The microwave plasma atomic spectrometry is an important branch of the plasma atomic spectrometry. Since the first use of microwave induced plasma(MIP) as an excitation source for spectral Chemical analysis by Broid...The microwave plasma atomic spectrometry is an important branch of the plasma atomic spectrometry. Since the first use of microwave induced plasma(MIP) as an excitation source for spectral Chemical analysis by Broida and Chapmanin in 1958, especially the introduction of TM;cavity by Beenakker in 1976 and of surfatron by Moisan in 1979 with which an atmospheric pressure helium MIP could be obtained, MIP has received considerable attention as a new excitation source for spectrometric analysis. However, since MIP suffers from the in ability to analyse the aqueous sam-展开更多
Excitation( Texc ) and rotation( Trot ) temperatures were determined under different conditions for an oxygen-shielded argon microwave plasmsa torch source(OS-Ar-MPT). The Texc value, which was shown to be betwe...Excitation( Texc ) and rotation( Trot ) temperatures were determined under different conditions for an oxygen-shielded argon microwave plasmsa torch source(OS-Ar-MPT). The Texc value, which was shown to be between 4300 and 5250 K under different operating conditions, was calculated from the slope of the Boltzmann plot with Fe as the thermometric species. The Trot value, which was in the range of 2100-2500 K, was measured with OH molecular spectra. The influences of microwave power, flow rates of the support gas, cartier gas, and shielding gas, as well as the observation height on Texc and Trot were investigated and discussed. The detailed results of Texc and Trot provided a better understanding of the performance of an OS-ArMPT as a source for atomic emission spectrometry.展开更多
A microwave plasma torch (MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward pow...A microwave plasma torch (MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0. 8 and 1.0 L/min, respectively. The HC1 concentration in the solution was 0.02 mol/L. The observation height was 9. 0 ram. The detection limits of Li, Na, K, Rb, and Cs were 0. 0003, 0. 0004, 0. 009, 0.07 and 2.4 mg/L, respectively, and the resuhs obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.展开更多
An atmospheric microwave plasma argon was used for the inactivation of bacteria E. coli. The employed device, called Axial Injection Torch (or TIA for Torche à Injection Axiale), consisted of a microwave power so...An atmospheric microwave plasma argon was used for the inactivation of bacteria E. coli. The employed device, called Axial Injection Torch (or TIA for Torche à Injection Axiale), consisted of a microwave power source, a waveguide and a gas supply system. Using this argon plasma source, we studied the effects of the exposure time, the exposure distance, the input power, and the gas flow rate on the reduction rate of Escherichia coli cells. The first part of the study was carried out with a static sample exposed to the plasma and then in the second part the sample was set in motion relative to the plasma jet. A log reduction number of E. coli of 4 (10<sup>-4 </sup>CFU/mL) was obtained with UV and active species, for UV only a log of 1 (10<sup>-1</sup> CFU/mL) was obtained.展开更多
The ionization characteristics of the analytes in a low power Ar microwave plasma torch (MPT) was studied. The influence of forward microwave power, the flow rate of carrier gas and matrix element on the degree of ion...The ionization characteristics of the analytes in a low power Ar microwave plasma torch (MPT) was studied. The influence of forward microwave power, the flow rate of carrier gas and matrix element on the degree of ionization were observed. The axial profiles of the degree of the ionization of some elements were determined. The experimental results are very important for developing the new analytical source——microwave plasma torch (MPT).展开更多
A new automatic sample solution introduction system for miniature simultaneous microwave plasma torch(MPT) atomic emission spectrometer was developed. The operating parameters were optimized. The detection limits of...A new automatic sample solution introduction system for miniature simultaneous microwave plasma torch(MPT) atomic emission spectrometer was developed. The operating parameters were optimized. The detection limits of the spectrometer with an ultrasonic nebulizer for Ag, Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Sr, and V are 5-10 times lower than those obtained with a pneumatic nebulizer and are also lower than those obtained by a Model JX-lOlO MPT spectrometer. Two practical samples were analyzed to test the reliability and sensitivity of the system.展开更多
The determination of carbon by means of microwave plasma torch atomic emission spectrometry(MPT-AES) was studied. Aqueous samples were introduced with a pneumatic nebulization system. The detection limit for carbon wa...The determination of carbon by means of microwave plasma torch atomic emission spectrometry(MPT-AES) was studied. Aqueous samples were introduced with a pneumatic nebulization system. The detection limit for carbon was 0. 047μg/mL.The method was applied to the analysis for tap water and results were satisfactory.展开更多
Although the flow injection(FI) as a sample introduction technique has been extensively applied to atomic spectrometry, such as ICP-AES and AAS, very little has been done so far on coupling FI to microwave plasma syst...Although the flow injection(FI) as a sample introduction technique has been extensively applied to atomic spectrometry, such as ICP-AES and AAS, very little has been done so far on coupling FI to microwave plasma systems. Gehlausen et al. determined aqueous fluorine by coupling flow injection analysis (FIA) with HeMIP展开更多
In this paper, a new MPT(microwave plasma torch) device has been used as a atomizer for atomic fluorescence spectrometry. Spme elements, such as Zn, Cd, Hg, Pb, As, Co, Mg, Cu, Ag, Mn, Fe have been investigated in det...In this paper, a new MPT(microwave plasma torch) device has been used as a atomizer for atomic fluorescence spectrometry. Spme elements, such as Zn, Cd, Hg, Pb, As, Co, Mg, Cu, Ag, Mn, Fe have been investigated in detail.展开更多
The determination of the elements of groups ⅢA and ⅣA by means of microwave plasma torch atomic emission spectrometry(MPT AES) was studied systematically. Sample solutions were introduced into the plasma with a pn...The determination of the elements of groups ⅢA and ⅣA by means of microwave plasma torch atomic emission spectrometry(MPT AES) was studied systematically. Sample solutions were introduced into the plasma with a pneumatic nebulizer in continuous sampling mode and flow injection (FI) mode. The emission characteristics of these elements were investigated in details, and the basic data obtained are very important to the development of MPT AES. The analytical performances were examined. For most elements, the detection limits obtained by this method were principally the same as those obtained by inductively coupled plasma atomic emission spectrometry (ICP AES).展开更多
Among the different types of microwave plasma torches, the axial injection torch (TIA) has been used for several years to create chemically active species, in applications such as gas analysis, surface processing and ...Among the different types of microwave plasma torches, the axial injection torch (TIA) has been used for several years to create chemically active species, in applications such as gas analysis, surface processing and gaseous waste treatments. The TIA allows the coupling of microwave energy (2.45 GHz) to a gas injected axially at the nozzle’s exit. The TIA produces non-local thermodynamic equilibrium plasmas with a high luminosity and a maximum density of charged particles at the nozzle’s exit. The present work is dedicated to study the plasma created by a TIA, running at atmospheric pressure. The study involves both experiment and modeling of this torch, in order to maximize the coupling between the microwave power and the plasma and to define the optimum plasma and flow operating conditions for plasma-to-gas heat transfer.展开更多
The silicon oxide nano-powders (SiO<sub>x</sub>-NPs) were obtained in an atmospheric microwave plasma torch using a gas-phase silicon tetrachloride (SiCl<sub>4</sub>) with N<sub>2</sub...The silicon oxide nano-powders (SiO<sub>x</sub>-NPs) were obtained in an atmospheric microwave plasma torch using a gas-phase silicon tetrachloride (SiCl<sub>4</sub>) with N<sub>2</sub> and H<sub>2</sub>. The gas-phase SiCl<sub>4</sub> was injected with H<sub>2</sub> gas into the microwave plasma torch generated by N<sub>2</sub> and air swirl gas, and then the dark brown powders were deposited on the inner wall of a quartz tube. The sample was analyzed by an X-ray photoelectron spectroscopy (XPS), a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and an X-ray diffraction (XRD). The average size and oxidation x values of synthesized SiO<sub>x</sub>-NPs were approximately 230 nm and 0.91, respectively. Furthermore, the volumetric charge capacity is 1127 mAh/g and has 89.2% retention after 100 cycles.展开更多
Tobacco is an important economic crop worldwide.Tobacco leaves contain a large number of natural products.Therefore,the analysis of tobacco composition is crucial for the control of tobacco safety and quality assessme...Tobacco is an important economic crop worldwide.Tobacco leaves contain a large number of natural products.Therefore,the analysis of tobacco composition is crucial for the control of tobacco safety and quality assessment.Microwave plasma torch desorption ionization mass spectrometry(MPT-MS) is an emerging ambient mass spectrometry(AMS) technique that can be used for rapid real-time analysis of s amples without pretreatment.Our work focuses on the chemical composition analysis of tobacco using MPT-MS,and 14 compounds were detected in green flue-cured tobacco leaves,while 30 compounds were detected in cured flue-cured tobacco leaves,which confirms that curing can enhance the flavor of cigarettes.Furthermore,we successfully in situ identified characteristic fragment ions of α/β-CBD(α/β-cembranoids),an important aroma compound in tobacco by MPT-MS.The results demonstrate the capability of MPT-MS for in situ analysis of tobacco components and its potential for evaluating tobacco quality.展开更多
基金Supported by the National Natural Science Foundation of China
文摘The microwave plasma atomic spectrometry is an important branch of the plasma atomic spectrometry. Since the first use of microwave induced plasma(MIP) as an excitation source for spectral Chemical analysis by Broida and Chapmanin in 1958, especially the introduction of TM;cavity by Beenakker in 1976 and of surfatron by Moisan in 1979 with which an atmospheric pressure helium MIP could be obtained, MIP has received considerable attention as a new excitation source for spectrometric analysis. However, since MIP suffers from the in ability to analyse the aqueous sam-
基金Supported by the Science and Technology Development Program of Jilin Province, P. R. China(No. 20010306-1).
文摘Excitation( Texc ) and rotation( Trot ) temperatures were determined under different conditions for an oxygen-shielded argon microwave plasmsa torch source(OS-Ar-MPT). The Texc value, which was shown to be between 4300 and 5250 K under different operating conditions, was calculated from the slope of the Boltzmann plot with Fe as the thermometric species. The Trot value, which was in the range of 2100-2500 K, was measured with OH molecular spectra. The influences of microwave power, flow rates of the support gas, cartier gas, and shielding gas, as well as the observation height on Texc and Trot were investigated and discussed. The detailed results of Texc and Trot provided a better understanding of the performance of an OS-ArMPT as a source for atomic emission spectrometry.
文摘A microwave plasma torch (MPT) simultaneous spectrometer was used to study the spectral character and the matrix effect on alkali metal ions in solution. The main parameters were optimized. The microwave forward power was 100 W. The argon flow rate that was used to sustain the Ar-MPT included the flow rate of carrier gas and the flow rate of support gas, which were 0. 8 and 1.0 L/min, respectively. The HC1 concentration in the solution was 0.02 mol/L. The observation height was 9. 0 ram. The detection limits of Li, Na, K, Rb, and Cs were 0. 0003, 0. 0004, 0. 009, 0.07 and 2.4 mg/L, respectively, and the resuhs obtained by the Ar-MPT were compared with those obtained by argon inductively coupled plasma(Ar-ICP) and argon microwave induced plasma(Ar-MIP). The interference effects of several matrix elements were also studied.
文摘An atmospheric microwave plasma argon was used for the inactivation of bacteria E. coli. The employed device, called Axial Injection Torch (or TIA for Torche à Injection Axiale), consisted of a microwave power source, a waveguide and a gas supply system. Using this argon plasma source, we studied the effects of the exposure time, the exposure distance, the input power, and the gas flow rate on the reduction rate of Escherichia coli cells. The first part of the study was carried out with a static sample exposed to the plasma and then in the second part the sample was set in motion relative to the plasma jet. A log reduction number of E. coli of 4 (10<sup>-4 </sup>CFU/mL) was obtained with UV and active species, for UV only a log of 1 (10<sup>-1</sup> CFU/mL) was obtained.
基金Supported by the National Natural Science Foundation of China
文摘The ionization characteristics of the analytes in a low power Ar microwave plasma torch (MPT) was studied. The influence of forward microwave power, the flow rate of carrier gas and matrix element on the degree of ionization were observed. The axial profiles of the degree of the ionization of some elements were determined. The experimental results are very important for developing the new analytical source——microwave plasma torch (MPT).
文摘A new automatic sample solution introduction system for miniature simultaneous microwave plasma torch(MPT) atomic emission spectrometer was developed. The operating parameters were optimized. The detection limits of the spectrometer with an ultrasonic nebulizer for Ag, Al, Ba, Ca, Cr, Cu, Fe, Mg, Mn, Sr, and V are 5-10 times lower than those obtained with a pneumatic nebulizer and are also lower than those obtained by a Model JX-lOlO MPT spectrometer. Two practical samples were analyzed to test the reliability and sensitivity of the system.
文摘The determination of carbon by means of microwave plasma torch atomic emission spectrometry(MPT-AES) was studied. Aqueous samples were introduced with a pneumatic nebulization system. The detection limit for carbon was 0. 047μg/mL.The method was applied to the analysis for tap water and results were satisfactory.
基金Supported by the National Natural Science Founddation of China
文摘Although the flow injection(FI) as a sample introduction technique has been extensively applied to atomic spectrometry, such as ICP-AES and AAS, very little has been done so far on coupling FI to microwave plasma systems. Gehlausen et al. determined aqueous fluorine by coupling flow injection analysis (FIA) with HeMIP
文摘In this paper, a new MPT(microwave plasma torch) device has been used as a atomizer for atomic fluorescence spectrometry. Spme elements, such as Zn, Cd, Hg, Pb, As, Co, Mg, Cu, Ag, Mn, Fe have been investigated in detail.
文摘The determination of the elements of groups ⅢA and ⅣA by means of microwave plasma torch atomic emission spectrometry(MPT AES) was studied systematically. Sample solutions were introduced into the plasma with a pneumatic nebulizer in continuous sampling mode and flow injection (FI) mode. The emission characteristics of these elements were investigated in details, and the basic data obtained are very important to the development of MPT AES. The analytical performances were examined. For most elements, the detection limits obtained by this method were principally the same as those obtained by inductively coupled plasma atomic emission spectrometry (ICP AES).
文摘Among the different types of microwave plasma torches, the axial injection torch (TIA) has been used for several years to create chemically active species, in applications such as gas analysis, surface processing and gaseous waste treatments. The TIA allows the coupling of microwave energy (2.45 GHz) to a gas injected axially at the nozzle’s exit. The TIA produces non-local thermodynamic equilibrium plasmas with a high luminosity and a maximum density of charged particles at the nozzle’s exit. The present work is dedicated to study the plasma created by a TIA, running at atmospheric pressure. The study involves both experiment and modeling of this torch, in order to maximize the coupling between the microwave power and the plasma and to define the optimum plasma and flow operating conditions for plasma-to-gas heat transfer.
文摘The silicon oxide nano-powders (SiO<sub>x</sub>-NPs) were obtained in an atmospheric microwave plasma torch using a gas-phase silicon tetrachloride (SiCl<sub>4</sub>) with N<sub>2</sub> and H<sub>2</sub>. The gas-phase SiCl<sub>4</sub> was injected with H<sub>2</sub> gas into the microwave plasma torch generated by N<sub>2</sub> and air swirl gas, and then the dark brown powders were deposited on the inner wall of a quartz tube. The sample was analyzed by an X-ray photoelectron spectroscopy (XPS), a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), and an X-ray diffraction (XRD). The average size and oxidation x values of synthesized SiO<sub>x</sub>-NPs were approximately 230 nm and 0.91, respectively. Furthermore, the volumetric charge capacity is 1127 mAh/g and has 89.2% retention after 100 cycles.
基金supported by the National Natural Science Foundation of China(21927810)Science and Technology Program of Zhejiang Province(LGC21B050008)。
文摘Tobacco is an important economic crop worldwide.Tobacco leaves contain a large number of natural products.Therefore,the analysis of tobacco composition is crucial for the control of tobacco safety and quality assessment.Microwave plasma torch desorption ionization mass spectrometry(MPT-MS) is an emerging ambient mass spectrometry(AMS) technique that can be used for rapid real-time analysis of s amples without pretreatment.Our work focuses on the chemical composition analysis of tobacco using MPT-MS,and 14 compounds were detected in green flue-cured tobacco leaves,while 30 compounds were detected in cured flue-cured tobacco leaves,which confirms that curing can enhance the flavor of cigarettes.Furthermore,we successfully in situ identified characteristic fragment ions of α/β-CBD(α/β-cembranoids),an important aroma compound in tobacco by MPT-MS.The results demonstrate the capability of MPT-MS for in situ analysis of tobacco components and its potential for evaluating tobacco quality.