期刊文献+
共找到15,684篇文章
< 1 2 250 >
每页显示 20 50 100
Pressured Microwave-assisted Hydrolysis of Crude Glycyrrhizic Acid for Preparation of Glycyrrhetinic Acid
1
作者 王仁敏 林婵 +3 位作者 刘晶靓 余方 高建培 潘学军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2012年第1期152-157,共6页
A pressured microwave-assisted hydrolysis (PMAH) technique has been developed for hydrolyzing the crude glycyrrhizic acid (GA) extracted from licorice root to prepare glycyrrhetinic acid (GRA). In order to optim... A pressured microwave-assisted hydrolysis (PMAH) technique has been developed for hydrolyzing the crude glycyrrhizic acid (GA) extracted from licorice root to prepare glycyrrhetinic acid (GRA). In order to optimize the efficiency of PMAH, several experimental parameters were investigated, including liquid-solid ratio, hydrolysis time, sulfuric acid concentration and hydrolysis temperature. The optimized hydrolysis conditions were as follows:pressured microwave-assisted hydrolysis of crude GA for 21 min (taking 15 min to reach 150 ℃, and holding it for 6 rain) at 150 ℃ (at a radiation power of 450 W) in 3%-5% sulfuric acid solution with the liquid-solid (ml.g-1 crude GA) ratio of 25 : 1. As a result of the considerable saving in time and higher product yields (up to 90%), PMAH was proved more effective than conventional methods. 展开更多
关键词 glycyrrhetinic acid glycyrrhizic acid licorice root pressured microwave-assisted hydrolysis highperformance liquid chromatography
下载PDF
Integration of morphology and electronic structure modulation on cobalt phosphide nanosheets to boost photocatalytic hydrogen evolution from ammonia borane hydrolysis 被引量:2
2
作者 Chao Wan Yu Liang +5 位作者 Liu Zhou Jindou Huang Jiapei Wang Fengqiu Chen Xiaoli Zhan Dang-guo Cheng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第2期333-343,共11页
The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for ... The controllable and safe hydrogen storage technologies are widely recognized as the main bottleneck for the accomplishment of sustainable hydrogen energy.Ammonia borane(AB)has regarded as a competitive candidate for chemical hydrogen storage.However,developing efficient yet high-performance catalysts towards hydrogen evolution from AB hydrolysis remains an enormous challenge.Herein,cobalt phosphide nanosheets are synthesized by a facile salt-assisted along with low-temperature phosphidation strategy for simultaneously modulating its morphology and electronic structure,and function as hydrogen evolution photocatalysts.Impressively,the Co_(2)P nanosheets display extraordinary performance with a record high turnover frequency of 44.9 min^(-1),outperforming most of the noble-metal-free catalysts reported to date.This remarkable performance is attributed to its desired nanosheets structure,featuring with high specific surface area,abundant exposed active sites,and short charge diffusion paths.Our findings provide a novel strategy for regulating metal phosphides with desired phase structure and morphology for energy-related applications and beyond. 展开更多
关键词 Ammonia borane Hydrogen generation hydrolysis Cobalt phosphide nanosheets PHOTOCATALYSIS
下载PDF
Research progress on catalysts for organic sulfur hydrolysis: Review of activity and stability
3
作者 Bingning Wang Xianzhe Wang +3 位作者 Song Yang Chao Yang Huiling Fan Ju Shangguan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期203-216,共14页
The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology o... The removal of organic sulfur through catalytic hydrolysis is a significant area of research in the field of desulfurization.This review provides an overview of recent advancements in catalytic hydrolysis technology of organic sulfur,including the activity,stability,and atmosphere effects of hydrolysis catalysts.The emphasis is on strategies for enhancing hydrolysis activity and anti-oxygen poisoning property of catalysts.Surface modification,metal doping and nitrogen doping have been found to improve the activity of catalysts.Alkaline components modification is the most commonly used method,the formation of oxygen vacancies through metal doping and creation of nitrogen basic sites through nitrogen doping also contribute to the hydrolysis of organic sulfur.The strategies for anti-oxygen poisoning are discussed in a systematic manner.The structural regulation of catalysts is beneficial for the desorption and diffusion of hydrogen sulfide(H_(2)S),thereby effectively inhibiting its oxidation.Nitrogen doping and the addition of electronic promoters such as transition metals can protect active sites and decrease the number of active oxygen species.These methods have been proven to enhance the anti-poisoning performance of catalysts.Additionally,this article summarizes how different atmospheres affect the activity of hydrolysis catalysts.The objective of this review is to pave the way for the development of efficient,stable and widely used catalysts for organic sulfur hydrolysis. 展开更多
关键词 Organic sulfur hydrolysis CATALYSTS ACTIVITY STABILITY
下载PDF
CAOSA-extracted lignin improves enzymatic hydrolysis of cellulose
4
作者 Sen Ma Zheng Li +5 位作者 Jonathan Sperry Xing Tang Yong Sun Lu Lin Jian Liu Xianhai Zeng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第7期1101-1111,共11页
The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a ke... The conversion of biomass into sugar platform compounds is very important for the biorefinery industry.Pretreatment is essential to the biomass of the sugar platform,however,the lignin obtained by pretreatment,as a key part of lignocellulose,generally has a passive effect on the enzymatic hydrolysis of cellulose into sugars.In this study,p-TsOH(p-toluenesulfonic acid),DES(Deep eutectic solvent)and CAOSA(cooking with active oxygen and solid alkali)pretreatment ways were used to fraction lignin from bamboo biomass.After CAOSA treatment,the hydrolysis efficiency of the pulp was 95.57%.Moreover,the effect of different treatment methods on lignin properties was studied and the promotion effect of lignin was investigated by adding it to the cellulose enzymatic hydrolysis system.In this work,the results showed that CAOSA-extracted lignin with lower D(1.31-1.25)had a better adsorption effect on the enzyme protein.p-TsOH-extracted lignin with a larger S/G ratio enhanced the inhibition of enzymatic hydrolysis.In addition,the presence of-COOHs in lignin could reduce its inhibitory effect on cellulose saccharification. 展开更多
关键词 Biomass pretreatment CAOSA Cellulose hydrolysis LIGNIN ENZYME
下载PDF
An efficient and mild recycling of waste melamine formaldehyde foams by alkaline hydrolysis
5
作者 Shaodi Wu Ning Zhang +7 位作者 Chizhou Wang Xianglin Hou Jie Zhao Shiyu Jia Jiancheng Zhao Xiaojing Cui Haibo Jin Tiansheng Deng 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第5期919-926,共8页
Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditi... Melamine formaldehyde foam(MFF)generates many poisonous chemicals through the traditional recycling methods for organic resin wastes.Herein,a high MFF degradation ratio of ca.97 wt.%was achieved under the mild conditions(160℃)in a NaOH–H2O system with ammelide and ammeline as the main degradation products.The alkaline solvent had an obvious corrosion effect for MFF,as indicated by scanning electron microscopy(SEM).The reaction process and products distribution were studied by Fourier-transform infrared spectroscopy(FTIR),X-ray photoelectron spectroscopy(XPS),and ^(13)C nuclear magnetic resonance(NMR).Besides,the MFF degradation products that have the similar chemical structures and bonding performances to those of melamine can be directly used as the raw material for synthesis of melamine urea-formaldehyde resins(MUFs).Moreover,the degradation system demonstrated here showed the high degradation efficiency after reusing for 7 times.The degradation process generated few harmful pollutants and no pre-or post-treatments were required,which proves its feasibility in the safe removal or recovery of waste MFF. 展开更多
关键词 Melamine formaldehyde foam Degradation Alkaline hydrolysis RECYCLING
下载PDF
Utlra-fast hydrolysis performance of MgH_(2) catalyzed by Ti-Zr-Fe-Mn-Cr-V high-entropy alloys
6
作者 Jinting Chen Tingting Xu +7 位作者 Zeyu Zhang Jinghan Zhang Haixiang Huang Bogu Liu Yawei Li Jianguang Yuan Bao Zhang Ying Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期77-86,共10页
Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolys... Hydrogen energy is one of the ideal energy alternatives and the upstream of the hydrogen industry chain is hydrogen production,which can be achieved via the reaction of inorganic materials with water,known as hydrolysis.Among inorganic materials,the high hydrogen capacity for hydrolysis of MgH_(2)(15.2 wt%)makes it a promising material for hydrogen production via hydrolysis.However,the dense Mg(OH)_(2) passivation layer will block the reaction between MgH_(2) and the solution,resulting in low hydrogen yield and sluggish hydrolysis kinetics.In this work,the hydrogenyield and hydrogen generation rate of MgH_(2) are considerably enhanced by adding Ti-Zr-Fe-Mn-Cr-V high-entropy alloys(HEAs) for the first time.In particular.the MgH_(2)-3 wt% TiZrFe_(1.5)MnCrV_(0.5)(labelled as MgH_(2)-3 wt% Fe_(1.5)) composite releases 1526.70 mL/g H_(2) within 5 min at 40℃,and the final hydrolysis conversion rate reaches 95.62% within 10 min.The mean hydrogen generation rate of the MgH_(2)-3 wt% Fe_(1.5) composite is 289.16 mL/g/min,which is 2.38 times faster than that of pure MgH_(2).Meanwhile,the activation energy of the MgH_(2)-3 wt% Fe_(1.5) composite is calculated to be 12.53 kJ/mol. The density functional theory(DFT) calculation reveals that the addition of HEAs weakens the Mg-H bonds and accelerates the electron transfer between MgH_(2) and HEAs,Combined with the cocktail effect of HEAs as well as the formation of more interfaces and micro protocells,the hydrolysis performance of MgH_(2) is considerably improved.This work provides an appealing prospect for real-time hydrogen supply and offers a new effective strategy for improving the hydrolysis performance of MgH_(2). 展开更多
关键词 Mg-based materials High-entropy alloys hydrolysis Hydrogen generation Cocktail effect CATALYSIS
下载PDF
Mass-Based Environmental Factor and Energy Assessment of Microwave-Assisted Synthesized Transition Metal Nanostructures
7
作者 Victor J. Law 《American Journal of Analytical Chemistry》 CAS 2024年第6期201-218,共18页
This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy... This paper describes mass-based energy phase-space projection of microwave-assisted synthesis of transition metals (zinc oxide, palladium, silver, platinum, and gold) nanostructures. The projection uses process energy budget (measured in kJ) on the horizontal axes and process density (measured in kJg−1) on the vertical axes. These two axes allow both mass usage efficiency (Environmental-Factor) and energy efficiency to be evaluated for a range of microwave applicator and metal synthesis. The metrics are allied to the: second, sixth and eleventh principle of the twelve principle of Green Chemistry. This analytical approach to microwave synthesis (widely considered as a useful Green Chemistry energy source) allows a quantified dynamic environmental quotient to be given to renewable plant-based biomass associated with the reduction of the metal precursors. Thus allowing a degree of quantification of claimed “eco-friendly” and “sustainable” synthesis with regard to waste production and energy usage. 展开更多
关键词 microwave-assisted Synthesis Transition Metals Nanostructures Allometry Scaling Power-Law Signature Green Chemistry
下载PDF
Microwave-assisted Synthesis of Al_(4)SiC_(4) and Its Effect on Properties of MgO-C Refractories
8
作者 WANG Li LIU Shijie +7 位作者 WEI Haoyu GUO Yanyan GENG Shangrui YAN Miaoxin QIN Feng GUO Yusen Ma Juanjuan DONG Binbin 《China's Refractories》 CAS 2024年第1期14-17,共4页
Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to ... Al_(4)SiC_(4) was synthesized from Al powder, silicon carbide, and graphite by microwave sintering, and characterized by XRD and SEM. Then the synthesized material was added to the magnesia carbon refractory brick to study its effect on the oxidation resistance, apparent porosity, bulk density, elastic modulus, and modulus of rupture. It is found that Al_(4)SiC_(4) can be synthesized by microwave sintering at 1 300 ℃ and the addition of Al_(4)SiC_(4)-containing material as an antioxidant can enhance the oxidation resistance of the magnesia carbon refractory brick. 展开更多
关键词 microwave-assisted synthesis Al_(4)SiC_(4) MgO-C refractories oxidation resistance
下载PDF
In situ formed Mg(BH_(4))_(2) for improving hydrolysis properties of MgH_(2)
9
作者 Yongyang Zhu Mili Liu +6 位作者 liming Zeng Yin Wang Daifeng Wu Rui Li Qing Zhou Renheng Tang Fangming Xiao 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1204-1214,共11页
The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O... The hydrolysis of MgH_(2) delivers high hydrogen capacity(15.2 wt%),which is very attractive for real-time hydrogen supply.However,the formation of a surface passivation Mg(OH)_(2) layer and the large excess of H_(2)O required to ensure complete hydrolysis are two key challenges for the MgH_(2) hydrolysis systems.Now,a low-cost method is reported to synthesize MgH_(2)@Mg(BH_(4))_(2) composite via ball-milling MgH_(2) with cheap and widely available B_(2)O_(3)(or B(OH)_(3)).By adding small amounts of B_(2)O_(3),the in-situ formed Mg(BH_(4))_(2) could significantly promote the hydrolysis of MgH_(2).In particular,the MgH_(2)–10 wt%B_(2)O_(3) composite releases 1330.7 mL·g^(−1) H_(2)(close to 80%theoretical hydrogen generation H_(2))in H_(2)O and 1520.4 mL·g^(−1) H_(2)(about 95%)in 0.5 M MgCl_(2) in 60 min at 26℃ with hydrolysis rate of 736.9 mL·g^(−1)·min^(−1) and 960.9 mL·g^(−1)·min^(−1) H_(2) during the first minute of the hydrolysis,respectively.In addition,the MgCl_(2) solution allows repeated use by filtering and exhibits high cycle stability(20 cycles),therefore leading to much reduced capacity loss caused by the excess H_(2)O.We show that by introducing B_(2)O_(3) and recycling the 0.5 M MgCl_(2) solution,the system hydrogen capacity can approach 5.9 wt%,providing a promising hydrogen generation scheme to supply hydrogen to the fuel cells. 展开更多
关键词 hydrolysis MgH_(2) Mg(BH_(4))_(2) Hydrogen generation B_(2)O_(3) MgCl_(2)
下载PDF
Effect of microwave-assisted acidification on the microstructure of coal:XRD,^(1)H-NMR, and SEM studies 被引量:4
10
作者 He Li Wuche Liu +5 位作者 Jiexin Lu Yi Lu Shiliang Shi Zheng Wang Qing Ye Zhenzhen Jia 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第7期919-926,共8页
Microwave heating contributes to coal fracturing and gas desorption. However, problems of low penetration depth, local overheating and fracture closure exist. Coal demineralisation by acids has advantages in coal unbl... Microwave heating contributes to coal fracturing and gas desorption. However, problems of low penetration depth, local overheating and fracture closure exist. Coal demineralisation by acids has advantages in coal unblocking and permeability improvement, while it is difficult for acid to enter microcracks.Microwave-asisted acidification may offer an alternative. In this work, XRD,^(1)H-NMR, and SEM were used to evaluate the effect of microwave-assisted acidification on the microstructure of coal. Results show that kaolinite, calcite, and dolomite can be dissolved by acid. After microwave irradiation, the graphitization of microcrystalline structure of carbon improves. Microwave-assisted acidification erodes minerals in coal and enhances the graphitization degree of microcrystalline structure. Compared to individual microwave irradiation or acidification, the pore volume and pore connectivity can be greatly enhanced by microwave-assisted acidification. The NMR permeability of coal increased by 28.05%. This study demonstrates the potential of microwave-assisted acidification for coalbed methane recovery. 展开更多
关键词 microwave-assisted acidification MICROSTRUCTURE XRD ^(1)H-NMR SEM
下载PDF
Structural and antioxidative properties of royal jelly protein by partial enzymatic hydrolysis 被引量:3
11
作者 Shanshan Li Lingchen Tao +3 位作者 Shiqin Peng Xinyu Yu Xiaobin Ma Fuliang Hu 《Food Science and Human Wellness》 SCIE CSCD 2023年第5期1820-1827,共8页
The objective of this study was to investigate the structural and antioxidative properties of royal jelly protein(RJP)at different degrees of hydrolysis(DH)by partial enzymatic hydrolysis. RJP was hydrolyzed by alcala... The objective of this study was to investigate the structural and antioxidative properties of royal jelly protein(RJP)at different degrees of hydrolysis(DH)by partial enzymatic hydrolysis. RJP was hydrolyzed by alcalase for 0 min, 15 min, 1 h, 5 h and 8 h to obtain hydrolysates at DH of 5.34%, 11.65%, 15.19%, 21.38% and 23.91%, respectively. With the increased DH, the RJP hydrolysates showed elevated antioxidative activities. The molecular weight of RJP hydrolysates was significantly decreased but their primary backbone kept unchanged. Analysis of circular dichroism spectra revealed that the enzymolysis reduced the content of α-helix but increased the contents of β-sheet, β-turn and random coil. Meanwhile, the surface hydrophobicity and fluorescence intensity of RJP hydrolysates were decreased and a red shift occurred. As the enzymolysis continued, the surface morphology of RJP was gradually changed from a sheet-like structure into microparticles. Changes in antioxidative activities and structures generally followed a DH-dependent manner, however these changes became insignificant for samples at DH beyond 20%. Taking into consideration of both effectiveness and productivity, the optimum enzymatic duration was determined at 5 h. 展开更多
关键词 Royal jelly protein Acalase Enzymatic hydrolysis Antioxidative activity STRUCTURE
下载PDF
Enzymatic hydrolysis of silkworm pupa and its allergenicity evaluation by animal model with different immunization routes 被引量:3
12
作者 Yan Dai Meijia Huang +7 位作者 Yujuan Xu Lixia Mu Jingyan Gao Hongbing Chen Zhihua Wu Anshu Yang Yong Wu Xin Li 《Food Science and Human Wellness》 SCIE CSCD 2023年第3期774-782,共9页
Silkworm pupa is a nourishing food with high nutritional value,but its consumption has been greatly limited given its allergenicity.Enzyme hydrolytic technique is recognized as an effective method to reduce the allerg... Silkworm pupa is a nourishing food with high nutritional value,but its consumption has been greatly limited given its allergenicity.Enzyme hydrolytic technique is recognized as an effective method to reduce the allergenicity of protein.In this study,we aimed to investigate the effect of enzymolysis on the allergenicity of silkworm pupa.Crude silkworm pupa protein was extracted through alkali extraction and acid precipitation,which included 5 proteins with the molecular weights ranging from 34 kDa to 76 kDa,and silkworm pupa were then hydrolyzed by alkaline protease.The allergenicity of silkworm pupa protein and its enzymatic hydrolysates was evaluated by establishing BALB/c mice model,and the mice were immunized via intragastric gavage and intraperitoneal injection,respectively.The results indicated that the intraperitoneal inj ection immunization route induced more by detecting with antibodies,histamine and Th2-related cytokines.Moreover,mice treated with silkworm pupa protein peptide displayed no obvious allergic symptoms,indicating that enzyme hydrolytic technique could significantly reduce the allergenicity of silkworm pupa. 展开更多
关键词 Silkworm pupa Silkworm pupa peptides Enzymatic hydrolysis ALLERGENICITY IMMUNIZATION Animal model
下载PDF
Gradient Si-and Ti-doped Fe_(2)O_(3) hierarchical homojunction photoanode for efficient solar water splitting:Effect of facile microwave-assisted growth of Si-FeOOH on Ti-FeOOH nanocorals 被引量:1
13
作者 Tae Sik Koh Periyasamy Anushkkaran +3 位作者 Weon-Sik Chae Hyun Hwi Lee Sun Hee Choi Jum Suk Jang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期27-37,I0002,共12页
The construction of a homojunction is an effective approach for addressing issues such as slow charge separation and charge-transfer kinetics in photoanodes.In the present work,we designed a gradient Si-and Ti-doped F... The construction of a homojunction is an effective approach for addressing issues such as slow charge separation and charge-transfer kinetics in photoanodes.In the present work,we designed a gradient Si-and Ti-doped Fe_(2)O_(3) homojunction photoanode to improve the photoelectrochemical(PEC)performance of a Ti-doped Fe_(2)O_(3) photoanode.Ti-FeOOH nanocorals were synthesized using a hydrothermal process,and Si-FeOOH was grown on Ti-FeOOH nanocorals using a rapid and facile microwaveassisted(MW)technique.By varying the MW irradiation time,the thickness of the Si/Ti:Fe_(2)O_(3) photoanode was adjusted and an optimized 3-Si/Ti:Fe_(2)O_(3) photoelectrode was achieved with a significantly enhanced photocurrent density(1.37 mA cm^(-2) at 1.23 V vs.RHE)and a cathodic shift of the onset potential(150 mV)compared with that of bare Ti-Fe_(2)O_(3).This enhanced PEC performance can be ascribed to homojunction formation and Si gradient doping.The Si dopant increased the donor concentration and the formation of a homojunction improved the intrinsic built-in electric field,thereby promoting charge separation and charge transfer.Furthermore,the as-formed homojunction passivated the surfacetrapping states,consequently improving the charge transfer efficiency(60%at 1.23 VRHE)at the photoanode/electrolyte interface.These findings could pave the way for the microwave-assisted fabrication of diverse efficient homojunction photoanodes for PEC water splitting applications. 展开更多
关键词 HOMOJUNCTION microwave-assisted Hematite Gradient doping PEC water splitting
下载PDF
Oxygen vacancy defects engineering on Cu-doped Co_(3)O_(4) for promoting effective COS hydrolysis 被引量:3
14
作者 Guanyu Mu Yan Zeng +5 位作者 Yong Zheng Yanning Cao Fujian Liu Shijing Liang Yingying Zhan Lilong Jiang 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第3期831-841,共11页
The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of... The activation of H_(2)O is a key step of the COS hydrolysis,which may be tuned by oxygen vacancy defects in the catalysts.Herein,we have introduced Cu into Co_(3)O_(4) to regulate the oxygen vacancy defect content of the catalysts.In situ DRIFTS and XPS spectra reveal that COS and H_(2)O are adsorbed and activated by oxygen vacancy.The 10 at%Cu doped Co_(3)O_(4) sample(10Cu-Co_(3)O_(4))exhibits the optimal activity,100%of COS conversion at 70℃.The improved oxygen vacancies of CueCo_(3)O_(4) accelerate the activation of H_(2)O to form active -OH.COS binds with hydroxyl to form the intermediate HSCO^(-)_(2),and then the activated-OH on the oxygen vacancy reacts with HSCO^(-)_(2) to form HCO^(-)_(3).Meanwhile,the catalyst exhibits high catalytic stability because copper species(Cu+/Cu^(2+))redox cycle mitigate the sulfation of Co_(3)O_(4)(Co^(2+)/Co^(3+)).Our work offers a promising approach for the rational design of cobalt-related catalysts in the highly efficient hydrolysis COS process. 展开更多
关键词 Oxygen vacancy COS hydrolysis In situ spectra Cu doped Co_(3)O_(4)
下载PDF
Profiling the effects of microwave-assisted and soxhlet extraction techniques on the physicochemical attributes of Moringa oleifera seed oil and proteins 被引量:1
15
作者 Ngozi Maryann Nebolisa Chukwuebuka Emmanuel Umeyor +2 位作者 Uchenna Eunice Ekpunobi Immaculeta Chikamnele Umeyor Festus Basden Okoye 《Oil Crop Science》 CSCD 2023年第1期16-26,共11页
There is a constant search for biomaterials from natural products like plants for food and industrial applications.The work embodied in this report aimed at investigating the effects of microwave-assisted and soxhlet ... There is a constant search for biomaterials from natural products like plants for food and industrial applications.The work embodied in this report aimed at investigating the effects of microwave-assisted and soxhlet extraction(MAE and SE) techniques on the functional physicochemical quality characteristics of Moringa oleifera seed oil and proteins extracts. M. oleifera seeds were ground to fine powders and oil was extracted by microwave-assisted and soxhlet extraction techniques using petroleum ether. Quality attributes including yield percent, moisture content,iodine, saponification, specific gravity, viscosity, p H, thiobarbituric acid, acid and peroxide values were measured. Mineral and vitamin contents, chemical/functional groups, fatty acid(FA) composition, and reducing power of the oil were evaluated. Metabolomics of protein extracted from the defatted powders were analyzed by nuclear magnetic resonance(NMR). M. oleifera oil from MAE and SE methods had good yield(34.25 ± 0.0%,28.75 ± 0.0%), low moisture content(0.008 ± 0.0%, 0.011 ± 0.0%), non-drying and unsaturated, moderately saponified, less dense(0.91 ± 0.01, 0.92 ± 0.02 g m L^(-1)), had Newtonian flow, were weakly acidic, showed good content of FAs, recorded strong potential for long shelf-life, showed stability against oxidative rancidity and enzymatic hydrolysis, had very rich deposits of micro-and macro-nutrients as well as water-soluble and lipidsoluble vitamins, and functional groups in the oil were reflective of its content of long-and medium-chain triglycerides(LCT and MCT). Monounsaturated and saturated fatty acids(MUFA and SFA) were detected and the oil has excellent ferric ion reducing power. NMR metabolomic assay revealed the presence of nine essential amino acids(EAAs) in the protein extract. MAE technique is a feasible and acceptable alternative for high throughput extraction of M. oleifera oil with high yield and excellent quality attributes. The study revealed that MAE did not impart any remarkable advantage(s) on the physicochemical properties of M. oleifera seed oil and protein compared to SE technique. 展开更多
关键词 Moringa oleifera seed Oil microwave-assisted extraction Soxhlet extraction Quality attributes GC-MS assay Metabolomics Reducing power
下载PDF
Preliminary Study on the Treatment Efficiency of Pasteurized Lime Thermal Alkaline Hydrolysis for Excess Activated Sludge and Reduction of Tetracycline Resistance Genes
16
作者 Maoxia Chen Qixuan Zhou +3 位作者 Jiayue Zhang Jiaoyang Li Wei Zhang Huan Liu 《Journal of Renewable Materials》 EI 2023年第10期3711-3723,共13页
Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in thi... Thermal alkaline hydrolysis is a common pretreatment method for the utilization of excess activated sludge(EAS).Owing to strict environment laws and need for better energy utilization,new methods were developed in this study to improve the efficiency of pretreatment method.Direct thermal hydrolysis(TH),pasteurized thermal hydrolysis(PTH),and alkaline pasteurized thermal hydrolysis(PTH+CaO and PTH+NaOH)methods were used to treat EAS.Each method was compared and analyzed in terms of dissolution in ammonium nitrogen(NH_(4)^(+)-N)and soluble COD(SCOD)in EAS.Furthermore,the removal of tetracycline resistance genes(TRGs)and class 1 transposon gene intI1 from EAS was investigated.The NH_(4)^(+)-N and SCOD concentrations in EAS treated by PTH were 1.24 and 2.58 times higher than those of TH.However,the removal efficiency of total TRGs and intI1 between the groups was comparable.The SCOD concentration of the PTH+NaOH group was 4.37 times higher than that of the PTH group,and the removal efficiency of total TRGs was increased by 9.52%compared with that by PTH.The NH_(4)^(+)-N and SCOD concentrations of the PTH+CaO group could reach 85.04%and 92.14%of the PTH+NaOH group,but the removal efficiency of total TRGs by PTH+CaO was 19.78%lower than that by PTH+NaOH.Thus,to reduce the financial cost in actual operation,lime(CaO)can be used instead of a strong alkali(NaOH),and pasteurized steam at 70℃ instead of conventional high-temperature heating to treat EAS.This study provides a reference for the development of alkaline hydrolysis under moderate temperatures along with the removal of TRGs in EAS. 展开更多
关键词 Excess activated sludge tetracycline resistance genes thermal alkaline hydrolysis LIME pasteurized thermal hydrolysis
下载PDF
Hydrogel-based catalysts for hydrogen generation by the hydrolysis of B–H compounds under external physical fields
17
作者 Chunling Qin Wenliu Wu +4 位作者 Hassanien Gomaa Shuai Wu Cuihua An Qibo Deng Ning Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期518-535,I0011,共19页
Hydrogen is a popular clean high-energy-density fuel.However,its utilization is limited by the challenges toward low-cost hydrogen production and safe hydrogen storage.Fortunately,these issues can be addressed using p... Hydrogen is a popular clean high-energy-density fuel.However,its utilization is limited by the challenges toward low-cost hydrogen production and safe hydrogen storage.Fortunately,these issues can be addressed using promising hydrogen storage materials such as B–H compounds.Hydrogen stored in B–H compounds can be released by hydrolysis at room temperature,which requires catalysts to increase the rate of the reaction.Recently,several effective approaches have been developed for hydrogen generation by catalyzing the hydrolysis of B–H compounds.This review summarizes the existing research on the use of nanoparticles loaded on hydrogels as catalysts for the hydrolysis of B–H compounds.First,the factors affecting the hydrolysis rate,such as temperature,p H,reactant concentration,and type of nano particles,were investigated.Further,the preparation methods(in situ reduction,one-pot method,template adsorption,etc.)for the hydrogel catalysts and the types of loaded catalysts were determined.Additionally,the hydrogel catalysts that can respond to magnetic fields,ultrasound fields,optical fields,and other physical fields are introduced.Finally,the issues and future developments of hydrogel-based catalysts are discussed.This review can inspire deeper investigations and provide guidance for the study of hydrogel catalysts in the field of hydrogen production via hydrolysis. 展开更多
关键词 HYDROGEL Nanoparticlec atalyst B-H compounds hydrolysis reaction External physical field
下载PDF
Effect of acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust in subcritical water
18
作者 Wei Yang Yalun Ma +6 位作者 Xu Zhang Fan Yang Dong Zhang Shengji Wu Huanghu Peng Zezhou Chen Lei Che 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期195-204,共10页
The effects of sulfuric acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust were investigated in this study.Sulfuric acid could act as an acidic catalyst to depolymerize holocellulose th... The effects of sulfuric acid-associated mechanical pretreatment on the hydrolysis behavior of pine sawdust were investigated in this study.Sulfuric acid could act as an acidic catalyst to depolymerize holocellulose through cleavage of the glycosidic bonds,the dissociation energies of which were supplied by the impact of a ball on pine sawdust,during milling.The destruction of glycosidic and hydrogen bonds in pine sawdust resulted in a decrease of crystallinity and an increase of water solubility.The sulfuric acid could promote the hydrolysis of holocellulose and its hydrolysis products.It also destroyed the chemical linkages between holocellulose and lignin during ball milling.The cleavage of chemical linkages with holocellulose made lignin more difficult to hydrolyze in subcritical water,and higher activation energy was needed to hydrolyze pretreated pine sawdust at higher reaction temperatures.It also led to the formation of glucose char and aromatic-linked polymer char from the hydrolysis products of holocellulose. 展开更多
关键词 Acid-associated mechanical pretreatment Subcritical water Pine sawdust hydrolysis behavior Kinetic parameters
下载PDF
Glucosinolates and Their Hydrolysis Products in Arabidopsis thaliana Influence Performance and Feeding Choice of Pieris rapae and Spodoptera exigua
19
作者 Julie A. Kemarly-Dowland Maria Gabriela Bidart 《Advances in Entomology》 2023年第4期285-299,共15页
Glucosinolates and their hydrolysis products, found in plants of the order Brassicales, are well-known for their defensive properties against insect herbivores. Arabidopsis thaliana (Col-0) genetic lines with mutation... Glucosinolates and their hydrolysis products, found in plants of the order Brassicales, are well-known for their defensive properties against insect herbivores. Arabidopsis thaliana (Col-0) genetic lines with mutations that modify the type of glucosinolates (i.e. myb28myb29 and cyp79B2cyp79B3 are deficient in the production of aliphatic and indolyl glucosinolates, respectively) make it possible to test for the specific effects of these secondary chemicals on insect herbivores. The Pad3 mutant (deficient in camalexin), which has a role in resistance to pathogens, was also tested. Likewise, the effects of different glucosinolate hydrolysis products can be evaluated using genetically modified (GM) lines of the wild type Col-0 ecotype, which naturally produces isothiocyanates. These GM lines include the nitrile-producing 35S: ESP and the double knockout tgg1tgg2, which virtually lacks hydrolysis products. In both no-choice and choice experiments, the crucifer specialist Pieris rapae was virtually unaffected by differences in the type of glucosinolates or hydrolysis products. In contrast, the generalist insect Spodoptera exigua had statistically significant increases in pupae/adult weight and faster developmental times when reared on mutants deficient in the production of aliphatic and indolyl glucosinolates and their hydrolysis products. There were no differences in the performance of either insect species when reared on wild type Col-0 or Pad3. Results from feeding choice trials showed that Pieris rapae had no statistically significant preference for any of the genetic lines. In contrast, Spodoptera exigua had a significant feeding preference for the double mutant tgg1tgg2. This study provides evidence that variation in the type of glucosinolates and their hydrolysis products can influence insect performance and feeding choices, and that responses are species-specific. 展开更多
关键词 Arabidopsis thaliana GLUCOSINOLATES hydrolysis Products Specialist and Generalist Insects
下载PDF
Effects of Potassium Ferrate and Low-Temperature Thermal Hydrolysis Co-Pretreatment on the Hydrolysis and Anaerobic Digestion Process of Waste Activated Sludge
20
作者 MA Yingpeng HAO Di +3 位作者 YAO Shuo ZHANG Dahai LI Xianguo FENG Lijuan 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1583-1591,共9页
This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobi... This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobic digestion process.The analytical investigations showed that co-pretreatment significantly facilitated the hydrolysis process of the sludge and contributed to the accumulation of short-chain fatty acids(SCFAs).The pretreatment conditions under the optimal leaching of organic matter from sludge were hydrothermal temperature of 75℃,hydrothermal treatment time of 12 h,and PF dosage of 0.25 g g^(−1)TSS(total suspended solids),according to the results of orthogonal experiments.By pretreatment under proper conditions,the removal rate of soluble chemical oxygen demand(SCOD)achieved 71.8%at the end of fermentation and the removal rate of total phosphorus(TP)was 69.1%.The maximum yield of SCFAs was 750.3 mg L^(−1),7.45 times greater than that of the blank group.Based on the analysis of the anaerobic digestion mechanism,it was indicated that the co-pretreatment could destroy the floc structure on the sludge surface and improve organic matter dissolving,resulting in more soluble organic substances for the acidification process.Furthermore,microbial community research revealed that the main cause of enhanced SCFAs generation was an increase in acidogenic bacteria and a reduction of methanogenic bacteria. 展开更多
关键词 waste activated sludge potassium ferrate low-temperature thermal hydrolysis anaerobic digestion short-chain fatty acids
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部