Inductively coupled plasma (ICP) etching of single crystal 6H-silicon carbide (SIC) is investigated using oxygen (O2)-added sulfur hexafluoride (SF6) plasmas. The relations between the microtrenching effect an...Inductively coupled plasma (ICP) etching of single crystal 6H-silicon carbide (SIC) is investigated using oxygen (O2)-added sulfur hexafluoride (SF6) plasmas. The relations between the microtrenching effect and ICP coil power, the composition of the etch gases and different bias voltages are discussed. Experimental results show that the microtrench is caused by the formation of a SiFxOy layer, which has a greater tendency to charge than SiC, after the addition of O2. The microtrenching effect tends to increase as the ICP coil power and bias voltage increase. In addition, the angular distribution of the incident ions and radicals also affects the shape of the microtrench.展开更多
基金supported by the Chinese National Advance Research Program of Science and Technology (Nos. 51308030201, 51323040118)
文摘Inductively coupled plasma (ICP) etching of single crystal 6H-silicon carbide (SIC) is investigated using oxygen (O2)-added sulfur hexafluoride (SF6) plasmas. The relations between the microtrenching effect and ICP coil power, the composition of the etch gases and different bias voltages are discussed. Experimental results show that the microtrench is caused by the formation of a SiFxOy layer, which has a greater tendency to charge than SiC, after the addition of O2. The microtrenching effect tends to increase as the ICP coil power and bias voltage increase. In addition, the angular distribution of the incident ions and radicals also affects the shape of the microtrench.