The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave ...The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave dielectric properties of Li2ZnTi3O8 ceramics with the addition of V2O5 were investigated. Based on our research, V2O5 doping effectively promoted the densification of Li2ZnTi3O8 ceramics at about 900°C, without affecting the main crystal phase of the ceramics. Li2ZnTi3O8 ceramics with 0.5 wt% V2O5 doping (sintered at 900°C) exhibited the best microwave dielectric properties (Qf =?22,400 GHz at about 6 GHz, εr = 25.5, and τf = -10.8 ppm/°C). The V2O5-doped Li2ZnTi3O8 ceramics were well cofired with Ag inner paste without cracks and diffusion, indicating its significant potential for LTCC applications.展开更多
文摘The sintering temperature of Li2ZnTi3O8 ceramics is still high for LTCC-based applications. In this work, V2O5 was doped as the sintering aid. The sintered density, phase composition, grain size, as well as microwave dielectric properties of Li2ZnTi3O8 ceramics with the addition of V2O5 were investigated. Based on our research, V2O5 doping effectively promoted the densification of Li2ZnTi3O8 ceramics at about 900°C, without affecting the main crystal phase of the ceramics. Li2ZnTi3O8 ceramics with 0.5 wt% V2O5 doping (sintered at 900°C) exhibited the best microwave dielectric properties (Qf =?22,400 GHz at about 6 GHz, εr = 25.5, and τf = -10.8 ppm/°C). The V2O5-doped Li2ZnTi3O8 ceramics were well cofired with Ag inner paste without cracks and diffusion, indicating its significant potential for LTCC applications.