Recycling spent lithium-ion batteries is integral to today's low-carbon environmental protection efforts.The concept of direct regeneration,acknowledged for its environmental sustainability,economic viability,and ...Recycling spent lithium-ion batteries is integral to today's low-carbon environmental protection efforts.The concept of direct regeneration,acknowledged for its environmental sustainability,economic viability,and consistent performance of recycled materials,is gaining prominence.This study presents an efficient and nondestructive approach by utilizing an ultrafast microwave technology to directly regenerate spent lithium cobaltate(LCO)cathode materials.In contrast to conventional furnacebased processes,this method significantly reduces the regeneration timeframe.By subjecting the spent LCO mixed with lithium sources to three microwave heating cycles(at approximately 1,350 K),LCO regeneration is achieved,yielding a specific capacity of 140.8 mAh g^(-1)(0.2 C)with a robust cycle stability.With further environmental and economic benefits,the ultrafast microwave technology holds scientific promise for directly regenerating cathode materials,while establishing competitiveness for industrial applications.展开更多
Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism...Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm^2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation.展开更多
目的研究硅(Si)、氧(O)元素掺杂对类金刚石(Diamond like Carbon,DLC)薄膜沉积、结构、表面形貌以及阻隔性能的影响,为高效制备高阻隔硅氧共掺类金刚石(Si and O Incorporated DLC,Si/O-DLC)薄膜提供新的思路参考。方法利用微波等离子...目的研究硅(Si)、氧(O)元素掺杂对类金刚石(Diamond like Carbon,DLC)薄膜沉积、结构、表面形貌以及阻隔性能的影响,为高效制备高阻隔硅氧共掺类金刚石(Si and O Incorporated DLC,Si/O-DLC)薄膜提供新的思路参考。方法利用微波等离子体化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)技术在聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)基底表面沉积Si/O-DLC薄膜,具体研究反应单体中六甲基二硅氧烷(Hexaethyldisiloxane,HMDSO)含量对薄膜沉积和阻隔性能的影响。通过台阶仪、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、原子力显微镜(AFM)表征薄膜厚度、结构和微观形貌,并通过测试氧气透过率表征复合薄膜的阻隔性能。结果随着混合气体中HMDSO含量增加,薄膜的沉积速率提高,不同高度位置上沉积速率波动变弱,平均沉积速率最高达到310 nm·min^(–1),同时,薄膜中Si、O元素含量增加,相关的键合结构含量增加,薄膜表面致密性变差,氧气阻隔性能变弱;当HMDSO流量控制在1 mL·min^(–1)时,PET薄膜的氧气透过率可从未涂覆时的132mL·m^(2)·d^(–1)降低至2mL·m^(2)·d^(-1),阻隔性能明显改善。结论在一定工艺条件下,通过微波PECVD技术在PET薄膜表面涂覆Si/O-DLC薄膜,可明显改善其阻隔性能。展开更多
Recently,the term theragenerative has been proposed for biomaterials capable of inducing therapeutic approaches followed by repairing/regenerating the tissue/organ.This study is focused on the design of a new theragen...Recently,the term theragenerative has been proposed for biomaterials capable of inducing therapeutic approaches followed by repairing/regenerating the tissue/organ.This study is focused on the design of a new theragenerative nanocomposite composed of an amphiphilic non-ionic surfactant(Pluronic F127),bioactive glass(BG),and black phosphorus(BP).The nanocomposite was prepared through a two-step synthetic strategy,including a microwave treatment that turned BP nanosheets(BPNS)into quantum dots(BPQDs)with 5±2 nm dimensions in situ.The effects of surfactant and microwave treatment were assessed in vitro:the surfactant distributes the ions homogenously throughout the composite and the microwave treatment chemically stabilizes the composite.The presence of BP enhanced bioactivity and promoted calcium phosphate formation in simulated body fluid.The inherent anticancer activity of BP-containing nanocomposites was tested against osteosarcoma cells in vitro,finding that 150μg mL^(-1)was the lowest concentration which prevented the proliferation of SAOS-2 cells,while the counterpart without BP did not affect the cell growth rate.Moreover,the apoptosis pathways were evaluated and a mechanism of action was proposed.NIR irradiation was applied to induce further proliferation suppression on SAOS-2 cells through hyperthermia.The inhibitory effects of bare BP nanomaterials and nanocomposites on the migration and invasion of bone cancer,breast cancer,and prostate cancer cells were assessed in vitro to determine the anticancer potential of nanomaterials against primary and secondary bone cancers.The regenerative behavior of the nanocomposites was tested with healthy osteoblasts and human mesenchymal stem cells;the BPQDs-incorporated nanocomposite significantly promoted the proliferation of osteoblast cells and induced the osteogenic differentiation of stem cells.This study introduces a new multifunctional theragenerative platform with promising potential for simultaneous bone cancer therapy and regeneration.展开更多
A tightly linked dual ring antenna is designed,and it is specifically tailored for uniformly coupling the microwave magnetic field to the nitrogen-vacancy(NV)center.The designed antenna operates at a center frequency ...A tightly linked dual ring antenna is designed,and it is specifically tailored for uniformly coupling the microwave magnetic field to the nitrogen-vacancy(NV)center.The designed antenna operates at a center frequency of about 2.87 GHz,with a bandwidth of around 200 MHz,allowing it to address multiple resonance peaks in the optically detected magnetic resonance(ODMR)spectrum in an external magnetic field.Moreover,the antenna generates a fairly uniform magnetic field in a range with a radius of 0.75 mm.High resolution imaging of the magnetic field distribution on the surface of the antenna is conducted by using a fiber diamond probe.We also investigate the effect of magnetic field uniformity on the linewidth of ODMR,so as to provide insights into reducing the inhomogeneous broadening of ODMR.展开更多
In this paper, we have designed and proofed a widely tunable microwave photonic filter (MPF) on the basis of self-adaptive optical carrier regeneration method through stimulated Brillouin scattering (SBS) amplificati...In this paper, we have designed and proofed a widely tunable microwave photonic filter (MPF) on the basis of self-adaptive optical carrier regeneration method through stimulated Brillouin scattering (SBS) amplification. The MPF system features with a single microwave passband as the result of the processed signal sideband beating with the regenerated optical carrier. Since the Brillouin-laser optical carrier and the SBS amplification are generated from one laser source, the optical carrier regeneration process of the proposed MPF is self- adaptive and carrier-frequency independent. Moreover, by simply varying the wavelength spacing between the optical carrier and the optical filter, the central passband of the MPF can be continuously tuned from 6 to 32 GHz, which is limited by the bandwidth of the modulator and the photodetector. The 3 dB bandwidth and the out-of-band suppression ratio of the MPF can reach 640 MHz and 21 dB, respectively.展开更多
基金supported by the startup funding of Shanghai Jiao Tong Universitythe National Natural Science Foundation of Chinathe Ministry of Higher Education of Malaysia for the Fundamental Research Grant(FRGS/1/2022/STG05/UM/02/3)to Woo Haw Jiunn。
文摘Recycling spent lithium-ion batteries is integral to today's low-carbon environmental protection efforts.The concept of direct regeneration,acknowledged for its environmental sustainability,economic viability,and consistent performance of recycled materials,is gaining prominence.This study presents an efficient and nondestructive approach by utilizing an ultrafast microwave technology to directly regenerate spent lithium cobaltate(LCO)cathode materials.In contrast to conventional furnacebased processes,this method significantly reduces the regeneration timeframe.By subjecting the spent LCO mixed with lithium sources to three microwave heating cycles(at approximately 1,350 K),LCO regeneration is achieved,yielding a specific capacity of 140.8 mAh g^(-1)(0.2 C)with a robust cycle stability.With further environmental and economic benefits,the ultrafast microwave technology holds scientific promise for directly regenerating cathode materials,while establishing competitiveness for industrial applications.
基金supported by the Integrated Drug Discovery Technology Platform of National Science and Technology Major Projects for "Major New Drugs Innovation and Development",No.2012ZX09J12201-005the National Natural Science Foundation of China,No.31071042,31200822a grant of Beijing Natural Science Foundation,No.5122033
文摘Quinacrine, widely used to treat parasitic diseases, binds to cell membranes. We previously found that quinacrine pretreatment reduced microwave radiation damage in rat hippocampal neurons, but the molecular mechanism remains poorly understood. Considering the thermal effects of microwave radiation and the protective effects of quinacrine on heat damage in cells, we hypothesized that quinacrine would prevent microwave radiation damage to cells in a mechanism associated with cell membrane stability. To test this, we used retinoic acid to induce PC12 cells to differentiate into neuron-like cells. We then pretreated the neurons with quinacrine (20 and 40 mM) and irradiated them with 50 mW/cm^2 microwaves for 3 or 6 hours. Flow cytometry, atomic force microscopy and western blot assays revealed that irradiated cells pretreated with quinacrine showed markedly less apoptosis, necrosis, and membrane damage, and greater expression of heat shock protein 70, than cells exposed to microwave irradiation alone. These results suggest that quinacrine stabilizes the neuronal membrane structure by upregulating the expression of heat shock protein 70, thus reducing neuronal injury caused by microwave radiation.
文摘目的研究硅(Si)、氧(O)元素掺杂对类金刚石(Diamond like Carbon,DLC)薄膜沉积、结构、表面形貌以及阻隔性能的影响,为高效制备高阻隔硅氧共掺类金刚石(Si and O Incorporated DLC,Si/O-DLC)薄膜提供新的思路参考。方法利用微波等离子体化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)技术在聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)基底表面沉积Si/O-DLC薄膜,具体研究反应单体中六甲基二硅氧烷(Hexaethyldisiloxane,HMDSO)含量对薄膜沉积和阻隔性能的影响。通过台阶仪、傅里叶红外光谱(FTIR)、X射线光电子能谱(XPS)、原子力显微镜(AFM)表征薄膜厚度、结构和微观形貌,并通过测试氧气透过率表征复合薄膜的阻隔性能。结果随着混合气体中HMDSO含量增加,薄膜的沉积速率提高,不同高度位置上沉积速率波动变弱,平均沉积速率最高达到310 nm·min^(–1),同时,薄膜中Si、O元素含量增加,相关的键合结构含量增加,薄膜表面致密性变差,氧气阻隔性能变弱;当HMDSO流量控制在1 mL·min^(–1)时,PET薄膜的氧气透过率可从未涂覆时的132mL·m^(2)·d^(–1)降低至2mL·m^(2)·d^(-1),阻隔性能明显改善。结论在一定工艺条件下,通过微波PECVD技术在PET薄膜表面涂覆Si/O-DLC薄膜,可明显改善其阻隔性能。
基金support from Progetto MIUR PRIN2017-ACTION,Grant No.2017SZ5WZB and POR Campania FESR 2014-2020(Campania imaging Infrastructure for Research in Oncology-C.I.R.O)The authors also thank Maria Rosaria Bonetti for lab technical support,Cristina Del Barone for facilitating microscopy analysis,Dr.Antonio Pennetta for ICP analysis and Dr.Roberta Marzella for support to project management.CISUP(Centre for Instrument Sharing-University of Pisa)and the EUroBioImaging(EUBI)Facility at CNR(Naples)are acknowledged for the use of the Bruker Avance NEO 500 Solid State NMR spectrometer and of AxioVision microscope(Carl Zeiss Micro Imaging GmbH),respectively.
文摘Recently,the term theragenerative has been proposed for biomaterials capable of inducing therapeutic approaches followed by repairing/regenerating the tissue/organ.This study is focused on the design of a new theragenerative nanocomposite composed of an amphiphilic non-ionic surfactant(Pluronic F127),bioactive glass(BG),and black phosphorus(BP).The nanocomposite was prepared through a two-step synthetic strategy,including a microwave treatment that turned BP nanosheets(BPNS)into quantum dots(BPQDs)with 5±2 nm dimensions in situ.The effects of surfactant and microwave treatment were assessed in vitro:the surfactant distributes the ions homogenously throughout the composite and the microwave treatment chemically stabilizes the composite.The presence of BP enhanced bioactivity and promoted calcium phosphate formation in simulated body fluid.The inherent anticancer activity of BP-containing nanocomposites was tested against osteosarcoma cells in vitro,finding that 150μg mL^(-1)was the lowest concentration which prevented the proliferation of SAOS-2 cells,while the counterpart without BP did not affect the cell growth rate.Moreover,the apoptosis pathways were evaluated and a mechanism of action was proposed.NIR irradiation was applied to induce further proliferation suppression on SAOS-2 cells through hyperthermia.The inhibitory effects of bare BP nanomaterials and nanocomposites on the migration and invasion of bone cancer,breast cancer,and prostate cancer cells were assessed in vitro to determine the anticancer potential of nanomaterials against primary and secondary bone cancers.The regenerative behavior of the nanocomposites was tested with healthy osteoblasts and human mesenchymal stem cells;the BPQDs-incorporated nanocomposite significantly promoted the proliferation of osteoblast cells and induced the osteogenic differentiation of stem cells.This study introduces a new multifunctional theragenerative platform with promising potential for simultaneous bone cancer therapy and regeneration.
基金Project supported by the National Key Research and Development Program of China(Grant No.2021YFB2012600)the Shanghai Aerospace Science and Technology Innovation Fund(Grant No.SAST-2022-102).
文摘A tightly linked dual ring antenna is designed,and it is specifically tailored for uniformly coupling the microwave magnetic field to the nitrogen-vacancy(NV)center.The designed antenna operates at a center frequency of about 2.87 GHz,with a bandwidth of around 200 MHz,allowing it to address multiple resonance peaks in the optically detected magnetic resonance(ODMR)spectrum in an external magnetic field.Moreover,the antenna generates a fairly uniform magnetic field in a range with a radius of 0.75 mm.High resolution imaging of the magnetic field distribution on the surface of the antenna is conducted by using a fiber diamond probe.We also investigate the effect of magnetic field uniformity on the linewidth of ODMR,so as to provide insights into reducing the inhomogeneous broadening of ODMR.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61501422 & 61377071)the Equipment Development Project of Chinese Academy of Sciences (Grant No. YZ201201)
文摘In this paper, we have designed and proofed a widely tunable microwave photonic filter (MPF) on the basis of self-adaptive optical carrier regeneration method through stimulated Brillouin scattering (SBS) amplification. The MPF system features with a single microwave passband as the result of the processed signal sideband beating with the regenerated optical carrier. Since the Brillouin-laser optical carrier and the SBS amplification are generated from one laser source, the optical carrier regeneration process of the proposed MPF is self- adaptive and carrier-frequency independent. Moreover, by simply varying the wavelength spacing between the optical carrier and the optical filter, the central passband of the MPF can be continuously tuned from 6 to 32 GHz, which is limited by the bandwidth of the modulator and the photodetector. The 3 dB bandwidth and the out-of-band suppression ratio of the MPF can reach 640 MHz and 21 dB, respectively.