A novel technology of two-step fast microwave-assisted pyrolysis(f MAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent(Si C) and HZSM-5catalyst. Effects of f MAP temp...A novel technology of two-step fast microwave-assisted pyrolysis(f MAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent(Si C) and HZSM-5catalyst. Effects of f MAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The f MAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step f MAP process, two-step f MAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio.展开更多
In the present work, the highly efficient Erlenmeyer synthesis of azlactones catalyzed by 2- aminopyridine, supported on nano-sphere Si02 is reported. First, the silica nanoparticles were modified with triethoxysilylp...In the present work, the highly efficient Erlenmeyer synthesis of azlactones catalyzed by 2- aminopyridine, supported on nano-sphere Si02 is reported. First, the silica nanoparticles were modified with triethoxysilylpropyl chloride and then 2-aminopyridine was attached to the support via covalent linkages. This new heterogenized catalyst was used for efficient microwave-assisted synthesis of azlactone derivatives with Ac20 as a condensing agent under solvent-free conditions. The present method offers advantages including high yields, short reaction times and simple work-up. Also, the catalyst can be easily recycled and reused several times, which makes this method attractive, economic and environmentally-benign.展开更多
基金supported by the National Basic Research Program (973) of China (No. 2013CB228106)the National Natural Science Fund Program of China (No. 51276040)+4 种基金the Scientific Research Foundation of Graduate School of Southeast University (No. YBJJ1430)the Fundamental Research Funds for the Central Universities, the Scientific Innovation Research Program of College Graduate in Jiangsu Province (No. KYLX_0183)China Scholarship Council, as well as Minnesota Environment and Natural Resources Trust FundNorth Central Regional Sun Grant Center at South Dakota State University through a grant provided by the US Department of Agriculture (No. 2013-38502-21424)a grant provided by the US Department of Transportation, Office of the Secretary (No. DTOS59-07-G-00054)
文摘A novel technology of two-step fast microwave-assisted pyrolysis(f MAP) of corn stover for bio-oil production was investigated in the presence of microwave absorbent(Si C) and HZSM-5catalyst. Effects of f MAP temperature and catalyst-to-biomass ratio on bio-oil yield and chemical components were examined. The results showed that this technology, employing microwave, microwave absorbent and HZSM-5 catalyst, was effective and promising for biomass fast pyrolysis. The f MAP temperature of 500°C was considered the optimum condition for maximum yield and best quality of bio-oil. Besides, the bio-oil yield decreased linearly and the chemical components in bio-oil were improved sequentially with the increase of catalyst-to-biomass ratio from 1:100 to 1:20. The elemental compositions of bio-char were also determined. Additionally, compared to one-step f MAP process, two-step f MAP could promote the bio-oil quality with a smaller catalyst-to-biomass ratio.
基金financial support from the Research Council of Arak University
文摘In the present work, the highly efficient Erlenmeyer synthesis of azlactones catalyzed by 2- aminopyridine, supported on nano-sphere Si02 is reported. First, the silica nanoparticles were modified with triethoxysilylpropyl chloride and then 2-aminopyridine was attached to the support via covalent linkages. This new heterogenized catalyst was used for efficient microwave-assisted synthesis of azlactone derivatives with Ac20 as a condensing agent under solvent-free conditions. The present method offers advantages including high yields, short reaction times and simple work-up. Also, the catalyst can be easily recycled and reused several times, which makes this method attractive, economic and environmentally-benign.