Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibe...Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors.展开更多
The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(...The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.展开更多
In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, ...In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, and industrial and agricultural sources are the main sources of organic waste in China, which can be controlled by microwave pyrolysis technology. In microwave pyrolysis treatment, catalysts have been the key material, microwave absorber, and catalyst of the research hotspot in recent years. This paper summarises the typical influencing parameters of microwave pyrolysis (including microwave power, pyrolysis temperature and microwave absorber), and also summarises the various catalysts applied in microwave pyrolysis, and looks forward to the potential application prospect of pyrolysis products, and the future development direction.展开更多
A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block...A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block copolymer(SBS)in the assistance of coupling agent modification.Direct molding of the core-shell FCIPs without adding extra binder results in a large permeability due to the high filling ratio(55vol%)of absorbents.Importantly,the permittivity is well suppressed by the dense insulate polymer shell on the FCIPs,avoiding the severe impedance mismatch problem of the high filler content microwave absorbing materials.Investigations show that modifying the surface of FCIPs by proper amount of silane coupling agent is critical for the coating quality of the SBS shell,which is verified by resistivity and corrosion current density measurements,and can be interpreted by improved interfacial compatibility between the modified FCIPs and SBS.The obtained microwave absorbing sheet shows a minimum reflection loss of-38.74 dB at 1.57 GHz and has an effective absorption bandwidth from 1.1 to 2.3 GHz at a relatively small thickness of 2 mm.展开更多
Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent...Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.展开更多
To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into diffe...To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials.展开更多
As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC ae...As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.展开更多
The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C...The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior.展开更多
In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autoco...In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.展开更多
BaTiO3 powders are prepared by sol-gel method by cotton template. Polypyrrole is prepared by chemical oxidation route in the emulsion polymerization system. Then BaTiO3- polypyrrole composites with different mixture r...BaTiO3 powders are prepared by sol-gel method by cotton template. Polypyrrole is prepared by chemical oxidation route in the emulsion polymerization system. Then BaTiO3- polypyrrole composites with different mixture ratios are prepared by as-prepared material. The structure, morphology, and properties of the composites are characterized with Infrared spectrum, X-ray diffraction, scanning electron microscope, and net-wok analyzer. The com- plex permittivity and reflection loss of the composites are measured at different microwave frequencies in S-band and C-band (0.03-6 GHz) employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3 to polypyrrole on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiOa-polypyrrole composite is proposed. The BaTiO3-polypyrrole composite can find applications in suppression of electromagnetic interference and reduction of radar signature.展开更多
The method for pyrolysis of biomass to manufacture hydrocarbon-rich fuel remains challenging in terms of conversion of multifunctional biomass with high oxygen content and low thermal stability into a high-quality com...The method for pyrolysis of biomass to manufacture hydrocarbon-rich fuel remains challenging in terms of conversion of multifunctional biomass with high oxygen content and low thermal stability into a high-quality compound, featuring high content of hydrocarbons, low oxygen content, few functional groups, and high thermal stability. This study offers a promising prospect to derive hydrocarbon-rich oil through microwave-assisted fast catalytic pyrolysis by improving the effective hydrogen to carbon ratio(H/Ceff) of the raw materials. The proposed technique can promote the production of high-quality bio-oil through the molecular sieve catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize the research progress on microwave copyrolysis and microwave catalytic copyrolysis to demonstrate their benefits on enhancement of bio-oils derived from the biomass. This review focuses on the potential of optimizing the H/Ceff ratio, the microwave absorbent, and the HZSM-5 catalyst during the microwave copyrolysis to produce the valuable liquid fuel. This paper also proposes future directions for the use of this technique to obtain high yields of bio-oils.展开更多
The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that t...The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that the flake-like powders are obtained. As milling time increases, the flake-like powder particles tend to agglomerate, causing the flake-like powders decrease gradually. The milling time plays an important role in the electromagnetic parameters which relates to the shape and size of the powder particles. The calculation shows that the sample milled for 6 h could achieve an optimal reflection loss of -11.5 dB at 5.8 GHz, with mass fraction of 83 % and a matching thickness of 1.8 mm. The result also indicates that the microwave absorbing properties of the FeCoB powder composites are adjustable by changing their thickness, and can be applied as a thinner microwave absorbing material in the range of 2-8 GHz.展开更多
A Y-type hexaferrite rod with the composition of Ba2COl.8Cuo.2Fe12022 was presented as an absorbing material with high absorb- anee. Its high absorbance and wide absorption band result from ferromagnetic resonance (...A Y-type hexaferrite rod with the composition of Ba2COl.8Cuo.2Fe12022 was presented as an absorbing material with high absorb- anee. Its high absorbance and wide absorption band result from ferromagnetic resonance (FMR) that is self-biased by strong shape and mag- netocrystaUine anisotropy fields. Around the FMR frequency the specimen of the ferrite rods exhibits very high absorbance and the FMR frequency can be tuned by the rod dimension. In addition to the high absorbance and the wide tunable absorption band, the microwave ab- sorber has another advantage of light weight due to the use of the ferrite rods instead of ferrite slabs.展开更多
Metallic flaky sendust particles are prepared for use as fillers in electromagnetic attenuation composites. We report the interface reflection model to divide the broad bandwidth into electromagnetic loss and quarter-...Metallic flaky sendust particles are prepared for use as fillers in electromagnetic attenuation composites. We report the interface reflection model to divide the broad bandwidth into electromagnetic loss and quarter-wavelength (λ/4) cancelation. Combining with the face reflection calculation, we identify the electromagnetic loss originated from skin effect, which is used to explain over half of the absorbed energy in high frequency band. Most impor- tantly, the unique electromagnetic loss cannot generate the reflection loss (RL) peak. Using the phase relation of face reflection, we show evidence that the λ/4 cancelation is vital to generate the RL peak. The calculated energy loss agrees well with the experimental data and lays the foundation for further research.展开更多
The effects of types and amounts of silane coupling agent on mechanical properties of vuleanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanica...The effects of types and amounts of silane coupling agent on mechanical properties of vuleanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanical properties of rubber microwave absorbing patch ( RMAP ) and microvave absorbing patch's (MAP's) mierostrueture were also discussed by using SEM and FT-IR. The experimental results show that the tensile strength of RMAP could be increased through adding the filler of carbonyl iron powder (CIP) modified by silane coupling agent. RMAP fiUed with CIP, which was treated by silane coupling agent KH550, possessed a high tensile strength of 11.5 MPa, which was 448% more than that of MAP whose filler wus not modified by any coupling agent. It was found that the optimal amount of KH550 was 1.0 phr to 100.0 phr carbonyl iron powder. The effects of different modifying techniques on RMAP's mechanical properties were also inrestigated. It is indieated that MAP whose filler is modified by the wet process has the highest tensile strength, but it is not the optimal modiifying technique due to complieated wet process. On the contrary, the dry process was very simple, and VRMAP possessed fairly high mechanical properties, therefore, it was the perfect modifying process.展开更多
Using lignite-based hypercoal as raw material, KOH as activator and CuO as microwave absorber, we prepared hypercoal-based activated carbons by microwave-assisted activation. The pore structure and the electrochemical...Using lignite-based hypercoal as raw material, KOH as activator and CuO as microwave absorber, we prepared hypercoal-based activated carbons by microwave-assisted activation. The pore structure and the electrochemical performance of the activated carbons were tested, and the effects of adding CuO in the activation reaction process were also investigated. The activated carbons prepared were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The specific surface area and mesoporous ratio of the hypercoal-based activated carbon are 1257 m2/g and 55.4%, respectively. When the activated carbons are used as the electrode materials, the specific capacitance reaches 309 F/g in 3 M KOH electrolyte. In comparison with those prepared without CuO absorber, the specific capacitance increases by 11.6%. It was proved that the addition of microwave absorber in microwave-assisted activation was a low-cost method for rapidly preparing activated carbon, and it could effectively promote the development of the pore structure and improve its electrochemical performance.展开更多
This paper reports that amorphous magnetic microwires (Fe79Si16Bs) have been fabricated by a melt-extraction technique and have been annealed at 600℃ and 750℃ respectively. Differential scanning calorimeter measur...This paper reports that amorphous magnetic microwires (Fe79Si16Bs) have been fabricated by a melt-extraction technique and have been annealed at 600℃ and 750℃ respectively. Differential scanning calorimeter measurements show that nanocrystalline magnetic phase (α-Fe) has been formed in the amorphous matrix when it was annealed at 600℃. Hard magnetic phase (Fe2B) was formed in the microwires annealed at 750℃, which increases the magnetic coercivity. Microwave permittivity and permeability are found to be dependent on the microstruetures. The permittivity fitting results show that multi Lorentzian dispersion processes exist. For microwires annealed at 750℃, their resonance peaks due to the domain wall movements and natural resonance are found higher than those of microwires annealed at 600℃. The microwave absorption performance of microwires annealed at 600℃ is found better than microwires annealed at 750℃.展开更多
Two kinds of nickel particles with flower-like struc~'es assembled with a number of nano-flakes were synthesized and the relationship of their morphology and microwave absorbing properties was studied. The electromag...Two kinds of nickel particles with flower-like struc~'es assembled with a number of nano-flakes were synthesized and the relationship of their morphology and microwave absorbing properties was studied. The electromagnetic parameters of these flower-like Ni were measured with vector network analyzer at 2-18 GHz frequency and the reflection losses (RL) with different sample thicknesses were calculated. The results indicate that the flower-like nickel-wax composites with the sample thickness less than 2 mm show excellent absorbing ability. This result is expected to play a guiding role in the preparation of the highly efficient absorber.展开更多
Nanocomposite BaFe12019/a-Fe microfibers with diameters of about 1-5 μm are prepared by the organic gel- thermal selective reduction process. The binary phase of BaFe12019 and a-Fe is formed after reduction of the pr...Nanocomposite BaFe12019/a-Fe microfibers with diameters of about 1-5 μm are prepared by the organic gel- thermal selective reduction process. The binary phase of BaFe12019 and a-Fe is formed after reduction of the precursor BaFel2019/a-Fe203 microfibers at 350 ℃ for 1 h. These nanocomposite microfibers are fabricated from a-Fe (16-22 nm in diameter) and BaFe12019 particles (36--42 nm in diameter) and basically exhibit a single-phase-like magnetization be- havior, with a high saturation magnetization and coercive force arising from the exchange--coupling interactions of soft a-Fe and hard BaFe12019. The microwave absorption characteristics in a 2-18 GHz frequency range of the nanocomposite BaFe12O19/a-Fe microfibers are mainly influenced by their mass ratio of a-Fe/BaFe12019 and specimen thickness. It is found that the nanocomposite BaFelzO19/a-Fe microfibers with a mass ratio of 1:6 and specimen thickness of 2.5 mm show an optimal reflection loss (RL) of -29.7 dB at 13.5 GHz and the bandwidth with RL exceeding -10 dB covers the whole Ku-band (12.4-18.0 GHz). This enhancement of microwave absorption can be attributed to the heterostruc- ture of soft, nano, conducting a-Fe particles embedded in hard, nano, semiconducting barium ferrite, which improves the dipolar polarization, interfacial polarization, exchange--coupling interaction, and anisotropic energy in the nanocomposite BaFe12O19/a-Fe microfibers.展开更多
REI3Fes4Cr3(RE=Ce, Pr, Tb, Er) and Pr13_XFes4Cr3Ti(x=0, 2, 4, 6) alloy powders were prepared by are smelting method and high energy ball milling technique. The phase structure and the morphology of the alloy powde...REI3Fes4Cr3(RE=Ce, Pr, Tb, Er) and Pr13_XFes4Cr3Ti(x=0, 2, 4, 6) alloy powders were prepared by are smelting method and high energy ball milling technique. The phase structure and the morphology of the alloy powders were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and their microwave absorbing properties were determined by a vector network analyzer. The results show that the alloys with light rare earths (Ce, Pr) have good low frequency absorbing property and those with heavy rare earths (Tb, Er) exhibit an improved high frequency absorbing property. The minimum refleetivity at the absorbing peak frequency of RE,FeuCr3(RE=Ce, Pr, Tb, Er) are -9.49 dB at 5.76 GHz, -22.38 dB at 7.92 GHz, -18.52 dB at 11.68 GHz and -17.59 dB at 10.24 GHz, respectively. The absorbing bandwidth under -10 dB of the Pr13FesaCr3 powder was widened from 1.91 GI-Iz to 3.89 GHz by adding 2% Ti, but the reflectivity of the alloy was increased from -22.38 dB to -14.91 riB.展开更多
基金The authors acknowledge the financial support from the National Natural Science Foundation of China(Nos.52071280 and 51972280)the Natural Science Foundation of Hebei Province,China(Nos.E2020203151 and E2022203208)+1 种基金the Research Program of the College Science&Technology of Hebei Province,China(No.ZD2020121)the Cultivation Project for Basic Research and Innovation of Yanshan University,China(No.2021LGZD016).
文摘Electronic devices have become ubiquitous in our daily lives,leading to a surge in the use of microwave absorbers and wearable sensor devices across various sectors.A prime example of this trend is the aramid nanofibers/polypyrrole/nickel(APN)aerogels,which serve dual roles as both microwave absorbers and pressure sensors.In this work,we focused on the preparation of aramid nanofibers/polypyrrole(AP15)aerogels,where the mass ratio of aramid nanofibers to pyrrole was 1:5.We employed the oxidative polymerization method for the preparation process.Following this,nickel was thermally evaporated onto the surface of the AP15 aerogels,resulting in the creation of an ultralight(9.35 mg·cm^(-3)).This aerogel exhibited a porous structure.The introduction of nickel into the aerogel aimed to enhance magnetic loss and adjust impedance matching,thereby improving electromagnetic wave absorption performance.The minimum reflection loss value achieved was-48.7 dB,and the maximum effective absorption bandwidth spanned 8.42 GHz with a thickness of 2.9 mm.These impressive metrics can be attributed to the three-dimensional network porous structure of the aerogel and perfect impedance matching.Moreover,the use of aramid nanofibers and a three-dimensional hole structure endowed the APN aerogels with good insulation,flame-retardant properties,and compression resilience.Even under a compression strain of 50%,the aerogel maintained its resilience over 500 cycles.The incorporation of polypyrrole and nickel particles further enhanced the conductivity of the aerogel.Consequently,the final APN aerogel sensor demonstrated high sensitivity(10.78 kPa-1)and thermal stability.In conclusion,the APN aerogels hold significant promise as ultra-broadband microwave absorbers and pressure sensors.
基金financially supported by the National Natural Science Foundation of China(51972049,52073010,and 52373259)the Projects of the Science and Technology Department of Jilin Province(20230201132GX)the Projects of the Education Department of Jilin Province(JJKH20220123KJ)。
文摘The impedance matching of absorbers is a vital factor affecting their microwave absorption(MA)properties.In this work,we controllably synthesized Material of Institute Lavoisier 88C(MIL-88C)with varying aspect ratios(AR)as a precursor by regulating oil bath conditions,followed by one-step thermal decomposition to obtain carbon-coated iron-based composites.Modifying the precursor MIL-88C(Fe)preparation conditions,such as the molar ratio between metal ions and organic ligands(M/O),oil bath temperature,and oil bath time,influenced the phases,graphitization degree,and AR of the derivatives,enabling low filler loading,achieving well-matched impedance,and ensuring outstanding MA properties.The MOF-derivatives 2(MD_(2))/polyvinylidene Difluoride(PVDF),MD_(3)/PVDF,and MD4/PVDF absorbers all exhibited excellent MA properties with optimal filler loadings below 20 wt%and as low as 5 wt%.The MD_(2)/PVDF(5 wt%)achieved a maximum effective absorption bandwidth(EAB)of 5.52 GHz(1.90 mm).The MD_(3)/PVDF(10 wt%)possessed a minimum reflection loss(RL_(min))value of−67.4 at 12.56 GHz(2.13 mm).A symmetric gradient honeycomb structure(SGHS)was constructed utilizing the high-frequency structure simulator(HFSS)to further extend the EAB,achieving an EAB of 14.6 GHz and a RL_(min) of−59.0 dB.This research offers a viable inspiration to creating structures or materials with high-efficiency MA properties.
文摘In recent years, the effective conversion of organic wastes into valuable products has been a focus and difficulty in sustainable energy and environmental management. Organic wastes come from a wide range of sources, and industrial and agricultural sources are the main sources of organic waste in China, which can be controlled by microwave pyrolysis technology. In microwave pyrolysis treatment, catalysts have been the key material, microwave absorber, and catalyst of the research hotspot in recent years. This paper summarises the typical influencing parameters of microwave pyrolysis (including microwave power, pyrolysis temperature and microwave absorber), and also summarises the various catalysts applied in microwave pyrolysis, and looks forward to the potential application prospect of pyrolysis products, and the future development direction.
基金Funded by the Young Top-notch Talent Cultivation Program of Hubei Provincethe National Natural Science Foundation of China(Nos.52071239,51521001)Fundamental Research Funds for the Central Universities(Nos.WUT:2021IVA116 and WUT:2021CG015)。
文摘A microwave absorbing sheet with a high complex permeability and a relatively low complex permittivity is obtained by molding of the densely coated flaky carbonyl iron particles(FCIPs)by styrenebutadiene-styrene block copolymer(SBS)in the assistance of coupling agent modification.Direct molding of the core-shell FCIPs without adding extra binder results in a large permeability due to the high filling ratio(55vol%)of absorbents.Importantly,the permittivity is well suppressed by the dense insulate polymer shell on the FCIPs,avoiding the severe impedance mismatch problem of the high filler content microwave absorbing materials.Investigations show that modifying the surface of FCIPs by proper amount of silane coupling agent is critical for the coating quality of the SBS shell,which is verified by resistivity and corrosion current density measurements,and can be interpreted by improved interfacial compatibility between the modified FCIPs and SBS.The obtained microwave absorbing sheet shows a minimum reflection loss of-38.74 dB at 1.57 GHz and has an effective absorption bandwidth from 1.1 to 2.3 GHz at a relatively small thickness of 2 mm.
基金support from the National Natural Science Foundation of China(61975046)。
文摘Transparent microwave absorbers that exhibit high optical transmittance and microwave absorption capability are ideal,although having a fixed absorption performance limits their applicability.Here,a simple,transparent,and thermally tunable microwave absorber is proposed,based on a patterned vanadium dioxide(VO_(2))film.Numerical calculations and experiments demonstrate that the proposed VO_(2)absorber has a high optical transmittance of 84.9%at 620 nm;its reflection loss at 15.06 GHz can be thermally tuned from–4.257 to–60.179 dB,and near-unity absorption is achieved at 523.750 K.Adjusting only the patterned VO_(2)film duty cycle can change the temperature of near-unity absorption.Our VO_(2)absorber has a simple composition,a high optical transmittance,a thermally tunable microwave absorption performance,a large modulation depth,and an adjustable temperature tuning range,making it promising for application in tunable sensors,thermal emitters,modulators,thermal imaging,bolometers,and photovoltaic devices.
基金Funded by the Natural Science Foundation of Nanping of China(No.N2021J002)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110304)+3 种基金Guangzhou Science and Technology Plan(No.202102020224)Natural Science Foundation of Fujian Province(No.2020Y0092)Natural Science Foundation of Fujian Province(No.2023J011044)Resource Chemical Industry and Technology Foundation of Nanping(No.N2020Z003)。
文摘To develop the microwave absorbing(MA)properties of cementitious material mixed with mine solid waste,the iron tailings cementitious microwave absorbing materials were prepared.The iron tailings was treated into different particle sizes by planetary ball mill,and the physicochemical properties of iron tailings were tested by laser particle size analyzer and scanning electron microscope(SEM).The electromagnetic parameters of iron tailings cementitious materials were characterized by a vector network analyzer and simulated MA properties,and the MA properties of iron tailings-cement composite system with steel fiber as absorber was studied.Based on the design of the single-layer structure,optimum mix ratio and thickness configuration method of double-layer structure were further studied,meanwhile,the mechanical properties and engineering application were analyzed and discussed.The results show that the particle size of iron tailings can afiect its electromagnetic behavior in cementitious materials,and the smaller particles lead the increase of demagnetisation efiect induced by domain wall motion and achieve better microwave absorbing properties in cementitious materials.When the thickness of matching layer and absorbing layer is 5 mm,the optimized microwave absorbing properties of C1/C3 double-layer cementitious material can obtain optimal RL value of-27.61 dB and efiective absorbing bandwidth of 0.97 GHz,which attributes to the synergistic efiect of impedance matching and attenuation characteristics.The double-layer microwave absorbing materials obtain excellent absorbing properties and show great design flexibility and diversity,which can be used as a suitable candidate for the preparation of favorable microwave absorbing cementitious materials.
基金supported by the Program of Applied Basic Research Program of Shanxi Province,China (No.202103021223055)the Shanxi Scholarship Council of Chinathe Key R&D program of Shanxi Province,China (No.202102030201006)。
文摘As a heat-resistant wave-absorbing material,silicon carbide(SiC)aerogel has become a research hotspot at present.However,the most common silicon sources are organosilanes,which are costly and toxic.In this work,SiC aerogels were successfully prepared by using water glass as the silicon source.Specifically,the microstructure and chemical composition of SiC aerogels were controlled by adjusting the Si to C molar ratio during the sol–gel process,and the effect on SiC aerogel microwave absorption properties was investigated.The SiC aerogels prepared with Si:C molar ratio of 1:1 have an effective electromagnetic wave absorption capacity,with a minimum reflection loss value of-46.30 dB at 12.88 GHz and an effective frequency bandwidth of 4.02 GHz.They also have good physical properties,such as the density of0.0444 g/cm^(3),the thermal conductivity of 0.0621 W/(m·K),and the specific surface area of 1099 m^(2)/g.These lightweight composites with microwave-absorbing properties and low thermal conductivity can be used as thermal protection materials for space shuttles and reusable carriers.
基金Project(51072165)supported by the National Natural Science Foundation of ChinaProject(201305)supported by the Fund of State Key Laboratory of Solidification Processing,ChinaProjects(2013JK0921,2013JK0922)supported by Shaanxi Provincial Education Department of China
文摘The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior.
基金The National Natural Science Foundation of China(No.51205282)
文摘In order to improve the absorbing properties of M- type barium ferrite absorbing materials, M-type barium ferrite/graphene oxide composites with different graphene oxide contents were synthesized by the sol-gel autocombustion method. X-ray diffraction (XRD), a scanning electronic microscopy ( SEM ), a physical properties measurement system (PPMS-9), and a vector network analyzer were used to analyze their structure, surface morphology, magnetic and absorbing properties, respectively. The results show that the absorbing band of the composite absorbing material is widened and the absorbing strength is increased compared with the pure M-type barium ferrite. The sample with the content of doped graphene oxide of 3% has the minimum reflectivity at 10 to 18 GHz frequencies. Hence, the doped graphene oxide effectively improves the absorbing properties of M-type barium ferrite.
文摘BaTiO3 powders are prepared by sol-gel method by cotton template. Polypyrrole is prepared by chemical oxidation route in the emulsion polymerization system. Then BaTiO3- polypyrrole composites with different mixture ratios are prepared by as-prepared material. The structure, morphology, and properties of the composites are characterized with Infrared spectrum, X-ray diffraction, scanning electron microscope, and net-wok analyzer. The com- plex permittivity and reflection loss of the composites are measured at different microwave frequencies in S-band and C-band (0.03-6 GHz) employing vector network analyzer model PNA 3629D vector. The effect of the mass ratio of BaTiO3 to polypyrrole on the microwave loss properties of the composites is investigated. A possible microwave absorbing mechanism of BaTiOa-polypyrrole composite is proposed. The BaTiO3-polypyrrole composite can find applications in suppression of electromagnetic interference and reduction of radar signature.
基金the financial support from the National Natural Science Foundation of China (No. 21766019, 21466022)the Key Research and Development Program of Jiangxi Province(20171BBF60023)+2 种基金the International Science&Technology Cooperation Project of China(2015DFA60170-4)the Science and Technology Research Project of Jiangxi Province Education Department(No.GJJ150213)the Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development Program (No. Y707sb1001)”
文摘The method for pyrolysis of biomass to manufacture hydrocarbon-rich fuel remains challenging in terms of conversion of multifunctional biomass with high oxygen content and low thermal stability into a high-quality compound, featuring high content of hydrocarbons, low oxygen content, few functional groups, and high thermal stability. This study offers a promising prospect to derive hydrocarbon-rich oil through microwave-assisted fast catalytic pyrolysis by improving the effective hydrogen to carbon ratio(H/Ceff) of the raw materials. The proposed technique can promote the production of high-quality bio-oil through the molecular sieve catalyzed reduction of oxygenated compounds and mutagenic polyaromatic hydrocarbons. This work aims to review and summarize the research progress on microwave copyrolysis and microwave catalytic copyrolysis to demonstrate their benefits on enhancement of bio-oils derived from the biomass. This review focuses on the potential of optimizing the H/Ceff ratio, the microwave absorbent, and the HZSM-5 catalyst during the microwave copyrolysis to produce the valuable liquid fuel. This paper also proposes future directions for the use of this technique to obtain high yields of bio-oils.
基金financially supported by the National Hi-tech R&D Project Supporting Programs Funded by Ministry of Science&Technology of China(No.2012AA063202)the National Natural Science Foundation of China(Nos.50972013,50802008,and 51004011)+1 种基金the National Key Project of Scientific and Technical Supporting Programs Funded by Ministry of Science&Technology of China(Nos.2012BAC02B01,2012BAC12B05,2011BAE13B07,and 2011BAC10B02)the Guangdong Province&Ministry of Education Industry-Study-Research United Project(No.2009A090100017)
文摘The electromagnetic and microwave absorbing properties of FeCoB powder composites prepared by sin- gle-roller melt-spinning and mechanical milling processes were investigated in this paper. The result indicates that the flake-like powders are obtained. As milling time increases, the flake-like powder particles tend to agglomerate, causing the flake-like powders decrease gradually. The milling time plays an important role in the electromagnetic parameters which relates to the shape and size of the powder particles. The calculation shows that the sample milled for 6 h could achieve an optimal reflection loss of -11.5 dB at 5.8 GHz, with mass fraction of 83 % and a matching thickness of 1.8 mm. The result also indicates that the microwave absorbing properties of the FeCoB powder composites are adjustable by changing their thickness, and can be applied as a thinner microwave absorbing material in the range of 2-8 GHz.
基金supported by the National Natural Science Foundation of China (No.50702005)the Natural Science Foundation of the Education Department of Henan Province,China (No.2010A430012)
文摘A Y-type hexaferrite rod with the composition of Ba2COl.8Cuo.2Fe12022 was presented as an absorbing material with high absorb- anee. Its high absorbance and wide absorption band result from ferromagnetic resonance (FMR) that is self-biased by strong shape and mag- netocrystaUine anisotropy fields. Around the FMR frequency the specimen of the ferrite rods exhibits very high absorbance and the FMR frequency can be tuned by the rod dimension. In addition to the high absorbance and the wide tunable absorption band, the microwave ab- sorber has another advantage of light weight due to the use of the ferrite rods instead of ferrite slabs.
基金Supported by the Fundamental Research Fund for the Central Universities under Grant No LZUJBKY-2015-121the National Natural Science Foundations of China under Grant Nos 11574122 and 51102124the National Science Foundation for Fostering Talents in Basic Research of the National Natural Science Foundation of China
文摘Metallic flaky sendust particles are prepared for use as fillers in electromagnetic attenuation composites. We report the interface reflection model to divide the broad bandwidth into electromagnetic loss and quarter-wavelength (λ/4) cancelation. Combining with the face reflection calculation, we identify the electromagnetic loss originated from skin effect, which is used to explain over half of the absorbed energy in high frequency band. Most impor- tantly, the unique electromagnetic loss cannot generate the reflection loss (RL) peak. Using the phase relation of face reflection, we show evidence that the λ/4 cancelation is vital to generate the RL peak. The calculated energy loss agrees well with the experimental data and lays the foundation for further research.
文摘The effects of types and amounts of silane coupling agent on mechanical properties of vuleanized rubber microwave absorbing patch (VRMAP) were studied. The mechanisms of silane coupling agent's effects on mechanical properties of rubber microwave absorbing patch ( RMAP ) and microvave absorbing patch's (MAP's) mierostrueture were also discussed by using SEM and FT-IR. The experimental results show that the tensile strength of RMAP could be increased through adding the filler of carbonyl iron powder (CIP) modified by silane coupling agent. RMAP fiUed with CIP, which was treated by silane coupling agent KH550, possessed a high tensile strength of 11.5 MPa, which was 448% more than that of MAP whose filler wus not modified by any coupling agent. It was found that the optimal amount of KH550 was 1.0 phr to 100.0 phr carbonyl iron powder. The effects of different modifying techniques on RMAP's mechanical properties were also inrestigated. It is indieated that MAP whose filler is modified by the wet process has the highest tensile strength, but it is not the optimal modiifying technique due to complieated wet process. On the contrary, the dry process was very simple, and VRMAP possessed fairly high mechanical properties, therefore, it was the perfect modifying process.
基金Funded by the National Natural Science Foundation of China(No.51874136)Natural Science Foundation of Hebei Province(No.B2017209240)。
文摘Using lignite-based hypercoal as raw material, KOH as activator and CuO as microwave absorber, we prepared hypercoal-based activated carbons by microwave-assisted activation. The pore structure and the electrochemical performance of the activated carbons were tested, and the effects of adding CuO in the activation reaction process were also investigated. The activated carbons prepared were characterized by nitrogen adsorption-desorption, X-ray diffraction (XRD) and scanning electron microscopy (SEM). The specific surface area and mesoporous ratio of the hypercoal-based activated carbon are 1257 m2/g and 55.4%, respectively. When the activated carbons are used as the electrode materials, the specific capacitance reaches 309 F/g in 3 M KOH electrolyte. In comparison with those prepared without CuO absorber, the specific capacitance increases by 11.6%. It was proved that the addition of microwave absorber in microwave-assisted activation was a low-cost method for rapidly preparing activated carbon, and it could effectively promote the development of the pore structure and improve its electrochemical performance.
基金supported by the National Natural Science Foundation of China (Grant No 60701016)the Science Foundation for Young Faculties of UESTC (Grant Nos L08010301JX0618 and L08010301JX05013)
文摘This paper reports that amorphous magnetic microwires (Fe79Si16Bs) have been fabricated by a melt-extraction technique and have been annealed at 600℃ and 750℃ respectively. Differential scanning calorimeter measurements show that nanocrystalline magnetic phase (α-Fe) has been formed in the amorphous matrix when it was annealed at 600℃. Hard magnetic phase (Fe2B) was formed in the microwires annealed at 750℃, which increases the magnetic coercivity. Microwave permittivity and permeability are found to be dependent on the microstruetures. The permittivity fitting results show that multi Lorentzian dispersion processes exist. For microwires annealed at 750℃, their resonance peaks due to the domain wall movements and natural resonance are found higher than those of microwires annealed at 600℃. The microwave absorption performance of microwires annealed at 600℃ is found better than microwires annealed at 750℃.
基金Project(JC201006020838A)supported by the Basic Research Funds of Science and Technology Foundation of Shenzhen,China
文摘Two kinds of nickel particles with flower-like struc~'es assembled with a number of nano-flakes were synthesized and the relationship of their morphology and microwave absorbing properties was studied. The electromagnetic parameters of these flower-like Ni were measured with vector network analyzer at 2-18 GHz frequency and the reflection losses (RL) with different sample thicknesses were calculated. The results indicate that the flower-like nickel-wax composites with the sample thickness less than 2 mm show excellent absorbing ability. This result is expected to play a guiding role in the preparation of the highly efficient absorber.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51274106 and 51202091)the Natural Science Foundation of Higher Education of Jiangsu Province, China (Grant No. 12KJA430001)+2 种基金the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103227110006)the Science and Technology Support Program of Jiangsu Province, China (Grant No. BE2012143)the Postgraduate Cultivation and Innovation Project of Jiangsu Province, China (Grant No. CXZZ11 0557)
文摘Nanocomposite BaFe12019/a-Fe microfibers with diameters of about 1-5 μm are prepared by the organic gel- thermal selective reduction process. The binary phase of BaFe12019 and a-Fe is formed after reduction of the precursor BaFel2019/a-Fe203 microfibers at 350 ℃ for 1 h. These nanocomposite microfibers are fabricated from a-Fe (16-22 nm in diameter) and BaFe12019 particles (36--42 nm in diameter) and basically exhibit a single-phase-like magnetization be- havior, with a high saturation magnetization and coercive force arising from the exchange--coupling interactions of soft a-Fe and hard BaFe12019. The microwave absorption characteristics in a 2-18 GHz frequency range of the nanocomposite BaFe12O19/a-Fe microfibers are mainly influenced by their mass ratio of a-Fe/BaFe12019 and specimen thickness. It is found that the nanocomposite BaFelzO19/a-Fe microfibers with a mass ratio of 1:6 and specimen thickness of 2.5 mm show an optimal reflection loss (RL) of -29.7 dB at 13.5 GHz and the bandwidth with RL exceeding -10 dB covers the whole Ku-band (12.4-18.0 GHz). This enhancement of microwave absorption can be attributed to the heterostruc- ture of soft, nano, conducting a-Fe particles embedded in hard, nano, semiconducting barium ferrite, which improves the dipolar polarization, interfacial polarization, exchange--coupling interaction, and anisotropic energy in the nanocomposite BaFe12O19/a-Fe microfibers.
基金Funded by National Natural Science Foundation of China(Nos.50961005 and 51361007)National Natural Science Foundation of Guangxi(Nos.2012 GXNSFGA06002 and 2013GXNSFAA019295)
文摘REI3Fes4Cr3(RE=Ce, Pr, Tb, Er) and Pr13_XFes4Cr3Ti(x=0, 2, 4, 6) alloy powders were prepared by are smelting method and high energy ball milling technique. The phase structure and the morphology of the alloy powders were investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and their microwave absorbing properties were determined by a vector network analyzer. The results show that the alloys with light rare earths (Ce, Pr) have good low frequency absorbing property and those with heavy rare earths (Tb, Er) exhibit an improved high frequency absorbing property. The minimum refleetivity at the absorbing peak frequency of RE,FeuCr3(RE=Ce, Pr, Tb, Er) are -9.49 dB at 5.76 GHz, -22.38 dB at 7.92 GHz, -18.52 dB at 11.68 GHz and -17.59 dB at 10.24 GHz, respectively. The absorbing bandwidth under -10 dB of the Pr13FesaCr3 powder was widened from 1.91 GI-Iz to 3.89 GHz by adding 2% Ti, but the reflectivity of the alloy was increased from -22.38 dB to -14.91 riB.