nb-(Mo,V,B)alloys were obtained by vacuum arc re-melting(VAR)and primary annealing heat treatment(HT)of 1260℃/6 h/Furnace cooling(FC).The phase transformation,microstructure evolution and tensile properties for as-cast and HTed alloys were investigated.Results indicate that three main phase transformation points are determined,T_(eut)=1164.3℃,T_(γsolv)=1268.3℃and T_(βtrans)=1382.8℃.There are coarse lamellar colonies(300μm in length)and neighbor reticular B2 andγgrain(3-5μm)in as-cast alloy,while lamellar colonies are markedly refined and multi-oriented(20-50μm)as well as the volume fraction and grain sizes of equiaxedγand B2 phases(about 15μm)significantly increase in as-HTed alloy.Phase transformations involvingα+γ→α+γ+β/B2 and discontinuousγcoarsening contribute to the above characteristics.Borides(1-3μm)act as nucleation sites forβ_(eutectic) and produce massiveβgrains with different orientations,thus effectively refining the lamellar colonies and forming homogeneous multi-phase microstructure.Tensile curves show both the alloys exhibit suitable performance at 800℃.As-cast alloy shows a higher ultimate tensile stress of 647 MPa,while a better total elongation of more than 41%is obtained for as-HTed alloy.The mechanical properties improvement is mainly attributed to fine,multi-oriented lamellar colonies,coordinated deformation of homogeneous multi-phase microstructure and borides within lamellar interface preventing crack propagation. 展开更多
关键词 TiAl alloy phase transformation heat treatment BORIDE microstructure mechanical properties
下载PDF
Investigation of Microstructure, Microhardness and Thermal Properties of Ag-In Intermetallic Alloys Prepared by Vacuum Arc Meltings
3
作者 ÇELİK Erçevik ATA ESENER Pınar +1 位作者 ÖZTÜRK Esra AKSÖZ Sezen 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期182-187,共6页
Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical com... Ag-In intermetallic alloys were produced by using vacuum arc furnace. Differential Scanning Calorimetry(DSC) and Energy Dispersive X-Ray Spectrometry(EDX) were used to determine the thermal properties and chemical composition of the phases respectively. Microhardness values of Ag-In intermetallics were calculated with Vickers hardness measurement method. According to the experimental results, Ag-34 wt%In intermetallic system generated the best results of energy saving and storage compared to other intermetallic systems. Also from the microhardness results, it was observed that intermetallic alloys were harder than pure silver and Ag-26 wt%In system had the highest microhardness value with 143.45 kg/mm^(2). 展开更多
关键词 thermal properties microstructure characterization MICROHARDNESS ALLOYS material characterization
下载PDF
Mechanical Property and Microstructure of Cement Mortar with Carbonated Recycled Powder
4
作者 丁亚红 张美香 +3 位作者 YANG Xiaolin XU Ping SUN Bo GUO Shuqi 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期689-697,共9页
Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbon... Carbonated recycled powder as cementitious auxiliary material can reduce carbon emissions and realize high-quality recycling of recycled concrete.In this paper,microscopic property of recycled powder with three carbonation methods was tested through XRD and SEM,the mechanical property and microstructure of recycled powder mortar with three replacement rates were studied by ISO method and SEM,and the strengthening mechanism was analyzed.The results showed that the mechanical property of recycled powder mortar decreased with the increasing of replacement rate.It is suggested that the replacement rate of recycled powder should not exceed 20%.The strength index and activity index of carbonated recycled powder mortar were improved,in which the flexural strength was increased by 27.85%and compressive strength was increased by 20%at the maximum.Recycled powder can be quickly and completely carbonated,and the improvement effect of CH pre-soaking carbonation was the best.The activity index of carbonated recycled powder can meet the requirements of Grade II technical standard for recycled powder.Microscopic results revealed the activation mechanism of carbonated recycled powder such as surplus calcium source effect,alkaline polycondensation effect and carbonation enhancement effect. 展开更多
关键词 recycled powder carbonation activation compound carbonation activity index mechanical property microstructure
下载PDF
Comparative analysis of microstructure,mechanical,and corrosion properties of biodegradable Mg-3Y alloy prepared by selective laser melting and spark plasma sintering
5
作者 P.Minárik M.Zemková +6 位作者 S.Šašek J.Dittrich M.Knapek F.Lukáˇc D.Koutný J.Jaroš R.Král 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1496-1510,共15页
This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was conso... This work explored possibilities of biodegradable magnesium alloy Mg-3Y preparation by two modern powder metallurgy techniques–spark plasma sintering(SPS)and selective laser melting(SLM).The powder material was consolidated by both methods utilising optimised parameters,which led to very low porosity(∼0.3%)in the SLM material and unmeasurably low porosity in the SPS material.The main aim of the study was the thorough microstructure characterisation and interrelation between the microstructure and the functional properties,such as mechanical strength,deformability,and corrosion resistance.Both materials showed comparable strength of∼110 MPa in tension and compression and relatively good deformability of∼9%and∼21%for the SLM and SPS materials,respectively.The corrosion resistance of the SPS material in 0.1 M NaCl solution was superior to the SLM one and comparable to the conventional extruded material.The digital image correlation during loading and the cross-section analysis of the corrosion layers revealed that the residual porosity and large strained grains have the dominant negative effect on the functional properties of the SLM material.On the other hand,one of the primary outcomes of this study is that the SPS consolidation method is very effective in the preparation of the W3 biodegradable alloy,resulting in material with convenient mechanical and degradation properties that might find practical applications. 展开更多
关键词 Magnesium YTTRIUM Powder metallurgy microstructure Mechanical strength Corrosion resistance
下载PDF
Improvement of Microstructure and Mechanical Properties of Rapid Cooling Friction Stir-welded A1050 Pure Aluminum
6
作者 许楠 LIU Lutao +2 位作者 SONG Qining ZHAO Jianhua BAO Yefeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期134-141,共8页
Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were inves... Two-mm thick A1050 pure aluminum plates were successfully joined by conventional and rapid cooling friction stir welding(FSW), respectively. The microstructure and mechanical properties of the welded joints were investigated by electron backscatter diffraction characterization, Vickers hardness measurements, and tensile testing. The results showed that liquid CO_(2) coolant significantly reduced the peak temperature and increased the cooling rate, so the rapidly cooled FSW joint exhibited fine grains with a large number of dislocations. The grain refinement mechanism of the FSW A1050 pure aluminum joint was primarily attributed to the combined effects of continuous dynamic recrystallization, grain subdivision, and geometric dynamic recrystallization. Compared with conventional FSW, the yield strength, ultimate tensile strength, and fracture elongation of rapidly cooled FSW joint were significantly enhanced, and the welding efficiency was increased from 80% to 93%. The enhanced mechanical properties and improved synergy of strength and ductility were obtained due to the increased dislocation density and remarkable grain refinement. The wear of the tool can produce several WC particles retained in the joint, and the contribution of second phase strengthening to the enhanced strength should not be ignored. 展开更多
关键词 aluminum alloy friction stir welding RECRYSTALLIZATION microstructure mechanical properties
下载PDF
Mechanical Behavior and Microstructure Evolution during Tensile Deformation of Twinning Induced Plasticity Steel Processed by Warm Forgings
7
作者 王文 ZHAO Modi +2 位作者 WANG Xingfu 汪聃 韩福生 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期417-424,共8页
The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improve... The mechanical behavior and microstructural evolution of an Fe-30Mn-3Al-3Si twinninginduced plasticity(TWIP)steel processed using warm forging was investigated.It is found that steel processed via warm forging improves comprehensive mechanical properties compared to the TWIP steel processed via cold rolling,with a high tensile strength(R_(m))of 793 MPa,a yield strength(R_(P))of 682 MPa,an extremely large R_(P)/R_(m)ratio as high as 0.86 as well as an excellent elongation rate of 46.8%.The microstructure observation demonstrates that steel processed by warm forging consists of large and elongated grains together with fine,equiaxed grains.Complicated micro-defect configurations were also observed within the steel,including dense dislocation networks and a few coarse deformation twins.As the plastic deformation proceeds,the densities of dislocations and deformation twins significantly increase.Moreover,a great number of slip lines could be observed in the elongated grains.These findings reveal that a much more dramatic interaction between microstructural defect and dislocations glide takes place in the forging sample,wherein the fine and equiaxed grains propagated dislocations more rapidly,together with initial defect configurations,are responsible for enhanced strength properties.Meanwhile,larger,elongated grains with more prevalently activated deformation twins result in high plasticity. 展开更多
关键词 TWIP steel TWINNING mechanical property deformation mechanism microstructure
下载PDF
Effect of hot isostatic pressure on the microstructure and tensile properties of γ'-strengthened superalloy fabricated through induction-assisted directed energy deposition
8
作者 Jianjun Xu Hanlin Ding +1 位作者 Xin Lin Feng Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第5期1089-1097,共9页
The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples... The microstructure characteristics and strengthening mechanism of Inconel738LC(IN-738LC) alloy prepared by using induction-assisted directed energy deposition(IDED) were elucidated through the investigation of samples subjected to IDED under 1050℃ preheating with and without hot isostatic pressing(HIP,1190℃,105 MPa,and 3 h).Results show that the as-deposited sample mainly consisted of epitaxial columnar crystals and inhomogeneously distributed γ’ phases in interdendritic and dendritic core regions.After HIP,grain morphology changed negligibly,whereas the size of the γ’ phase became increasingly even.After further heat treatment(HT,1070℃,2 h + 845℃,24 h),the γ’ phase in the as-deposited and HIPed samples presented a bimodal size distribution,whereas that in the as-deposited sample showed a size that remained uneven.The comparison of tensile properties revealed that the tensile strength and uniform elongation of the HIP + HTed sample increased by 5% and 46%,respectively,due to the synergistic deformation of bimodal γ’phases,especially large cubic γ’ phases.Finally,the relationship between phase transformations and plastic deformations in the IDEDed sample was discussed on the basis of generalized stability theory in terms of the trade-off between thermodynamics and kinetics. 展开更多
关键词 directed energy deposition Ni-based superalloys high-temperature preheating hot isostatic pressing microstructure tensile properties
下载PDF
Microstructure and forming mechanism of metals subjected to ultrasonic vibration plastic forming: A mini review
9
作者 Qinghe Cui Xuefeng Liu +4 位作者 Wenjing Wang Shaojie Tian Vasili Rubanik Vasili Rubanik Jr. Dzmitry Bahrets 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1322-1332,共11页
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli... Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed. 展开更多
关键词 ultrasonic vibration plastic forming crystal structure microstructure forming mechanism
下载PDF
Microstructure design of advanced magnesium-air battery anodes
10
作者 Xu Huang Qingwei Dai +4 位作者 Qing Xiang Na Yang Gaopeng Zhang Ao Shen Wanming Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第2期443-464,共22页
Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy de... Metal-air battery is an environmental friendly energy storage system with unique open structure.Magnesium(Mg)and its alloys have been extensively attempted as anodes for air batteries due to high theoretical energy density,low cost,and recyclability.However,the study on Mg-air battery(MAB)is still at the laboratory level currently,mainly owing to the low anodic efficiency caused by the poor corrosion resistance.In order to reduce corrosion losses and achieve optimal utilization efficiency of Mg anode,the design strategies are reviewed from microstructure perspectives.Firstly,the corrosion behaviors have been discussed,especially the negative difference effect derived by hydrogen evolution.Special attention is given to the effect of anode micro-structures on the MAB,which includes grain size,grain orientation,second phases,crystal structure,twins,and dislocations.For further improvement,the discharge performance,long period stacking ordered phase and its enhancing effect are considered.Meanwhile,given the current debates over Mg dendrites,the potential risk,the impact on discharge,and the elimination strategies are discussed.Microstructure control and single crystal would be promising ways for MAB anode. 展开更多
关键词 MAGNESIUM Air battery ANODE microstructure Anodic efficiency
下载PDF
Microstructure and mechanical properties stability of pre-hardening treatment in Al-Cu alloys for pre-hardening forming process
11
作者 Liping Tang Pengfei Wei +1 位作者 Zhili Hu Qiu Pang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期539-551,共13页
The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stabili... The stability of the microstructure and mechanical properties of the pre-hardened sheets during the pre-hardening forming(PHF)process directly determines the quality of the formed components.The microstructure stability of the pre-hardened sheets was in-vestigated by differential scanning calorimetry(DSC),transmission electron microscopy(TEM),and small angle X-ray scattering(SAXS),while the mechanical properties and formability were analyzed through uniaxial tensile tests and formability tests.The results in-dicate that the mechanical properties of the pre-hardened alloys exhibited negligible changes after experiencing 1-month natural aging(NA).The deviations of ultimate tensile strength(UTS),yield strength(YS),and sheet formability(Erichsen value)are all less than 2%.Also,after different NA time(from 48 h to 1 month)is applied to alloys before pre-hardening treatment,the pre-hardened alloys possess stable microstructure and mechanical properties as well.Interestingly,with the extension of NA time before pre-hardening treatment from 48 h to 1 month,the contribution of NA to the pre-hardening treatment is limited.Only a yield strength increment of 20 MPa is achieved,with no loss in elongation.The limited enhancement is mainly attributed to the fact that only a limited number of clusters are transformed into Guinier-Preston(GP)zones at the early stage of pre-hardening treatment,and the formation ofθ''phase inhibits the nucleation and growth of GP zones as the precipitated phase evolves. 展开更多
关键词 Al-Cu alloy pre-hardened alloy natural aging mechanical properties microstructure
下载PDF
Mechanical Behavior Based on Aggregates Microstructure of Ultra-high Performance Concrete
12
作者 丁庆军 ZHOU Changsheng +4 位作者 张高展 GUO Hong LI Yang ZHANG Yongyuan GUO Kaizheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期673-681,共9页
We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic ... We developed ultra-high performance concrete(UHPC)incorporating mullite sand and brown corundum sand(BCS),and the quartz sand UHPC was utilized to prepare for comparison.The properties of compressive strength,elastic modulus,ultrasonic pulse velocity,flexural strength,and toughness were investigated.Scanning electron microscopy and nanoindentation were also conducted to reveal the underlying mechanisms affecting macroscopic performance.Due to the superior interface bonding properties between mullite sand and matrix,the compressive strength and flexural toughness of UHPC have been significantly improved.Mullite sand and BCS aggregates have higher stiffness than quartz sand,contributing to the excellent elastic modulus exhibited by UHPC.The stiffness and volume of aggregates have a more significant impact on the elastic modulus of UHPC than interface performance,and the latter contributes more to the strength of UHPC.This study will provide a reference for developing UHPC with superior elastic modulus for structural engineering. 展开更多
关键词 ultra-high performance concrete mechanical properties fine aggregates microstructure NANOINDENTATION
下载PDF
Microstructure and damping properties of LPSO phase dominant Mg-Ni-Y and Mg-Zn-Ni-Y alloys
13
作者 Ruopeng Lu Kai Jiao +3 位作者 Nanting Li Hua Hou Jingfeng Wang Yuhong Zhao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1131-1153,共23页
This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period ... This work studied the microstructure,mechanical properties and damping properties of Mg_(95.34)Ni_(2)Y_(2.66) and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys systematically.The difference in the evolution of the long-period stacked ordered(LPSO)phase in the two alloys during heat treatment was the focus.The morphology of the as-cast Mg_(95.34)Ni_(2)Y_(2.66)presented a disordered network.After heat treatment at 773 K for 2 hours,the eutectic phase was integrated into the matrix,and the LPSO phase maintained the 18R structure.As Zn partially replaced Ni,the crystal grains became rounded in the cast alloy,and lamellar LPSO phases and more solid solution atoms were contained in the matrix after heat treatment of the Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloy.Both Zn and the heat treatment had a significant effect on damping.Obvious dislocation internal friction peaks and grain boundary internal friction peaks were found after temperature-dependent damping of the Mg_(95.34)Ni_(2)Y_(2.66)and Mg_(95.34)Zn_(1)Ni_(1)Y_(2.66)alloys.After heat treatment,the dislocation peak was significantly increased,especially in the alloy Mg_(95.34)Ni_(2)Y_(2).66.The annealed Mg_(95.34)Ni_(2)Y_(2.66)alloy with a rod-shaped LPSO phase exhibited a good damping performance of 0.14 atε=10^(−3),which was due to the difference between the second phase and solid solution atom content.These factors also affected the dynamic modulus of the alloy.The results of this study will help in further development of high-damping magnesium alloys. 展开更多
关键词 Mg-Ni-Y alloys Mg-Zn-Ni-Y alloys LPSO phase Heat treatment microstructure Damping properties.
下载PDF
Evolution of microstructure and texture of AZ80 magnesium alloy under hot torsion with constant decreasing temperature rate
14
作者 Yongbiao Yang Jinxuan Guo +4 位作者 Cuiying Wang Wenxuan Jiang Zhimin Zhang Qiang Wang Xing Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第4期1619-1637,共19页
Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The ... Hot torsion tests for AZ80 magnesium alloy were carried out in the temperature range of 380℃-260℃,with a constant decreasing temperature rate of 10℃/s in order to weaken the basal texture and refine the grains.The results indicated that the average grain sizes were refined forming gradient structure with increasing specimen radial position from center(12.2-5.4μm),and that the initial basal texture intensity of the extruded magnesium alloy was weakened from 46.2 to 8.3.Furthermore,the extension twins(ETs)could be disintegrated from the twins forming separated twins with smaller sizes.Interestingly,ETs with the same twin variant intersecting with each other could be coalesced forming grains with similar orientation,while ETs with different twin variants were separated by twins boundaries contributing to grain refinement.Moreover,in addition to the conventional continuous dynamic recrystallized(CDRX)grains with 30˚orientation rotated around C-axis of the parent grains,CDRXed grains with 30˚rotation around a-axis and random rotation axis were also discerned.Besides,the CDRX evolution induced twins were also elaborated,exhibiting the complex competition between CDRX and twining.Hot torsion deformation with constant decreasing temperatures rate is an effective way of grain refinement and texture modification. 展开更多
关键词 TEXTURE microstructure Hot torsion Decreasing temperature AZ80
下载PDF
Wetting-drying effect on the strength and microstructure of cementphosphogypsum stabilized soils
15
作者 Lingling Zeng Xia Bian +1 位作者 Jiaxing Weng Tao Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1049-1058,共10页
Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of... Phosphogypsum has often been used as an effective and environmentally friendly binder for partial replacement of cement,improving the engineering properties of slurries with high water content.However,the influence of phosphogypsum on the physicomechnical properties of stabilized soil subjected to wettingedrying cycles is not well understood to date.In this study,the effect of phosphogypsum on the durability of stabilized soil was studied by conducting a series of laboratory experiments,illustrating the changes in mass loss,pH value and unconfined compressive strength(qu)with wettingdrying cycles.The test results showed that the presence of phosphogypsum significantly restrained the mass loss in the early stage(lower than the 4th cycle),which in turn led to a higher qu of stabilized soil than that without phosphogypsum.After the 4th cycle,a sudden increase in mass loss was observed for stabilized soil with phosphogypsum,resulting in a significant drop in qu to a value lower than those without phosphogypsum at the 6th cycle.In addition,the qu of stabilized soils correlated well with the measured soil pH irrespective of phosphogypsum content for all wettingedrying tests.According to the microstructure observation via scanning electron microscope(SEM)and X-ray diffraction(XRD)tests,the mechanisms relating the sudden loss of qu for the stabilized soils with phosphogypsum after the 4th wetting-drying cycle are summarized as follows:(i)the disappearance of ettringite weakening the cementation bonding effect,(ii)the generation of a larger extent of microcrack,and(iii)a lower pH value,in comparison with the stabilized soil without phosphogypsum. 展开更多
关键词 Wetting-drying PHOSPHOGYPSUM microstructure DURABILITY
下载PDF
Tuning microstructures of TC4 ELI to improve explosion resistance
16
作者 Changle Zhang Yangwei Wang +6 位作者 Lin Wang Zixuan Ning Guoju Li Dongping Chen Zhi-Wei Yan Yuchen Song Xucai Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期78-99,共22页
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr... A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation. 展开更多
关键词 microstructure Finite element modelling Parameter optimization Failure characteristics Explosion resistance
下载PDF
Microstructure Features and the Macroscopic Acoustic Behavior of Gassy Silt in the Yellow River Delta
17
作者 LIU Tao GUO Zhenqi +3 位作者 ZHANG Yan WU Chen LIU Lele DENG Shenggui 《Journal of Ocean University of China》 CAS CSCD 2024年第2期371-382,共12页
The morphological changes in isolated bubbles in gassy silt play a critical role in the microscopic structures between soil particles and bubbles and macroscopic physical properties.Based on X-ray CT scanning experime... The morphological changes in isolated bubbles in gassy silt play a critical role in the microscopic structures between soil particles and bubbles and macroscopic physical properties.Based on X-ray CT scanning experiments under various vertical loads(four levels),self-designed acoustic macro experiments,and a series of formula revisions to the macro-air-bearing silt sound-velocity prediction model,this paper discusses the macro-and micro-scale features of gassy silts from the Yellow River Delta.The samples consisted of different proportions of silt from the Yellow River Delta and porous media,and they were used to form two types of aerosol silts with initial gas contents of 4.23%and 7.67%.The results show that the air bubble content and external load considerably affect the microstructural parameters and acoustic behavior of gassy silt in the Yellow River Delta.The macroscopic sound velocity showed a linear positive correlation with vertical load and relation to microstructural parameters in varying manners and degrees.Based on the traditional Biot-Stoll acoustic model,the gas-phase medium coefficient was introduced for the proper calculation and prediction of the sound velocity of air-bearing silt.The errors of the overall prediction varied between 5.6%and 9.6%. 展开更多
关键词 gassy silt vertical load microstructure parameters bubble vibration Biot-Stoll acoustic model
下载PDF
Effect of Modification Treatment on Chloride Ions Permeability and Microstructure of Recycled Brick-mixed Aggregate Concrete
18
作者 何子明 申爱琴 +2 位作者 WANG Xiaobin WU Jinhua WANG Lusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期728-737,共10页
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength... The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution. 展开更多
关键词 recycled aggregate concrete modification treatment compressive strength chloride permeability resistance microstructure
下载PDF
Effect of Mn content on microstructure and properties of AlCrCuFeMnx high-entropy alloy
19
作者 Ning Wang Kai Ma +3 位作者 Qiu-da Li Yu-dong Yuan Yan-chun Zhao Li Feng 《China Foundry》 SCIE EI CAS CSCD 2024年第2期147-158,共12页
AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentat... AlCrCuFeMnx(x=0,0.5,1,1.5,and 2)high-entropy alloys were prepared using the vacuum arc melting technology.The microstructure and mechanical properties of AlCrCuFeMnxwere analyzed and tested by XRD,SEM,TEM,nanoindentation,and electronic universal testing.The results indicate that the AlCrCuFeMnxhigh-entropy alloy exhibits a dendritic structure,consisting of dendrites with a BCC structure,interdendrite regions with an FCC structure,and precipitates with an ordered BCC structure that form within the dendrite.Manganese(Mn)has a strong affinity for dendritic,interdendritic,and precipitate structures,allowing it to easily enter these areas.With an increase in Mn content,the size of the precipitated nanoparticles in the dendritic region initially increases and then decreases.Similarly,the area fraction initially decreases and then increases.Additionally,the alloy’s strength and wear resistance decrease,while its plasticity increases.The Al Cr Cu Fe Mn1.5alloy boasts excellent mechanical properties,including a hardness of 360 HV and a wear rate of 2.4×10^(-5)mm^(3)·N^(-1)·mm^(-1).It also exhibits impressive yield strength,compressive strength,and deformation rates of 960 MPa,1,700 MPa,and 27.5%,respectively. 展开更多
关键词 high-entropy alloys microstructure mechanical properties wear resistance strengthening mechanisms
下载PDF
Effect of Plastic Deformation on Microstructure and Properties of Cu-(1 wt%-6 wt%) Ag Alloy
20
作者 茹亚东 ZHANG Zhongyuan +7 位作者 高召顺 ZHANG Ling ZUO Tingting XUE Jiangli TANG Zhixiang DA Bo LIU Yongsheng XIAO Liye 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期747-753,共7页
In the present study,the Cu-(1 wt%-6 wt%)Ag alloys were prepared by melting,forging and wire drawing.The effects of plastic deformation on microstructure evolution and properties of the alloys were investigated.The re... In the present study,the Cu-(1 wt%-6 wt%)Ag alloys were prepared by melting,forging and wire drawing.The effects of plastic deformation on microstructure evolution and properties of the alloys were investigated.The results show that non-equilibrium eutectic colonies exist in the Cu-(3 wt%-6 wt%)Ag alloy and no eutectic colonies in the 1 wt%-2 wt%Ag containing alloys.These eutectic colonies are aligned along the drawing direction and refined with the increase of draw ratio.Attributed to the refinement of eutectic colonies,the Cu-Ag alloy exhibits higher strength with the increase of draw ratio.The Cu-6Ag alloy exhibits excellent comprehensive properties with a strength of 930 MPa and a conductivity of 82%IACS when the draw ratio reaches 5.7. 展开更多
关键词 Cu-Ag alloy high strength and high conductivity microstructure eutectic structure strengthening mechanism
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部