[Objective] To discuss the effects of major mapping methods for DNA sequence on the accuracy of protein coding regions prediction,and to find out the effective mapping methods.[Method] By taking Approximate Correlatio...[Objective] To discuss the effects of major mapping methods for DNA sequence on the accuracy of protein coding regions prediction,and to find out the effective mapping methods.[Method] By taking Approximate Correlation(AC) as the full measure of the prediction accuracy at nucleotide level,the windowed narrow pass-band filter(WNPBF) based prediction algorithm was applied to study the effects of different mapping methods on prediction accuracy.[Result] In DNA data sets ALLSEQ and HMR195,the Voss and Z-Curve methods are proved to be more effective mapping methods than paired numeric(PN),Electron-ion Interaction Potential(EIIP) and complex number methods.[Conclusion] This study lays the foundation to verify the effectiveness of new mapping methods by using the predicted AC value,and it is meaningful to reveal DNA structure by using bioinformatics methods.展开更多
Recent studies indicate that the process of liver regeneration involves multiple signaling pathways and a variety of genes,cytokines and growth factors. Protein-protein interactions(PPIs)play a role in nearly all even...Recent studies indicate that the process of liver regeneration involves multiple signaling pathways and a variety of genes,cytokines and growth factors. Protein-protein interactions(PPIs)play a role in nearly all events that take place within the cell and PPI maps should be helpful in further understanding the process of liver regeneration.In this review,we discuss recent progress in understanding the PPIs that occur during liver regeneration especially those in the transforming growth factorβsignaling pathways.We believe the use of large-scale PPI maps for integrating the information already known about the liver regeneration is a useful approach in understanding liver regeneration from the standpoint of systems biology.展开更多
Filamentous fungi employ conserved eukaryotic signaling pathway to detect and respond to environmental signals, including the presence of the host. Genetic experiment in which a particular signaling protein is lost, o...Filamentous fungi employ conserved eukaryotic signaling pathway to detect and respond to environmental signals, including the presence of the host. Genetic experiment in which a particular signaling protein is lost, or its activity enhanced, have defined some of the function of heterotrimeric G proteins and MAP kinases in development and virulence. A hallmark of these studies is that orthologs in different species may have different functions. Antagonistic fungal-fungal interactions form the basis for biological control of plant disease. These interactions may employ novel modes of regulation by conserved signaling elements. Tag1, a G protein α subunit of Trichoderma. atroviride belonging to fungal Gi class, is involved in repression of sporulation and hyphal coiling(1). Deletion of ortholog of this gene, TgaA, in Trichoderma (Gliocladium) virens, however, did not affect sporulation and growth, yet tgaA mutants are unable to parasitize S. rolfsii sclerotia(2). Mutation of a second G α subunit gene is now under study. TmkA, a MAPK gene of T. virens, is involved in biocontrol properties and repression of conidiation(3). Using suppression-subtraction hybridization and other approaches, we are beginning to identify additional elements of the signaling cascades and their downsteam targets. The role of G protein and MAPK genes are sometimes specific to a particular host fungus or to parasitism of mycelia or sclerotia(2,3). Also of relevance to biocontrol, signal transduction pathway provide a means to alter the balance between sporulation, mycelial growth and hyphal coiling.展开更多
Stigma color is a critical agronomic trait in watermelon that plays an important role in pollination.However,there are few reports on the regulation of stigma color in watermelon.In this study,a genetic analysis of th...Stigma color is a critical agronomic trait in watermelon that plays an important role in pollination.However,there are few reports on the regulation of stigma color in watermelon.In this study,a genetic analysis of the F2 population derived from ZXG1553(P1,with orange stigma)and W1-17(P2,with yellow stigma)indicated that stigma color is a quantitative trait and the orange stigma is recessive compared with the yellow stigma.Bulk segregant analysis sequencing(BSA-seq)revealed a 3.75 Mb segment on chromosome 6 that is related to stigma color.Also,a major stable effective QTL Clqsc6.1(QTL stigma color)was detected in two years between cleaved amplified polymorphic sequencing(CAPS)markers Chr06_8338913 and Chr06_9344593 spanning a~1.01 Mb interval that harbors 51 annotated genes.Cla97C06G117020(annotated as zinc finger protein CONSTANS-LIKE 4)was identified as the best candidate gene for the stigma color trait through RNA-seq,quantitative real-time PCR(qRT-PCR),and gene structure alignment analysis among the natural watermelon panel.The expression level of Cla97C06G117020 in the orange stigma accession was lower than in the yellow stigma accessions with a significant difference.A nonsynonymous SNP site of the Cla97C06G117020 coding region that causes amino acid variation was related to the stigma color variation among nine watermelon accessions according to their re-sequencing data.Stigma color formation is often related to carotenoids,and we also found that the expression trend of ClCHYB(annotated asβ-carotene hydroxylase)in the carotenoid metabolic pathway was consistent with Cla97C06G117020,and it was expressed in low amounts in the orange stigma accession.These data indicated that Cla97C06G117020 and ClCHYB may interact to form the stigma color.This study provides a theoretical basis for gene fine mapping and mechanisms for the regulation of stigma color in watermelon.展开更多
The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa a...The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa are still largely unclear.We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus,Bra2Ms,on the A2 chromosome.Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B.rapa.The Bra039753 gene encodes a plant homeodomain(PHD)-finger protein and is considered a potential candidate gene for Bra2Ms.Bra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants,which led to an amino acid insertion in the Bra039753 protein.In addition,the 369 bp fragment insertion was found to cosegregate with the male sterility trait.This study identified a novel locus related to male sterility in non-heading Chinese cabbage,and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops.展开更多
The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits...The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.展开更多
The mitogen_activated protein (MAP) kinase cascades are composed of mitogen_activated protein kinases (MAPKs), mitogen_activated protein kinase kinases (MAPKKs) and mitogen_activated protein kinase kinase kinases (MAP...The mitogen_activated protein (MAP) kinase cascades are composed of mitogen_activated protein kinases (MAPKs), mitogen_activated protein kinase kinases (MAPKKs) and mitogen_activated protein kinase kinase kinases (MAPKKKs), they transfer signals through phosphorylations of MAPKKK→MAPKK→MAPK. MAP kinases include a large family of serine/threonine protein kinases which are structurally conserved in eukaryotes. MAP kinase cascades play essential roles in signal transductions of extracellular signals to intracellular targets in eukaryotes. Some MAPKs, MAPKKs and MAPKKKs have been isolated from the higher plants, they mediate the signal transductions involved in plant responses to hormones, cell proliferation and differentiation, and environmental stresses.展开更多
基金Supported by Ningxia Natural Science Foundation (NZ1024)the Scientific Research the Project of Ningxia Universities (201027)~~
文摘[Objective] To discuss the effects of major mapping methods for DNA sequence on the accuracy of protein coding regions prediction,and to find out the effective mapping methods.[Method] By taking Approximate Correlation(AC) as the full measure of the prediction accuracy at nucleotide level,the windowed narrow pass-band filter(WNPBF) based prediction algorithm was applied to study the effects of different mapping methods on prediction accuracy.[Result] In DNA data sets ALLSEQ and HMR195,the Voss and Z-Curve methods are proved to be more effective mapping methods than paired numeric(PN),Electron-ion Interaction Potential(EIIP) and complex number methods.[Conclusion] This study lays the foundation to verify the effectiveness of new mapping methods by using the predicted AC value,and it is meaningful to reveal DNA structure by using bioinformatics methods.
基金Supported by Chinese Human Liver Proteome Project,No.2004BA711A19-08National 863 Project,No.2007AA02Z100
文摘Recent studies indicate that the process of liver regeneration involves multiple signaling pathways and a variety of genes,cytokines and growth factors. Protein-protein interactions(PPIs)play a role in nearly all events that take place within the cell and PPI maps should be helpful in further understanding the process of liver regeneration.In this review,we discuss recent progress in understanding the PPIs that occur during liver regeneration especially those in the transforming growth factorβsignaling pathways.We believe the use of large-scale PPI maps for integrating the information already known about the liver regeneration is a useful approach in understanding liver regeneration from the standpoint of systems biology.
文摘Filamentous fungi employ conserved eukaryotic signaling pathway to detect and respond to environmental signals, including the presence of the host. Genetic experiment in which a particular signaling protein is lost, or its activity enhanced, have defined some of the function of heterotrimeric G proteins and MAP kinases in development and virulence. A hallmark of these studies is that orthologs in different species may have different functions. Antagonistic fungal-fungal interactions form the basis for biological control of plant disease. These interactions may employ novel modes of regulation by conserved signaling elements. Tag1, a G protein α subunit of Trichoderma. atroviride belonging to fungal Gi class, is involved in repression of sporulation and hyphal coiling(1). Deletion of ortholog of this gene, TgaA, in Trichoderma (Gliocladium) virens, however, did not affect sporulation and growth, yet tgaA mutants are unable to parasitize S. rolfsii sclerotia(2). Mutation of a second G α subunit gene is now under study. TmkA, a MAPK gene of T. virens, is involved in biocontrol properties and repression of conidiation(3). Using suppression-subtraction hybridization and other approaches, we are beginning to identify additional elements of the signaling cascades and their downsteam targets. The role of G protein and MAPK genes are sometimes specific to a particular host fungus or to parasitism of mycelia or sclerotia(2,3). Also of relevance to biocontrol, signal transduction pathway provide a means to alter the balance between sporulation, mycelial growth and hyphal coiling.
基金supported by fundings from the Natural Science Funds for Outstanding Youth of Heilongjiang Province,China(YQ2022C011)the National Natural Science Foundation of China(32172577)+2 种基金the China Agriculture Research System of MOF and MARA,China(CARS-25)the Taishan Industrial Leading Talents Project,China(LJNY202112)the Natural Science Foundation of Heilongjiang Province,China(LH2022C025).
文摘Stigma color is a critical agronomic trait in watermelon that plays an important role in pollination.However,there are few reports on the regulation of stigma color in watermelon.In this study,a genetic analysis of the F2 population derived from ZXG1553(P1,with orange stigma)and W1-17(P2,with yellow stigma)indicated that stigma color is a quantitative trait and the orange stigma is recessive compared with the yellow stigma.Bulk segregant analysis sequencing(BSA-seq)revealed a 3.75 Mb segment on chromosome 6 that is related to stigma color.Also,a major stable effective QTL Clqsc6.1(QTL stigma color)was detected in two years between cleaved amplified polymorphic sequencing(CAPS)markers Chr06_8338913 and Chr06_9344593 spanning a~1.01 Mb interval that harbors 51 annotated genes.Cla97C06G117020(annotated as zinc finger protein CONSTANS-LIKE 4)was identified as the best candidate gene for the stigma color trait through RNA-seq,quantitative real-time PCR(qRT-PCR),and gene structure alignment analysis among the natural watermelon panel.The expression level of Cla97C06G117020 in the orange stigma accession was lower than in the yellow stigma accessions with a significant difference.A nonsynonymous SNP site of the Cla97C06G117020 coding region that causes amino acid variation was related to the stigma color variation among nine watermelon accessions according to their re-sequencing data.Stigma color formation is often related to carotenoids,and we also found that the expression trend of ClCHYB(annotated asβ-carotene hydroxylase)in the carotenoid metabolic pathway was consistent with Cla97C06G117020,and it was expressed in low amounts in the orange stigma accession.These data indicated that Cla97C06G117020 and ClCHYB may interact to form the stigma color.This study provides a theoretical basis for gene fine mapping and mechanisms for the regulation of stigma color in watermelon.
基金We thank the Wuhan Major Project of Key Technologies in Biological Breeding and New Variety Cultivation,China(2022021302024852)The Science and Technology Support Project of Rural Vitalization in Hubei Province,China(2022BBA121)+1 种基金the Key Research and Development Project of Hubei Province,China(2021BBA097)The Key Research and Development Project of Hubei Province,China(2021BBA102)。
文摘The application of a male-sterile line is an ideal approach for hybrid seed production in non-heading Chinese cabbage(Brassica rapa ssp.chinensis).However,the molecular mechanisms underlying male sterility in B.rapa are still largely unclear.We previously obtained the natural male sterile line WS24-3 of non-heading Chinese cabbage and located the male sterile locus,Bra2Ms,on the A2 chromosome.Cytological observations revealed that the male sterility of WS24-3 resulted from disruption of the meiosis process during pollen formation.Fine mapping of Bra2Ms delimited the locus within a physical distance of about 129 kb on the A2 chromosome of B.rapa.The Bra039753 gene encodes a plant homeodomain(PHD)-finger protein and is considered a potential candidate gene for Bra2Ms.Bra039753 was significantly downregulated in sterile line WS24-3 compared to the fertile line at the meiotic anther stage.Sequence analysis of Bra039753 identified a 369 bp fragment insertion in the first exon in male sterile plants,which led to an amino acid insertion in the Bra039753 protein.In addition,the 369 bp fragment insertion was found to cosegregate with the male sterility trait.This study identified a novel locus related to male sterility in non-heading Chinese cabbage,and the molecular marker obtained in this study will be beneficial for the marker-assisted selection of excellent sterile lines in non-heading Chinese cabbage and other Brassica crops.
基金supported by the Key Research and Development Program of Jiangsu Province(BE2022343)the Seed Industry Revitalization Project of Jiangsu Province(JBGS[2021]009)+2 种基金the National Natural Science Foundation of China(32061143030 and 31972487)Jiangsu Province University Basic Science Research Project(21KJA210002)the Innovative Research Team of Universities in Jiangsu Province,the High-End Talent Project of Yangzhou University,the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD),and Qing Lan Project of Jiangsu Province.
文摘The nutritional composition and overall quality of maize kernels are largely determined by the key chemical com-ponents:protein,oil,and starch.Nevertheless,the genetic basis underlying these nutritional quality traits during grainfilling remains poorly understood.In this study,the concentrations of protein,oil,and starch were studied in 204 recombinant inbred lines resulting from a cross between DH1M and T877 at four different stages post-pollination.All the traits exhibited considerable phenotypic variation.During the grain-filling stage,the levels of protein and starch content generally increased,whereas oil content decreased,with significant changes observed between 30 and 40 days after pollination.Quantitative trait locus(QTL)mapping was conducted and a total of 32 QTLs,comprising 14,12,and 6 QTLs for grain protein,oil,and starch content were detected,respectively.Few QTLs were consistently detectable across different time points.By integrating QTL analysis,glo-bal gene expression profiling,and comparative genomics,we identified 157,86,and 54 differentially expressed genes harboring nonsynonymous substitutions between the parental lines for grain protein,oil,and starch con-tent,respectively.Subsequent gene function annotation prioritized 15 candidate genes potentially involved in reg-ulating grain quality traits,including those encoding transcription factors(NAC,MADS-box,bZIP,and MYB),cell wall invertase,cellulose-synthase-like protein,cell division cycle protein,trehalase,auxin-responsive factor,and phloem protein 2-A13.Our study offers significant insights into the genetic architecture of maize kernel nutritional quality and identifies promising QTLs and candidate genes,which are crucial for the genetic enhance-ment of these traits in maize breeding programs.
文摘The mitogen_activated protein (MAP) kinase cascades are composed of mitogen_activated protein kinases (MAPKs), mitogen_activated protein kinase kinases (MAPKKs) and mitogen_activated protein kinase kinase kinases (MAPKKKs), they transfer signals through phosphorylations of MAPKKK→MAPKK→MAPK. MAP kinases include a large family of serine/threonine protein kinases which are structurally conserved in eukaryotes. MAP kinase cascades play essential roles in signal transductions of extracellular signals to intracellular targets in eukaryotes. Some MAPKs, MAPKKs and MAPKKKs have been isolated from the higher plants, they mediate the signal transductions involved in plant responses to hormones, cell proliferation and differentiation, and environmental stresses.