期刊文献+
共找到911,923篇文章
< 1 2 250 >
每页显示 20 50 100
Drilling-based measuring method for the c-φ parameter of rock and its field application 被引量:3
1
作者 Bei Jiang Fenglin Ma +5 位作者 Qi Wang Hongke Gao Dahu Zhai Yusong Deng Chuanjie Xu Liangdi Yao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第1期65-76,共12页
The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(R... The technology of drilling tests makes it possible to obtain the strength parameter of rock accurately in situ. In this paper, a new rock cutting analysis model that considers the influence of the rock crushing zone(RCZ) is built. The formula for an ultimate cutting force is established based on the limit equilibrium principle. The relationship between digital drilling parameters(DDP) and the c-φ parameter(DDP-cφ formula, where c refers to the cohesion and φ refers to the internal friction angle) is derived, and the response of drilling parameters and cutting ratio to the strength parameters is analyzed. The drillingbased measuring method for the c-φ parameter of rock is constructed. The laboratory verification test is then completed, and the difference in results between the drilling test and the compression test is less than 6%. On this basis, in-situ rock drilling tests in a traffic tunnel and a coal mine roadway are carried out, and the strength parameters of the surrounding rock are effectively tested. The average difference ratio of the results is less than 11%, which verifies the effectiveness of the proposed method for obtaining the strength parameters based on digital drilling. This study provides methodological support for field testing of rock strength parameters. 展开更多
关键词 Digital drilling Rock crushing zone c-u parameter Measurement method field application
下载PDF
ST-LSTM-SA:A New Ocean Sound Velocity Field Prediction Model Based on Deep Learning 被引量:1
2
作者 Hanxiao YUAN Yang LIU +3 位作者 Qiuhua TANG Jie LI Guanxu CHEN Wuxu CAI 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第7期1364-1378,共15页
The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatia... The scarcity of in-situ ocean observations poses a challenge for real-time information acquisition in the ocean.Among the crucial hydroacoustic environmental parameters,ocean sound velocity exhibits significant spatial and temporal variability and it is highly relevant to oceanic research.In this study,we propose a new data-driven approach,leveraging deep learning techniques,for the prediction of sound velocity fields(SVFs).Our novel spatiotemporal prediction model,STLSTM-SA,combines Spatiotemporal Long Short-Term Memory(ST-LSTM) with a self-attention mechanism to enable accurate and real-time prediction of SVFs.To circumvent the limited amount of observational data,we employ transfer learning by first training the model using reanalysis datasets,followed by fine-tuning it using in-situ analysis data to obtain the final prediction model.By utilizing the historical 12-month SVFs as input,our model predicts the SVFs for the subsequent three months.We compare the performance of five models:Artificial Neural Networks(ANN),Long ShortTerm Memory(LSTM),Convolutional LSTM(ConvLSTM),ST-LSTM,and our proposed ST-LSTM-SA model in a test experiment spanning 2019 to 2022.Our results demonstrate that the ST-LSTM-SA model significantly improves the prediction accuracy and stability of sound velocity in both temporal and spatial dimensions.The ST-LSTM-SA model not only accurately predicts the ocean sound velocity field(SVF),but also provides valuable insights for spatiotemporal prediction of other oceanic environmental variables. 展开更多
关键词 sound velocity field spatiotemporal prediction deep learning self-allention
下载PDF
Field test of high-power microwave-assisted mechanical excavation for deep hard iron ore 被引量:1
3
作者 Feng Lin Xia-Ting Feng +5 位作者 Shiping Li Xiao Hai Jiuyu Zhang Xiangxin Su Tianyang Tong Jianchun Song 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1922-1935,共14页
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re... Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used. 展开更多
关键词 Microwave parameters High power field experiment Mechanical mining
下载PDF
Reactor field reconstruction from sparse and movable sensors using Voronoi tessellation-assisted convolutional neural networks 被引量:1
4
作者 He-Lin Gong Han Li +1 位作者 Dunhui Xiao Sibo Cheng 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期173-185,共13页
The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.C... The aging of operational reactors leads to increased mechanical vibrations in the reactor interior.The vibration of the incore sensors near their nominal locations is a new problem for neutronic field reconstruction.Current field-reconstruction methods fail to handle spatially moving sensors.In this study,we propose a Voronoi tessellation technique in combination with convolutional neural networks to handle this challenge.Observations from movable in-core sensors were projected onto the same global field structure using Voronoi tessellation,holding the magnitude and location information of the sensors.General convolutional neural networks were used to learn maps from observations to the global field.The proposed method reconstructed multi-physics fields(including fast flux,thermal flux,and power rate)using observations from a single field(such as thermal flux).Numerical tests based on the IAEA benchmark demonstrated the potential of the proposed method in practical engineering applications,particularly within an amplitude of 5 cm around the nominal locations,which led to average relative errors below 5% and 10% in the L_(2) and L_(∞)norms,respectively. 展开更多
关键词 Voronoi tessellation field reconstruction Nuclear reactors Reactor physics On-line monitoring
下载PDF
Electromagnetic fields in ultra-peripheral relativistic heavy-ion collisions 被引量:1
5
作者 Jie Zhao Jin-Hui Chen +1 位作者 Xu-Guang Huang Yu-Gang Ma 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期103-109,共7页
Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that... Ultra-peripheral heavy-ion collisions(UPCs)offer unique opportunities to study processes under strong electromagnetic fields.In these collisions,highly charged fast-moving ions carry strong electromagnetic fields that can be effectively treated as photon fluxes.The exchange of photons can induce photonuclear and two-photon interactions and excite ions.This excitation of the ions results in Coulomb dissociation with the emission of photons,neutrons,and other particles.Additionally,the electromagnetic fields generated by the ions can be sufficiently strong to enforce mutual interactions between the two colliding ions.Consequently,the two colliding ions experience an electromagnetic force that pushes them in opposite directions,causing a back-to-back correlation in the emitted neutrons.Using a Monte Carlo simulation,we qualitatively demonstrate that the above electromagnetic effect is large enough to be observed in UPCs,which would provide a clear means to study strong electromagnetic fields and their effects. 展开更多
关键词 Electromagnetic fields Neutrons Ultra-peripheral relativistic heavy-ion collisions(UPC)
下载PDF
Semi-analytical investigation of heat transfer in a porous convective radiative moving longitudinal fin exposed to magnetic field in the presence of a shape-dependent trihybrid nanofluid 被引量:1
6
作者 C.G.PAVITHRA B.J.GIREESHA M.L.KEERTHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第1期197-216,共20页
The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, a... The thermal examination of a non-integer-ordered mobile fin with a magnetism in the presence of a trihybrid nanofluid(Fe_3O_4-Au-Zn-blood) is carried out. Three types of nanoparticles, each having a different shape, are considered. These shapes include spherical(Fe_3O_4), cylindrical(Au), and platelet(Zn) configurations. The combination approach is utilized to evaluate the physical and thermal characteristics of the trihybrid and hybrid nanofluids, excluding the thermal conductivity and dynamic viscosity. These two properties are inferred by means of the interpolation method based on the volume fraction of nanoparticles. The governing equation is transformed into a dimensionless form, and the Adomian decomposition Sumudu transform method(ADSTM) is adopted to solve the conundrum of a moving fin immersed in a trihybrid nanofluid. The obtained results agree well with those numerical simulation results, indicating that this research is reliable. The influence of diverse factors on the thermal overview for varying noninteger values of γ is analyzed and presented in graphical representations. Furthermore, the fluctuations in the heat transfer concerning the pertinent parameters are studied. The results show that the heat flux in the presence of the combination of spherical, cylindrical, and platelet nanoparticles is higher than that in the presence of the combination of only spherical and cylindrical nanoparticles. The temperature at the fin tip increases by 0.705 759% when the value of the Peclet number increases by 400%, while decreases by 11.825 13% when the value of the Hartman number increases by 400%. 展开更多
关键词 convection radiation moving longitudinal fin Adomian decomposition Sumudu transform method(ADSTM) trihybrid nanofluid magnetic field
下载PDF
Research progress on semi-continuous casting of magnesium alloys under external field
7
作者 Qi-yu Liao Qi-chi Le +3 位作者 Da-zhi Zhao Lei Bao Tong Wang Yong-hui Jia 《China Foundry》 SCIE EI CAS CSCD 2024年第5期516-524,共9页
High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium... High-performance magnesium alloys are moving towards a trend of being produced on a large scale and in an integrated manner.The foundational key to their successful production is the high-quality cast ingots.Magnesium alloys produced through the conventional semi-continuous casting process inevitably contain casting defects,which makes it challenging to manufacture high-quality ingots.The integration of external field assisted controlled solidification technology,which combines physical fields such as electromagnetic and ultrasonic fields with traditional semi-continuous casting processes,enables the production of high-quality magnesium alloy ingots characterized by a homogeneous microstructure and absence of cracks.This article mainly summarizes the technical principles of those external field assisted casting process.The focus is on elaborating the refinement mechanism of different types of electromagnetic fields,ultrasonic fields,and combined physical fields during the solidification of magnesium alloys.Finally,the development prospects of producing highquality magnesium alloy ingots through semi-continuous casting under the external field were discussed. 展开更多
关键词 semi-continuous casting electromagnetic field ultrasonic field magnesium alloys refinement mechanism
下载PDF
Values of macular ganglion cell-inner plexiform layer and 10-2 visual field measurements in detecting and evaluating glaucoma
8
作者 Hai-Jian Hu Ping Li +7 位作者 Bin Tong Yu-Lian Pang Hong-Dou Luo Fei-Fei Wang Chan Xiong Yu-Lin Yu Hai He Xu Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第5期852-860,共9页
AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:T... AIM:To assess the performance of macular ganglion cell-inner plexiform layer thickness(mGCIPLT)and 10-2 visual field(VF)parameters in detecting early glaucoma and evaluating the severity of advanced glaucoma.METHODS:Totally 127 eyes from 89 participants(36 eyes of 19 healthy participants,45 eyes of 31 early glaucoma patients and 46 eyes of 39 advanced glaucoma patients)were included.The relationships between the optical coherence tomography(OCT)-derived parameters and VF sensitivity were determined.Patients with early glaucoma were divided into eyes with or without central 10°of the VF damages(CVFDs),and the diagnostic performances of OCT-derived parameters were assessed.RESULTS:In early glaucoma,the mGCIPLT was significantly correlated with 10-2 VF pattern standard deviation(PSD;with average mGCIPLT:β=-0.046,95%CI,-0.067 to-0.024,P<0.001).In advanced glaucoma,the mGCIPLT was related to the 24-2 VF mean deviation(MD;with average mGCIPLT:β=0.397,95%CI,0.199 to 0.595,P<0.001),10-2 VF MD(with average mGCIPLT:β=0.762,95%CI,0.485 to 1.038,P<0.001)and 24-2 VF PSD(with average mGCIPLT:β=0.244,95%CI,0.124 to 0.364,P<0.001).Except for the minimum and superotemporal mGCIPLT,the decrease of mGCIPLT in early glaucomatous eyes with CVFDs was more severe than that of early glaucomatous eyes without CVFDs.The area under the curve(AUC)of the average mGCIPLT(AUC=0.949,95%CI,0.868 to 0.982)was greater than that of the average circumpapillary retinal nerve fiber layer thickness(cpRNFLT;AUC=0.827,95%CI,0.674 to 0.918)and rim area(AUC=0.799,95%CI,0.610 to 0.907)in early glaucomatous eyes with CVFDs versus normal eyes.CONCLUSION:The 10-2 VF and mGCIPLT parameters are complementary to 24-2 VF,cpRNFLT and ONH parameters,especially in detecting early glaucoma with CVFDs and evaluating the severity of advanced glaucoma in group level. 展开更多
关键词 10-2 visual field ganglion cell-inner plexiform layer retinal nerve fiber layer thickness GLAUCOMA
下载PDF
Spin Resolved Zero-Line Modes in Minimally Twisted Bilayer Graphene from Exchange Field and Gate Voltage
9
作者 Sanyi You Jiaqi An Zhenhua Qiao 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第7期111-116,共6页
The reliance on spin-orbit coupling or strong magnetic fields has always posed significant challenges for the mass production and even laboratory realization of most topological materials. Valley-based topological zer... The reliance on spin-orbit coupling or strong magnetic fields has always posed significant challenges for the mass production and even laboratory realization of most topological materials. Valley-based topological zero-line modes have attracted widespread attention due to their substantial advantage of being initially realizable with just an external electric field. However, the uncontrollable nature of electrode alignment and precise fabrication has greatly hindered the advancement in this field. By utilizing minimally twisted bilayer graphene and introducing exchange fields from magnetic substrates, we successfully realize a spin-resolved, electrode-free topological zeroline mode. Further integration of electrodes that do not require alignment considerations significantly enhances the tunability of the system's band structure. Our approach offers a promising new support for the dazzling potential of topological zero-line mode in the realm of low-energy-consumption electronics. 展开更多
关键词 structure field TOPOLOGICAL
下载PDF
Simulation of the SMILE Soft X-ray Imager response to a southward interplanetary magnetic field turning 被引量:1
10
作者 Andrey Samsonov Graziella Branduardi-Raymont +3 位作者 Steven Sembay Andrew Read David Sibeck Lutz Rastaetter 《Earth and Planetary Physics》 EI CSCD 2024年第1期39-46,共8页
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magne... The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)Soft X-ray Imager(SXI)will shine a spotlight on magnetopause dynamics during magnetic reconnection.We simulate an event with a southward interplanetary magnetic field turning and produce SXI count maps with a 5-minute integration time.By making assumptions about the magnetopause shape,we find the magnetopause standoff distance from the count maps and compare it with the one obtained directly from the magnetohydrodynamic(MHD)simulation.The root mean square deviations between the reconstructed and MHD standoff distances do not exceed 0.2 RE(Earth radius)and the maximal difference equals 0.24 RE during the 25-minute interval around the southward turning. 展开更多
关键词 MAGNETOPAUSE magnetic reconnection solar wind charge exchange southward interplanetary magnetic field numerical modeling Solar wind Magnetosphere Ionosphere Link Explorer(SMILE) Soft X-ray Imager
下载PDF
Petrology and Structural Characterization of Post-Neoproterozoic Dolerites from the Kimberlite Fields in the Kéniéba Region (Western Mali)
11
作者 Gbele Ouattara Baco Traore +3 位作者 Ziandjêdé Hervé Siagné Aboubacar Denon Souleymane Sangare Marc Ephrem Allialy 《Open Journal of Geology》 CAS 2024年第6期655-670,共16页
Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with th... Post-Neoproterozoic dolerites from the Kéniéba region (Western Mali) are often associated with kimberlites. The rarity of kimberlite outcrops led to the study of doleritic rocks, spatially associated with them. The petrographic and lithogeochemical study showed that the dolerites of the Kéniéba kimberlitic fields are of tholeiitic nature and of the E-MORB (Enriched-Mid Ocean Ridge Basalt) type. This reflects an enrichment over time, compared to the Birimian dolerites of the volcano-sedimentary greenstone belt of Toumodi, in central C?te d’Ivoire. Furthermore, these dolerites are enriched in SiO2, TiO2, Zr and poor in Fe2O3, MgO. These dolerites would have formed in a late to post-orogenic intracontinental context during the breakup of Gondwana. Structurally, Kéniéba dolerites are often associated with kimberlite pipes, fractures and large deep structures identified using aeromagnetic images. Taking into account the fact that kimberlites do not outcrop in the Kéniéba region, the geochemical study coupled with the interpretation of aeromagnetic data proved to be very useful for the search for pipes. 展开更多
关键词 DOLERITES Kimberlitic fields PETROLOGY Structures Kéniéba MALI
下载PDF
Revolutionizing plasmonic platform via magnetic field-assisted confined ultrafast laser deposition of high-density,uniform,and ultrafine nanoparticle arrays
12
作者 Jin Xu Lingfeng Wang +5 位作者 Peilin Yang Haoqing Jiang Huai Zheng Licong An Xingtao Liu Gary J Cheng 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2024年第3期428-438,共11页
The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves havegarnered significant attention.However,the challenge of large-scale manufacturing of uniform,well-aligned,and tunable plasmonic sur... The remarkable capabilities of 2D plasmonic surfaces in controlling optical waves havegarnered significant attention.However,the challenge of large-scale manufacturing of uniform,well-aligned,and tunable plasmonic surfaces has hindered their industrialization.To address this,we present a groundbreaking tunable plasmonic platform design achieved throughmagnetic field(MF)assisted ultrafast laser direct deposition in air.Through precise control of metal nanoparticles(NPs),with cobalt(Co)serving as the model material,employing an MF,and fine-tuning ultrafast laser parameters,we have effectively converted coarse and non-uniform NPs into densely packed,uniform,and ultrafine NPs(~3 nm).This revolutionary advancement results in the creation of customizable plasmonic‘hot spots,’which play a pivotal role insurface-enhanced Raman spectroscopy(SERS)sensors.The profound impact of this designable plasmonic platform lies in its close association with plasmonic resonance and energyenhancement.When the plasmonic nanostructures resonate with incident light,they generate intense local electromagnetic fields,thus vastly increasing the Raman scattering signal.This enhancement leads to an outstanding 2–18 fold boost in SERS performance and unparalleled sensing sensitivity down to 10^(-10)M.Notably,the plasmonic platform also demonstratesrobustness,retaining its sensing capability even after undergoing 50 cycles of rinsing andre-loading of chemicals.Moreover,this work adheres to green manufacturing standards,making it an efficient and environmentally friendly method for customizing plasmonic‘hot spots’inSERS devices.Our study not only achieves the formation of high-density,uniform,and ultrafine NP arrays on a tunable plasmonic platform but also showcases the profound relation betweenplasmonic resonance and energy enhancement.The outstanding results observed in SERS sensors further emphasize the immense potential of this technology for energy-relatedapplications,including photocatalysis,photovoltaics,and clean water,propelling us closer to a sustainable and cleaner future. 展开更多
关键词 magnetic field manipulation laser deposition metasurface SERS
下载PDF
Effect of Artificial Electric Field Surface by Wave-Driven Triboelectricity on Anti-Bioadhesion for Riser Protection
13
作者 YI Peng QIU Hong-yuan +4 位作者 LI Yong CAI Bao-ping Javad MOSTAGHIMI ZHANGWen-jie XIAO Wen-sheng 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期483-490,共8页
Biofouling has been a persistent problem in marine riser system, resulting in energy waste and equipment damage. Inthis study, a kind of water wave-driven contact-mode flexible triboelectric nanogeneration has been pr... Biofouling has been a persistent problem in marine riser system, resulting in energy waste and equipment damage. Inthis study, a kind of water wave-driven contact-mode flexible triboelectric nanogeneration has been prepared byusing graphene-doped PDMS as dielectric friction material. When the graphene content is 2%, the average outputvoltage can reach 46 V under the contact frequency 10 Hz. The flexible triboelectric nanogeneration encapsulationmodule is impinged by water waves to generate alternating microelectric field on the riser surface and destroy theadhesion conditions of microorganisms during the biofilm stage. In the biofouling experiments at different stages, thebiofouling area of the platymonas subcordiformis has been reduced by 53%, 62% and 61%. It provides a new ideafor effective treatment of biofouling of mussels, oysters and barnacles attached to risers. 展开更多
关键词 wave-drive triboelectric nanogeneration alternating microelectric field anti-biofouling
下载PDF
Phase-field lattice-Boltzmann study on fully coupled thermal-solute-convection dendrite growth of Al-Cu alloy
14
作者 Yin-qi Qiu Meng-wu Wu +1 位作者 Xun-peng Qin Shou-mei Xiong 《China Foundry》 SCIE EI CAS CSCD 2024年第2期125-136,共12页
Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al... Dendrite growth is a complex liquid-solid phase transition process involving multiple physical factors.A phase-field lattice-Boltzmann method was developed to simulate the two-and three-dimension dendrite growth of Al-Cu alloy.The effect of fully coupled thermal-solute-convection interaction on the dendrite growth was investigated by incorporating a parallel-adaptive mesh refinement algorithm into the numerical model.By accurately reproducing the latent heat release,solute diffusion and convective transport behaviors at the liquidsolid interface,the interaction mechanism among thermal-solute-convection transport as well as their coupling effects on the dendrite growth dynamics were discussed.The simulation results show that the release of latent heat slows down the dendrite growth rate,and both natural and forced convection disrupt the symmetrical growth of dendrites.Their combination makes the growth of dendrites more complex,capturing important physical aspects such as recalescence,dendrite tip splitting,dendrite tilting,dendrite remelting,and solute plume in the simulation case.Based on the robustness and powerful ability of the numerical model,the formation mechanisms of these physical aspects were revealed. 展开更多
关键词 simulation phase field dendrite growth thermal-solute-convection interaction
下载PDF
Electric field and force characteristic of dust aerosol particles on the surface of high-voltage transmission line
15
作者 刘滢格 李兴财 +2 位作者 王娟 马鑫 孙文海 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第1期368-378,共11页
High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can ... High-voltage transmission lines play a crucial role in facilitating the utilization of renewable energy in regions prone to desertification. The accumulation of atmospheric particles on the surface of these lines can significantly impact corona discharge and wind-induced conductor displacement. Accurately quantifying the force exerted by particles adhering to conductor surfaces is essential for evaluating fouling conditions and making informed decisions. Therefore, this study investigates the changes in electric field intensity along branched conductors caused by various fouling layers and their resulting influence on the adhesion of dust particles. The findings indicate that as individual particle size increases, the field strength at the top of the particle gradually decreases and eventually stabilizes at approximately 49.22 k V/cm, which corresponds to a field strength approximately 1.96 times higher than that of an unpolluted transmission line. Furthermore,when particle spacing exceeds 15 times the particle size, the field strength around the transmission line gradually decreases and approaches the level observed on non-adhering surface. The electric field remains relatively stable. In a triangular arrangement of three particles, the maximum field strength at the tip of the fouling layer is approximately 1.44 times higher than that of double particles and 1.5 times higher compared to single particles. These results suggest that particles adhering to the transmission line have a greater affinity for adsorbing charged particles. Additionally, relevant numerical calculations demonstrate that in dry environments, the primary adhesion forces between particles and transmission lines follow an order of electrostatic force and van der Waals force. Specifically, at the minimum field strength, these forces are approximately74.73 times and 19.43 times stronger than the gravitational force acting on the particles. 展开更多
关键词 high-voltage current electric field aerosol particles force characteristic
下载PDF
A large language model-powered literature review for high-angle annular dark field imaging
16
作者 Wenhao Yuan Cheng Peng Qian He 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第9期76-81,共6页
High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemic... High-angle annular dark field(HAADF)imaging in scanning transmission electron microscopy(STEM)has become an indispensable tool in materials science due to its ability to offer sub-°A resolution and provide chemical information through Z-contrast.This study leverages large language models(LLMs)to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature(more than 41000 papers).By using LLMs,specifically ChatGPT,we were able to extract detailed information on applications,sample preparation methods,instruments used,and study conclusions.The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging,underscoring its increasingly important role in materials science.Moreover,the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes. 展开更多
关键词 LARGE language models high-angle ANNULAR DARK field imaging deep learning
下载PDF
MULTIPLE INTERSECTIONS OF SPACE-TIME ANISOTROPIC GAUSSIAN FIELDS
17
作者 陈振龙 苑伟杰 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期275-294,共20页
Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X... Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields. 展开更多
关键词 anisotropic Gaussian field multiple intersections Hausdorff measure capacity
下载PDF
Probing the peripheral self-generated magnetic field distribution in laser-plasma magnetic reconnection with Martin-Puplett interferometer polarimeter
18
作者 张雅芃 姚嘉文 +2 位作者 刘正东 马作霖 仲佳勇 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期129-134,共6页
Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Pup... Magnetic reconnection of the self-generated magnetic fields in laser-plasma interaction is an important laboratory method for modeling high-energy density astronomical and astrophysical phenomena.We use the Martin-Puplett interferometer(MPI)polarimeter to probe the peripheral magnetic fields generated in the common magnetic reconnection configuration,two separated coplanar plane targets,in laser-target interaction.We introduce a new method that can obtain polarization information from the interference pattern instead of the sinusoidal function fitting of the intensity.A bidirectional magnetic field is observed from the side view,which is consistent with the magneto-hydro-dynamical(MHD)simulation results of self-generated magnetic field reconnection.We find that the cancellation of reverse magnetic fields after averaging and integration along the observing direction could reduce the magnetic field strength by one to two orders of magnitude.It indicates that imaging resolution can significantly affect the accuracy of measured magnetic field strength. 展开更多
关键词 laser-plasma experiment POLARIMETER self-generated magnetic field magnetic reconnection
下载PDF
Steering the energy sharing of electrons in nonsequential double ionization with orthogonally polarized two-color field
19
作者 樊光琦 杨志杰 +4 位作者 孙烽豪 郑金梅 韩云天 黄明谦 刘情操 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第8期248-252,共5页
Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)la... Using the semiclassical ensemble model,the dependence of relative amplitude for the recollision dynamics in nonsequential double ionization(NSDI)of neon atom driven by the orthogonally polarized two-color field(OTC)laser field is theoretically studied.And the dynamics in two typical collision pathways,recollision-impact-ionization(RII)and recollisionexcitation with subsequent ionization(RESI),is systematically explored.Our results reveal that the V-shaped structure in the correlated momentum distribution is mainly caused by the RII mechanism when the relative amplitude of the OTC laser field is zero,and the first ionized electrons will quickly skim through the nucleus and share few energy with the second electron.As the relative amplitude increases,the V-shaped structure gradually disappears and electrons are concentrated on the diagonal in the electron correlation spectrum,indicating that the energy sharing after electrons collision is symmetric for OTC laser fields with large relative amplitudes.Our studies show that changing the relative amplitude of the OTC laser field can efficiently control the electron–electron collisions and energy exchange efficiency in the NSDI process. 展开更多
关键词 nonsequential double ionization correlated electron–electron momentum distribution energy sharing of electrons orthogonally polarized two-color field laser field semiclassical ensemble models
下载PDF
Customized modulation on plasma uniformity by non-uniform magnetic field in capacitively coupled plasma
20
作者 王森 张权治 +2 位作者 马方方 Maksudbek YUSUPOV 王友年 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第6期79-87,共9页
A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static m... A two-dimensional fluid model based on COMSOL Multiphysics is developed to investigate the modulation of static magnetic field on plasma homogeneity in a capacitively coupled plasma(CCP)chamber. To generate a static magnetic field, direct current is applied to a circular coil located at the top of the chamber. By adjusting the magnetic field's configuration, which is done by altering the coil current and position, both the plasma uniformity and density can be significantly modulated. In the absence of the magnetic field, the plasma density exhibits an inhomogeneous distribution characterized by higher values at the plasma edge and lower values at the center. The introduction of a magnetic field generated by coils results in a significant increase in electron density near the coils. Furthermore, an increase in the sets of coils improves the uniformity of the plasma. By flexibly adjusting the positions of the coils and the applied current,a substantial enhancement in overall uniformity can be achieved. These findings demonstrate the feasibility of using this method for achieving uniform plasma densities in industrial applications. 展开更多
关键词 COMSOL capacitively coupled plasma plasma uniformity magnetic field
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部