期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Preparation of Non-Grinding Long Afterglow SrAl_2O_4:Eu^(2+), Dy^(3+) Material by Microwave Combustion Method 被引量:13
1
作者 杜海燕 李庚申 孙家跃 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第1期19-22,共4页
The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting s... The non-grinding long afterglow material SrAl2O4:Eu^2+ , Dy^3+ was prepared by combustion method in home mierowave oven direetly, after dispersant, frother, eomburent, and mineralizer were added into the reacting system. XRD analysis showed that the powders were nearly pure SrAl2O4 phase with few other phases, and the size of the grain was 41.1 nm. Fluoreseenee speetrum results indieated that there were 2 exeitation peaks loeated at 345 and 400 nm, and the emission peak loeated at 516 nm, afterglow lasted up to 30 min or more. The mierowave eombustion method has advantages of less time, low temperature and no grinding process, and the material made by the method has good luminescent property. 展开更多
关键词 microwave combustion non-grinding long afterglow SrAl2O4 Eu^2 Dy^3 rare earths
下载PDF
Structure and magnetic properties of Cu-Ni alloy nanoparticles prepared by rapid microwave combustion method 被引量:4
2
作者 J.ARUL MARY A.MANIKANDAN +3 位作者 L.JOHN KENNEDY M.BOUOUDINA R.SUNDARAM J.JUDITH VIJAYA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第5期1467-1473,共7页
Cu-Ni alloy nanoparticles were prepared by a microwave combustion method with the molar ratios of CU2+ to Ni2+ as 3:7, 4:6, 5:5, 6:4 and 7:3. The as-prepared samples were characterized by XRD, HR-SEM, EDX and V... Cu-Ni alloy nanoparticles were prepared by a microwave combustion method with the molar ratios of CU2+ to Ni2+ as 3:7, 4:6, 5:5, 6:4 and 7:3. The as-prepared samples were characterized by XRD, HR-SEM, EDX and VSM. XRD and EDX analyses suggest the formation of pure alloy powders. The average crystallite sizes were found to be in the range of 21.56-33.25 nm. HR-SEM images show the clustered/agglomerated particle-like morphology structure. VSM results reveal that for low Ni content (CusNis, Cu6Ni4 and Cu7Ni3), the system shows paramagnetic behaviors, whereas for high Ni content (Cu3Ni7 and Cu4Ni6), it becomes ferromagnetic. 展开更多
关键词 microwave combustion NANOPARTICLES Cu-Ni alloys magnetization property
下载PDF
Microwave gel combustion synthesis and sinterability of Nd:GGG nanopowders 被引量:1
3
作者 Kiranmala Laishram Rekha Mann Neelam Malhan 《Journal of Rare Earths》 SCIE EI CAS CSCD 2014年第6期521-525,共5页
Neodymium doped gadolinium gallium oxide (Nd:GGG) nanopowders synthesized by microwave gel combustion using alanine as a fuel was reported. Metal nitrates solution with alanine fuel was combusted in microwave to gi... Neodymium doped gadolinium gallium oxide (Nd:GGG) nanopowders synthesized by microwave gel combustion using alanine as a fuel was reported. Metal nitrates solution with alanine fuel was combusted in microwave to give precursor. The micro-wave precursor powder was calcined at different temperatures from 800 to 1100 ℃. Phase pure Nd:GGG formation took place at 800 to 1100 ℃ as observed by X-ray diffraction (XRD) and Fourier transform infra-red (FTIR) spectroscopy. However particle size in-creased with calcinations temperature from 25 nm at 800 ℃ to 200 nm at 1100 ℃.Nd:GGG nanopowder obtained at different calci-nation temperatures were compacted and sintered at 1550 ℃ for 3 h in air. Most densified ceramic was obtained from Nd:GGG nanopowder calcined at 1100 ℃. Microstructure as observed from scanning electron microscopy (SEM) showed that the most densi-fied ceramic, obtained from nanopowder calcined at a higher calcination temperature, had a more uniform grain-size distribution, fewer pores and greater densification. XRD of sintered sample showed retention of phase purity. 展开更多
关键词 ND:GGG microwave gel combustion CALCINATIONS DENSIFICATION rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部