Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to ...Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to study its effect on the oxidation resistance, apparent porosity, bulk density, elastic modulus, and modulus of rupture. It is found that Al_(4)SiC_(4) can be synthesized by microwave sintering at 1 300 ℃ and the addition of Al_(4)SiC_(4)-containing material as an antioxidant can enhance the oxidation resistance of the magnesia carbon refractory brick.展开更多
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy...This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.展开更多
Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial ...Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial materials chip technology, featuring high-throughput synthesis and characterization, is able to determine the phase diagram of an entire composition spread of a binary or ternary system at a single temperature on one materials library, which, though significantly increasing efficiency, still requires many libraries processed at a series of temperatures in order to complete a phase diagram. In this paper, we propose a "one-chip method" to construct a complete phase diagram by individually synthesizing each pixel step by step with a progressive pulse of energy to heat at different temperatures while monitoring the phase evolution on the pixel in situ in real time. Repeating this process pixel by pixel throughout the whole chip allows the entire binary or ternary phase diagram to be mapped on one chip in a single experiment. The feasibility of this methodology is demonstrated in a study of a Ge-Sb-Te ternary alloy system, on which the amorphouscrystalline phase boundary is determined.展开更多
This paper describes a combinatorial Synthesis of the Mannich Bases in Solution through the Mannich reaction using 3 ketones, 5 amines and formaldehyde in solution and hydrochloride as a catalyst and then using a macr...This paper describes a combinatorial Synthesis of the Mannich Bases in Solution through the Mannich reaction using 3 ketones, 5 amines and formaldehyde in solution and hydrochloride as a catalyst and then using a macroporous quarterized ammonium resin (CO32- form) as a scavenge agent to remove the acid catalyst when the Mannich reaction is completed. It was found by GC/MS analysis that the symmetrical ketone, such as acetone, in the Mannich reaction mainly produces one Mannich base; while the asymmetrical ketone, such as 2-pentanone, gives two Mannich bases. The reactivity depends on the tereo-hinder of both ketones and amines.展开更多
Microwave-assisted synthesis of gold and silver nanoparticles, as a function of Green Chemistry, non Green Chemistry, and four applicator types are reported. The applicator types are Domestic microwave ovens, commerci...Microwave-assisted synthesis of gold and silver nanoparticles, as a function of Green Chemistry, non Green Chemistry, and four applicator types are reported. The applicator types are Domestic microwave ovens, commercial temperature controlled microwave chemistry ovens (TCMC), digesters, and axial field helical antennae. For each of these microwave applicators the process energy budget where estimated (Watts multiplied by process time = kJ) and energy density (applied energy divided by suspension volume = kJ·ml<sup>-1</sup>) range between 180 ± 176.8 kJ, and 79.5 ± 79 kJ·ml<sup>-1</sup>, respectively. The axial field helical field an-tenna applicator is found to be the most energy efficient (0.253 kJ·m<sup>-1</sup> per kJ, at 36 W). Followed by microwave ovens (4.47 ± 3.9 kJ·ml<sup>-1</sup> per 76.83 ± 39 kJ), and TCMC ovens (2.86 ± 2.3 kJ·m<sup>-1</sup> per 343 ± 321.5 kJ). The digester applicators have the least energy efficiency (36.2 ± 50.7 kJ·m<sup>-1</sup> per 1010 ± 620 kJ). A comparison with reconstructed ‘non-thermal’ microwave oven inactivation microorganism experiments yields a power-law signature of n = 0.846 (R<sup>2</sup> = 0.7923) four orders of magnitude. The paper provides a discussion on the Au and Ag nanoparticle chemistry and bio-chemistry synthesis aspects of the microwave applicator energy datasets and variation within each dataset. The visual and analytical approach within the energy phase-space projection enables a nanoparticle synthesis route to be systematically characterized, and where changes to the synthesis are to be mapped and compared directly with historical datasets. In order to help identify lower cost nanoparticle synthesis, in addition to potentially reduce synthesis energy to routes informed changes to potentially reduce synthesis energy budget, along with nanoparticle morphology and yield.展开更多
Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rath...Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rather than hours when compared to conventional thermal heating. This works describes a dual allometry test for the discrimination between the solvents and reagents used in the microwave-assisted synthesis of transition metal (zinc oxide, palladium silver, platinum, and gold) nanostructures. The test is performed in log-log process energy phase-space projection, where the synthesis data (kJ against kJ·mol<sup>-1</sup>) has a power-law signature. The test is shown to discriminate between recommended Green Chemistry, problematic Green Chemistry, and Green Chemistry hazardous solvents. Typically, recommended Green chemistry exhibits a broad y-axes distribution within an upper exponent = 1 and lower exponent = 0.5. Problematic Green Chemistry exhibits a y-axes narrower distribution with an upper exponent = 0.94 and lower exponent = 0.64. Non-Green Chemistry hazardous data exhibits a further narrowing of the y-axes distribution within upper exponent = 0.87 and lower exponent = 0.66. In all three cases, the y-axes is aligned to original database power-law signature. It is also shown that in the x-axes direction (process energy budget) the grouped order of magnitude decreases from four orders for recommended Green Chemistry solvent and reagent data, through two orders for non-Green Chemistry hazardous material and down to one order for problematic Green Chemistry.展开更多
A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructu...A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructures has been recently described [Law and Denis. AJAC, 14(4), 149-174, (2023)]. This study explores this relation further for palladium, platinum, and zinc oxide nanostructures. Parametric cluster analysis and statistical analysis is used to test the power-law signature of over four orders of magnitude as a function of six microwave applicator-types metal precursor, non-Green Chemistry synthesis and claimed Green Chemistry. It is found that for the claimed Green Chemistry, process energy budget ranges from 0.291 to 900 kJ, with a residual error ranging between −33 to +25.9 kJ·ml<sup>-1</sup>. The non-Green Chemistry synthesis has a higher process energy budget range from 3.2 kJ to 3.3 MJ, with a residual error of −33.3 to +245.3 kJ·ml<sup>-1</sup>. It is also found that the energy profile over time produced by software controlled digestion applicators is poorly reported which leads to residual error problematic outliers that produce possible phase-transition in the power-law signature. The original Au and Ag database and new Pd, Pt and ZnO database (with and without problematic outliers) yield a global microwave-assisted synthesis power-law signature constants of c = 0.7172 ± 0.3214 kJ·ml<sup>-1</sup> at x-axes = 0.001 kJ, and the exponent, n = 0.791 ± 0.055. The information in this study is aimed to understand variations in historical microwave-assisted synthesis processes, and develop new scale-out synthesis through process intensification.展开更多
A new cyclometalated iridium(IlI) complex Ir(DPP)3 (DPP=2,3-diphenylpyrazine) was prepared by reaction of DPP with iridium trichloride hydrate under microwave irradiation. The structure of the complex was confir...A new cyclometalated iridium(IlI) complex Ir(DPP)3 (DPP=2,3-diphenylpyrazine) was prepared by reaction of DPP with iridium trichloride hydrate under microwave irradiation. The structure of the complex was confirmed by elemental analysis, ^1H NMR, and mass spectroscopy. The UV-Vis absorption and photoluminescent properties of the complex were investigated. The complex shows strong ^1MLCT (singlet metal to ligand charge-transfer) and aMLCT (triplet metal to ligand charge-transfer) absorption at 382 and 504 nm, respectively. The complex also shows strong photoluminescence at 573 nm at room temperature. These results suggest the complex to be a promising phosphorescent material.展开更多
Fifteen dihydropyrimidinthiones have been synthesized by microwave-assisted Biginelli reactions without any solvent or catalyst. The advantages of this novel protocol include the excellent yield, operational simplicit...Fifteen dihydropyrimidinthiones have been synthesized by microwave-assisted Biginelli reactions without any solvent or catalyst. The advantages of this novel protocol include the excellent yield, operational simplicity, short time and the avoidance of the use of organic solvents and catalysts.展开更多
The rapid synthesis of 3-bromocarbarole-N-acetic acid was performed using microwave irradiation. Under the optimal conditions the yield was 85.6% . The crystal structure showed that the carboxylic groups form bifurcat...The rapid synthesis of 3-bromocarbarole-N-acetic acid was performed using microwave irradiation. Under the optimal conditions the yield was 85.6% . The crystal structure showed that the carboxylic groups form bifurcated hydrogen bonds and the hydroxyl oxygen atoms serve as proton donors and also acceptor. Each carboxylic group was involved in four hydrogen bonds. The package of crystal was dominated by links of these hydrogen bonds.展开更多
At present,with the increasing application needs of phosphor-converted white light-emitting diode(wLED),the synthetic efficiency and thermal stability of phosphor become urgent problems.Herein,this research reports a ...At present,with the increasing application needs of phosphor-converted white light-emitting diode(wLED),the synthetic efficiency and thermal stability of phosphor become urgent problems.Herein,this research reports a microwave-assisted fast synthesis approach to obtain a Sm^(3+)-activated borotellurate Na_(2)Y_(2)TeO_(4)(BO_(3))_(2)(NYTB)red phosphor with high crystallinity,excellent thermostability,and low chromaticity shift.For the NYTB-based phosphor,in contrast to the conventional solid-state synthesis,the microwave-assisted synthesis method involves lower synthesis temperature and shorter processing time.Additionally,the concentration quenching mechanism was determined.The w-LED device packaged with the studied phosphor exhibits a near-standard white light with proper CCT and high Ra parameters.展开更多
Developing novel lead-free ferroelectric materials is crucial for next-generationmicroelectronic technologies that are energy efficient and environmentfriendly.However,materials discovery and property optimization are...Developing novel lead-free ferroelectric materials is crucial for next-generationmicroelectronic technologies that are energy efficient and environmentfriendly.However,materials discovery and property optimization are typicallytime-consuming due to the limited throughput of traditional synthesismethods.In this work,we use a high-throughput combinatorial synthesisapproach to fabricate lead-free ferroelectric superlattices and solid solutions of(Ba_(0.7)Ca_(0.3))TiO_(3)(BCT)and Ba(Zr_(0.2)Ti_(0.8))O_(3)(BZT)phases with continuous variationof composition and layer thickness.High-resolution x-ray diffraction(XRD)and analytical scanning transmission electron microscopy(STEM)demonstratehigh film quality and well-controlled compositional gradients.Ferroelectricand dielectric property measurements identify the“optimal propertypoint”achieved at the composition of 48BZT–52BCT.Displacement vectormaps reveal that ferroelectric domain sizes are tunable by varying{BCT–BZT}Nsuperlattice geometry.This high-throughput synthesis approach can be appliedto many other material systems to expedite new materials discovery and properties optimization,allowing for the exploration of a large area of phasespace within a single growth.展开更多
An optimized approach for the synthesis of N^1-ethoxymethyl-substituted cyclic inosine diphosphoribose(cIDPRE),an analogue of cyclic adenosine diphosphoribose(cADPR),has been developed via microwave-assisted intra...An optimized approach for the synthesis of N^1-ethoxymethyl-substituted cyclic inosine diphosphoribose(cIDPRE),an analogue of cyclic adenosine diphosphoribose(cADPR),has been developed via microwave-assisted intramolecular cyclization. The target compound has been successfully obtained through N^1-substitution,phosphorylation,cyclization and deprotection.By using this method,8-amino and bromo-substituted cIDPRE analogues were successfully obtained in good yield.The new approach has greatly shortened the synthetic route and enhanced the overall efficiency.展开更多
Hydrothermal methods are widely used in chemical synthesis of target products with specific morphology and nanostructure.Those methods are very efficient for the preparation of well-controlled structures but the react...Hydrothermal methods are widely used in chemical synthesis of target products with specific morphology and nanostructure.Those methods are very efficient for the preparation of well-controlled structures but the reaction time is usually long.The assistance of microwave makes the reaction system heat up faster,more uniformly and reactions are accelerated,it also can be utilized to change the morphology or structure of materials,which improves the physic-chemical properties of synthesized products and influences its gas-sensing performance.Copper oxide(CuO)is widely applied in semiconductor gas sensors because of its good reactivity and stability.This review article briefly introduces the principle,mechanism and recent development of CuO nanostructures obtained by microwave-as sis ted hydrothermal synthesis(MWHS)process.It also discussed the relation between endopathic factors of material and its gas-sensitive performance.The technical challenges and prospective solutions for highperformance CuO-based gas-sensitive materials with unique nanostructure are proposed.It is pointed out that the hierarchical CuO-based nanostructures and their composite materials prepared by MWHS process are efficacious methods to improve the gas-sensitive performance of the materials.On the basis of the morphology,the materials are divided into nanorods,nanoflowers,nanosheets,nanospheres and other nanostructures.The influence of microwave parameters on the properties of synthetic products is analyzed.The influence followed by metal element loading on the structure and properties of CuO-based materials by MWHS process is further discussed.Then this review summarizes the research progress of graphene-CuO and metal oxide-CuO composites prepared by MWHS process in recent years.展开更多
Based on the binding mode for hydrouracil in photosystem II (PS II) Dl protein, a general method for the solid phase combinatorial synthesis of hydrouracil library was developed. The acryloyl chloride or acid were cou...Based on the binding mode for hydrouracil in photosystem II (PS II) Dl protein, a general method for the solid phase combinatorial synthesis of hydrouracil library was developed. The acryloyl chloride or acid were coupled to Wang resin1 to afford the acryloyl ester2. Resin bound ester2 reacted with various primary amines to give secondary amines3, which were converted to the resin bound ureas4 by treatment with isocyanates. Preparation of the hydrouracils5 was achieved by the acidic cyclization-cleavage from the resin. For characterization purposes,8 hydrouracil analogues were synthesized in parallel, following which a small library of9 hydrouracil derivatives was prepared after cleavage from Wang resin. All the9 bydrouracil derivatives desired were identified by GCMS.展开更多
A facile microwave-assisted procedure for synthesis of novel fluorinated pyrazolo[3,4-d]pyrimidine derivatives containing 1,3,4-thiadiazole is described. This protocol presented such advantages as short reaction time,...A facile microwave-assisted procedure for synthesis of novel fluorinated pyrazolo[3,4-d]pyrimidine derivatives containing 1,3,4-thiadiazole is described. This protocol presented such advantages as short reaction time, high yields, simple purification and environmentally benign procedures. Their antitumor activities were evaluated against HL-60 by an MTT assay. The preliminary results indicated that some title compounds exhibit more potent antitumor inhibitory activity than doxorubicin (DOX).展开更多
Nanoscale europium(Ⅲ) metal-organic frameworks, Eu(BTC)(H20).DMF, were synthesized by rapid microwave-assisted method. The components of the as-prepared products were confirmed by the elemental analysis, X-ray ...Nanoscale europium(Ⅲ) metal-organic frameworks, Eu(BTC)(H20).DMF, were synthesized by rapid microwave-assisted method. The components of the as-prepared products were confirmed by the elemental analysis, X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA) and Fourier-transform infrared spectra (FTIR) analyses. Eu(BTC)(H20).DMF with various morphologies, including particle-like, rod-like, straw-sheaf-like nanostructures, could be simply prepared by con- trolling the concentrations of the starting reactants. The optical measurements on the obtained Eu(BTC)(H20)- DMF indicated that all the nanomaterials show the characteristic emissions of the Eu3+ ions at 578, 590, 612, 650, and 699 nm, which were at- tributed to 5Do→7FJ (J=0-4) transitions of the Eu3+ ion, respectively. It was also noticed that the luminescent properties of the as-prepared products were heavily dependent on the morphologies and sizes of the nanomaterials. The assembled straw-sheaf-like architectures displayed the strongest emissions and the longest luminescence lifetime, which was mainly due to the fewest surface defects.展开更多
基金This work was funded by Luoyang Major Science and Technology Innovation Project(2301009A)Henan Province Key Research and Development Project(231111230200)。
文摘Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to study its effect on the oxidation resistance, apparent porosity, bulk density, elastic modulus, and modulus of rupture. It is found that Al_(4)SiC_(4) can be synthesized by microwave sintering at 1 300 ℃ and the addition of Al_(4)SiC_(4)-containing material as an antioxidant can enhance the oxidation resistance of the magnesia carbon refractory brick.
文摘This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage.
基金supported in part by National High Technology Research and Development Program (2015AA034204)the National Natural Science Foundation of China (51472044)
文摘Conventionally, an experimentally determined phase diagram requires studies of phase formation at a range of temperatures for each composition, which takes years of effort from multiple research groups. Combinatorial materials chip technology, featuring high-throughput synthesis and characterization, is able to determine the phase diagram of an entire composition spread of a binary or ternary system at a single temperature on one materials library, which, though significantly increasing efficiency, still requires many libraries processed at a series of temperatures in order to complete a phase diagram. In this paper, we propose a "one-chip method" to construct a complete phase diagram by individually synthesizing each pixel step by step with a progressive pulse of energy to heat at different temperatures while monitoring the phase evolution on the pixel in situ in real time. Repeating this process pixel by pixel throughout the whole chip allows the entire binary or ternary phase diagram to be mapped on one chip in a single experiment. The feasibility of this methodology is demonstrated in a study of a Ge-Sb-Te ternary alloy system, on which the amorphouscrystalline phase boundary is determined.
基金National Natural Science Foundation of China (29674915, 29844001).
文摘This paper describes a combinatorial Synthesis of the Mannich Bases in Solution through the Mannich reaction using 3 ketones, 5 amines and formaldehyde in solution and hydrochloride as a catalyst and then using a macroporous quarterized ammonium resin (CO32- form) as a scavenge agent to remove the acid catalyst when the Mannich reaction is completed. It was found by GC/MS analysis that the symmetrical ketone, such as acetone, in the Mannich reaction mainly produces one Mannich base; while the asymmetrical ketone, such as 2-pentanone, gives two Mannich bases. The reactivity depends on the tereo-hinder of both ketones and amines.
文摘Microwave-assisted synthesis of gold and silver nanoparticles, as a function of Green Chemistry, non Green Chemistry, and four applicator types are reported. The applicator types are Domestic microwave ovens, commercial temperature controlled microwave chemistry ovens (TCMC), digesters, and axial field helical antennae. For each of these microwave applicators the process energy budget where estimated (Watts multiplied by process time = kJ) and energy density (applied energy divided by suspension volume = kJ·ml<sup>-1</sup>) range between 180 ± 176.8 kJ, and 79.5 ± 79 kJ·ml<sup>-1</sup>, respectively. The axial field helical field an-tenna applicator is found to be the most energy efficient (0.253 kJ·m<sup>-1</sup> per kJ, at 36 W). Followed by microwave ovens (4.47 ± 3.9 kJ·ml<sup>-1</sup> per 76.83 ± 39 kJ), and TCMC ovens (2.86 ± 2.3 kJ·m<sup>-1</sup> per 343 ± 321.5 kJ). The digester applicators have the least energy efficiency (36.2 ± 50.7 kJ·m<sup>-1</sup> per 1010 ± 620 kJ). A comparison with reconstructed ‘non-thermal’ microwave oven inactivation microorganism experiments yields a power-law signature of n = 0.846 (R<sup>2</sup> = 0.7923) four orders of magnitude. The paper provides a discussion on the Au and Ag nanoparticle chemistry and bio-chemistry synthesis aspects of the microwave applicator energy datasets and variation within each dataset. The visual and analytical approach within the energy phase-space projection enables a nanoparticle synthesis route to be systematically characterized, and where changes to the synthesis are to be mapped and compared directly with historical datasets. In order to help identify lower cost nanoparticle synthesis, in addition to potentially reduce synthesis energy to routes informed changes to potentially reduce synthesis energy budget, along with nanoparticle morphology and yield.
文摘Microwave irradiation is considered an important approach to Green Chemistry, because of its ability to rapidly increase the internal temperature of polar-organic compounds that lead to synthesis times of minutes rather than hours when compared to conventional thermal heating. This works describes a dual allometry test for the discrimination between the solvents and reagents used in the microwave-assisted synthesis of transition metal (zinc oxide, palladium silver, platinum, and gold) nanostructures. The test is performed in log-log process energy phase-space projection, where the synthesis data (kJ against kJ·mol<sup>-1</sup>) has a power-law signature. The test is shown to discriminate between recommended Green Chemistry, problematic Green Chemistry, and Green Chemistry hazardous solvents. Typically, recommended Green chemistry exhibits a broad y-axes distribution within an upper exponent = 1 and lower exponent = 0.5. Problematic Green Chemistry exhibits a y-axes narrower distribution with an upper exponent = 0.94 and lower exponent = 0.64. Non-Green Chemistry hazardous data exhibits a further narrowing of the y-axes distribution within upper exponent = 0.87 and lower exponent = 0.66. In all three cases, the y-axes is aligned to original database power-law signature. It is also shown that in the x-axes direction (process energy budget) the grouped order of magnitude decreases from four orders for recommended Green Chemistry solvent and reagent data, through two orders for non-Green Chemistry hazardous material and down to one order for problematic Green Chemistry.
文摘A power-law (y = cx<sup>n</sup>) signature between process energy budget (kJ) and process energy density (kJ·ml<sup>-1</sup>) of microwave-assisted synthesis of silver and gold nanostructures has been recently described [Law and Denis. AJAC, 14(4), 149-174, (2023)]. This study explores this relation further for palladium, platinum, and zinc oxide nanostructures. Parametric cluster analysis and statistical analysis is used to test the power-law signature of over four orders of magnitude as a function of six microwave applicator-types metal precursor, non-Green Chemistry synthesis and claimed Green Chemistry. It is found that for the claimed Green Chemistry, process energy budget ranges from 0.291 to 900 kJ, with a residual error ranging between −33 to +25.9 kJ·ml<sup>-1</sup>. The non-Green Chemistry synthesis has a higher process energy budget range from 3.2 kJ to 3.3 MJ, with a residual error of −33.3 to +245.3 kJ·ml<sup>-1</sup>. It is also found that the energy profile over time produced by software controlled digestion applicators is poorly reported which leads to residual error problematic outliers that produce possible phase-transition in the power-law signature. The original Au and Ag database and new Pd, Pt and ZnO database (with and without problematic outliers) yield a global microwave-assisted synthesis power-law signature constants of c = 0.7172 ± 0.3214 kJ·ml<sup>-1</sup> at x-axes = 0.001 kJ, and the exponent, n = 0.791 ± 0.055. The information in this study is aimed to understand variations in historical microwave-assisted synthesis processes, and develop new scale-out synthesis through process intensification.
文摘A new cyclometalated iridium(IlI) complex Ir(DPP)3 (DPP=2,3-diphenylpyrazine) was prepared by reaction of DPP with iridium trichloride hydrate under microwave irradiation. The structure of the complex was confirmed by elemental analysis, ^1H NMR, and mass spectroscopy. The UV-Vis absorption and photoluminescent properties of the complex were investigated. The complex shows strong ^1MLCT (singlet metal to ligand charge-transfer) and aMLCT (triplet metal to ligand charge-transfer) absorption at 382 and 504 nm, respectively. The complex also shows strong photoluminescence at 573 nm at room temperature. These results suggest the complex to be a promising phosphorescent material.
基金the Natural Science Foundation of China(No.20272047,20572086)the Natural Science Foundation of Gansu Province(No.3ZS051-A25-001)Key Laboratory of Eco-Environment-Related Polymer Material(Northwest Normal University),Ministry of Education of China.
文摘Fifteen dihydropyrimidinthiones have been synthesized by microwave-assisted Biginelli reactions without any solvent or catalyst. The advantages of this novel protocol include the excellent yield, operational simplicity, short time and the avoidance of the use of organic solvents and catalysts.
文摘The rapid synthesis of 3-bromocarbarole-N-acetic acid was performed using microwave irradiation. Under the optimal conditions the yield was 85.6% . The crystal structure showed that the carboxylic groups form bifurcated hydrogen bonds and the hydroxyl oxygen atoms serve as proton donors and also acceptor. Each carboxylic group was involved in four hydrogen bonds. The package of crystal was dominated by links of these hydrogen bonds.
基金Project supported by the National Natural Science Foundation of China(22165031,21761034)NationalUndergraduate Innovation and Entrepreneurship Foundation(202210673034)Scientific Research Foundation of Education Departmentof Yunnan province(2022Y001)。
文摘At present,with the increasing application needs of phosphor-converted white light-emitting diode(wLED),the synthetic efficiency and thermal stability of phosphor become urgent problems.Herein,this research reports a microwave-assisted fast synthesis approach to obtain a Sm^(3+)-activated borotellurate Na_(2)Y_(2)TeO_(4)(BO_(3))_(2)(NYTB)red phosphor with high crystallinity,excellent thermostability,and low chromaticity shift.For the NYTB-based phosphor,in contrast to the conventional solid-state synthesis,the microwave-assisted synthesis method involves lower synthesis temperature and shorter processing time.Additionally,the concentration quenching mechanism was determined.The w-LED device packaged with the studied phosphor exhibits a near-standard white light with proper CCT and high Ra parameters.
基金NNSA's Laboratory Directed Research andDevelopment ProgramCenter forIntegrated Nanotechnologies,an Office ofScience User Facility operated for theU.S.Department of Energy(DOE)Officeof Science by Los Alamos NationalLaboratory,Grant/Award Number:89233218CNA000001+5 种基金Sandia NationalLaboratories,Grant/Award Number:DENA0003525U.S.Department of Energy,Office of Science,Basic Energy Sciences,Materials Science and EngineeringDivisionArgonne National LaboratoryU.S.DOE Office of Science-Basic Energy Sciences,Grant/Award Number:DEAC02-06CH11357Center for NanophaseMaterials SciencesACS PetroleumResearch Fund under Doctoral NewInvestigator Grant,Grant/Award Number:62603-DNI10。
文摘Developing novel lead-free ferroelectric materials is crucial for next-generationmicroelectronic technologies that are energy efficient and environmentfriendly.However,materials discovery and property optimization are typicallytime-consuming due to the limited throughput of traditional synthesismethods.In this work,we use a high-throughput combinatorial synthesisapproach to fabricate lead-free ferroelectric superlattices and solid solutions of(Ba_(0.7)Ca_(0.3))TiO_(3)(BCT)and Ba(Zr_(0.2)Ti_(0.8))O_(3)(BZT)phases with continuous variationof composition and layer thickness.High-resolution x-ray diffraction(XRD)and analytical scanning transmission electron microscopy(STEM)demonstratehigh film quality and well-controlled compositional gradients.Ferroelectricand dielectric property measurements identify the“optimal propertypoint”achieved at the composition of 48BZT–52BCT.Displacement vectormaps reveal that ferroelectric domain sizes are tunable by varying{BCT–BZT}Nsuperlattice geometry.This high-throughput synthesis approach can be appliedto many other material systems to expedite new materials discovery and properties optimization,allowing for the exploration of a large area of phasespace within a single growth.
基金National Natural Science Foundation of China (Grant No.20910094) Ministry of Education of China(Grant No.200800010078)
文摘An optimized approach for the synthesis of N^1-ethoxymethyl-substituted cyclic inosine diphosphoribose(cIDPRE),an analogue of cyclic adenosine diphosphoribose(cADPR),has been developed via microwave-assisted intramolecular cyclization. The target compound has been successfully obtained through N^1-substitution,phosphorylation,cyclization and deprotection.By using this method,8-amino and bromo-substituted cIDPRE analogues were successfully obtained in good yield.The new approach has greatly shortened the synthetic route and enhanced the overall efficiency.
基金financially supported by the National Key Research and Development Program of China(No.2017YFE0115900)the Natural Science Foundation of China(No.51872254)Yangzhou City-Yangzhou University Cooperation Foundation(No.YZU201801)。
文摘Hydrothermal methods are widely used in chemical synthesis of target products with specific morphology and nanostructure.Those methods are very efficient for the preparation of well-controlled structures but the reaction time is usually long.The assistance of microwave makes the reaction system heat up faster,more uniformly and reactions are accelerated,it also can be utilized to change the morphology or structure of materials,which improves the physic-chemical properties of synthesized products and influences its gas-sensing performance.Copper oxide(CuO)is widely applied in semiconductor gas sensors because of its good reactivity and stability.This review article briefly introduces the principle,mechanism and recent development of CuO nanostructures obtained by microwave-as sis ted hydrothermal synthesis(MWHS)process.It also discussed the relation between endopathic factors of material and its gas-sensitive performance.The technical challenges and prospective solutions for highperformance CuO-based gas-sensitive materials with unique nanostructure are proposed.It is pointed out that the hierarchical CuO-based nanostructures and their composite materials prepared by MWHS process are efficacious methods to improve the gas-sensitive performance of the materials.On the basis of the morphology,the materials are divided into nanorods,nanoflowers,nanosheets,nanospheres and other nanostructures.The influence of microwave parameters on the properties of synthetic products is analyzed.The influence followed by metal element loading on the structure and properties of CuO-based materials by MWHS process is further discussed.Then this review summarizes the research progress of graphene-CuO and metal oxide-CuO composites prepared by MWHS process in recent years.
文摘Based on the binding mode for hydrouracil in photosystem II (PS II) Dl protein, a general method for the solid phase combinatorial synthesis of hydrouracil library was developed. The acryloyl chloride or acid were coupled to Wang resin1 to afford the acryloyl ester2. Resin bound ester2 reacted with various primary amines to give secondary amines3, which were converted to the resin bound ureas4 by treatment with isocyanates. Preparation of the hydrouracils5 was achieved by the acidic cyclization-cleavage from the resin. For characterization purposes,8 hydrouracil analogues were synthesized in parallel, following which a small library of9 hydrouracil derivatives was prepared after cleavage from Wang resin. All the9 bydrouracil derivatives desired were identified by GCMS.
基金the National Nature Science Foundation of Hubei Province(No.2008CDB016)the Scientific Research Fund of Hubei Provincial Education Department(No.D20111904)
文摘A facile microwave-assisted procedure for synthesis of novel fluorinated pyrazolo[3,4-d]pyrimidine derivatives containing 1,3,4-thiadiazole is described. This protocol presented such advantages as short reaction time, high yields, simple purification and environmentally benign procedures. Their antitumor activities were evaluated against HL-60 by an MTT assay. The preliminary results indicated that some title compounds exhibit more potent antitumor inhibitory activity than doxorubicin (DOX).
基金supported by the National Natural Science Foundation of China(21101148,21371165,51372242,21210001,21471144)the National Natural Science Foundation for Creative Research Group(21221061)Jilin Province Youth Foundation(201201005,201201008)
文摘Nanoscale europium(Ⅲ) metal-organic frameworks, Eu(BTC)(H20).DMF, were synthesized by rapid microwave-assisted method. The components of the as-prepared products were confirmed by the elemental analysis, X-ray powder diffraction (XRD), thermal gravimetric analysis (TGA) and Fourier-transform infrared spectra (FTIR) analyses. Eu(BTC)(H20).DMF with various morphologies, including particle-like, rod-like, straw-sheaf-like nanostructures, could be simply prepared by con- trolling the concentrations of the starting reactants. The optical measurements on the obtained Eu(BTC)(H20)- DMF indicated that all the nanomaterials show the characteristic emissions of the Eu3+ ions at 578, 590, 612, 650, and 699 nm, which were at- tributed to 5Do→7FJ (J=0-4) transitions of the Eu3+ ion, respectively. It was also noticed that the luminescent properties of the as-prepared products were heavily dependent on the morphologies and sizes of the nanomaterials. The assembled straw-sheaf-like architectures displayed the strongest emissions and the longest luminescence lifetime, which was mainly due to the fewest surface defects.