Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to est...Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.展开更多
Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ...Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.展开更多
The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current stat...The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.展开更多
Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for t...Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for type-II Weyl semimetal.We demonstrate the presence of several Fermi arcs connecting their corresponding Weyl points on both termination surfaces of the topological material.Our analysis reveals the existence of Dirac points,in addition to Weyl points,giving both theoretical and experimental evidences of the coexistence of Dirac and Weyl points in a single material.These findings not only confirm NbIrTe_(4) as a unique topological semimetal but also open avenues for exploring novel electronic devices based on its coexisting Dirac and Weyl fermions.展开更多
We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on t...We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.展开更多
We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide t...We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide the systemparameter space into PT-symmetry unbroken, partially broken and fully broken regimes, each with distinct quantumdynamics characteristics. Particularly, in the partially broken regime, while the PT-symmetry is generally broken in the whole four-dimensional Hilbert space, it is preserved in a two-dimensional subspace such that the quantum dynamics in the subspace are similar to those in the PT-symmetry unbroken regime. In addition, we reveal that the competition between the inter-qubit coupling and the intra-qubit driving gives rise to a complex pattern in the EP variation with system parameters.展开更多
This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation an...This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation and inaccurate semantic discrimination.To tackle these issues,we first leverage part-whole relationships into the task of 3D point cloud semantic segmentation to capture semantic integrity,which is empowered by the dynamic capsule routing with the module of 3D Capsule Networks(CapsNets)in the embedding network.Concretely,the dynamic routing amalgamates geometric information of the 3D point cloud data to construct higher-level feature representations,which capture the relationships between object parts and their wholes.Secondly,we designed a multi-prototype enhancement module to enhance the prototype discriminability.Specifically,the single-prototype enhancement mechanism is expanded to the multi-prototype enhancement version for capturing rich semantics.Besides,the shot-correlation within the category is calculated via the interaction of different samples to enhance the intra-category similarity.Ablation studies prove that the involved part-whole relations and proposed multi-prototype enhancement module help to achieve complete object segmentation and improve semantic discrimination.Moreover,under the integration of these two modules,quantitative and qualitative experiments on two public benchmarks,including S3DIS and ScanNet,indicate the superior performance of the proposed framework on the task of 3D point cloud semantic segmentation,compared to some state-of-the-art methods.展开更多
Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances,which is always called resilience.However,once the external disturbances exceed the tipping points of the system...Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances,which is always called resilience.However,once the external disturbances exceed the tipping points of the system resilience,the consequences would be catastrophic,and eventually lead the ecosystem to complete collapse.We capture the collapse process of ecosystems represented by plant-pollinator networks with the k-core nested structural method,and find that a sufficiently weak interaction strength or a sufficiently large competition weight can cause the structure of the ecosystem to collapse from its smallest k-core towards its largest k-core.Then we give the tipping points of structure and dynamic collapse of the entire system from the one-dimensional dynamic function of the ecosystem.Our work provides an intuitive and precise description of the dynamic process of ecosystem collapse under multiple interactions,and provides theoretical insights into further avoiding the occurrence of ecosystem collapse.展开更多
By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnet...By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnetism in Einstein–Gauss–Bonnet(EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals(vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions.Specifically, it shows for D = 6 that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic Ad S BHs with quasitopological electromagnetism in Einstein–Born–Infeld(EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [Phys. Rev. D105 104048(2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic Ad S BHs with quasitopological electromagnetism in EGB gravity.展开更多
Porcine reproductive and respiratory syndrome(PRRS)is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus(PRRSV),resulting in substantial economic losses in the swine industry.Modifyin...Porcine reproductive and respiratory syndrome(PRRS)is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus(PRRSV),resulting in substantial economic losses in the swine industry.Modifying the CD163 SRCR5 domain,either through deletion or substitution,can eff1ectively confer resistance to PRRSV infection in pigs.However,large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance.Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs.In the current study,we identified a specific functional amino acid in CD163 that influences PRRSV proliferation.Viral infection experiments conducted on Marc145 and PK-15CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV(HP-PRRSV)proliferation by preventing viral binding and entry.Furthermore,individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type(WT)pigs,confirming effective resistance to HP-PRRSV.Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs.These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs,providing novel insights into controlling future PRRSV outbreaks.展开更多
The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early c...The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early contact and contact penetration can occur when the contact conditions are unsuitable,and(2)the method is not available for contact problems involving rigid-nonrigid materials,which can cause numerical instability.This study presents a new hybrid contact approach for the MPM to address these limitations to simulate the soil and structure interactions.The approach combines the advantages of point-point and point-segment contacts to implement contact detection,satisfying the impenetrability condition and smoothing the corner contact problem.The proposed approach is first validated through a disk test on an inclined slope.Then,several typical cases,such as granular collapse,bearing capacity,and deformation of a flexible retaining wall,are simulated to demonstrate the robustness of the proposed approach compared with FEM or analytical solutions.Finally,the proposed method is used to simulate the impact of sand flow on a deformable structure.The results show that the proposed contact approach can well describe the phenomenon of soil-structure interaction problems.展开更多
The configuration of electrode voltage and zero magnetic point position has a significant impact on the performance of the double-stage Hall effect thruster. A 2D-3V model is established based on the two-magnetic peak...The configuration of electrode voltage and zero magnetic point position has a significant impact on the performance of the double-stage Hall effect thruster. A 2D-3V model is established based on the two-magnetic peak type double-stage Hall thruster configuration, and a particle-in-cell simulation is carried out to investigate the influences of both acceleration electrode voltage value and zero magnetic point position on the thruster discharge characteristics and performances.The results indicate that increasing the acceleration voltage leads to a larger potential drop in the acceleration stage, allowing ions to gain higher energy, while electrons are easily absorbed by the intermediate electrode, resulting in a decrease in the anode current and ionization rate. When the acceleration voltage reaches 500 V, the thrust and efficiency are maximized, resulting in a 15%increase in efficiency. After the acceleration voltage exceeds 500 V, a potential barrier forms within the channel, leading to a decrease in thruster efficiency. Further study shows that as the second zero magnetic point moves towards the outlet of the channel, more electrons easily traverse the zero magnetic field region, participating in the ionization. The increase in the ionization rate leads to a gradual enhancement in both thrust and efficiency.展开更多
Introduction: HIV, the human immunodeficiency virus, is the etiological agent of acquired immunodeficiency syndrome (AIDS). The aim of this study was to assess the evolution of the viral load in patients under treatme...Introduction: HIV, the human immunodeficiency virus, is the etiological agent of acquired immunodeficiency syndrome (AIDS). The aim of this study was to assess the evolution of the viral load in patients under treatment. Methodology: This was a study carried out from July 2017 to June 2022 at the Point G University Hospital laboratory. The determination of the viral load of patients was carried out by PCR on the ABOTT M2000sp/rt platform. Results: A total of 129 patients infected with HIV-1, aged 19 to 72 years with a mean age of 40.05 years ± 10.71;all on antiretroviral chemotherapy. The female gender predominated among our patients. The most common treatment regimen was 2INTI + 1INNTI with 72.9% followed by 2INTI + 1INI with 13.2%. As for the combinations of molecules, the combination TDF + 3TC + EFV and TDF + 3TC + DTG predominated, respectively 65.1% and 13.2%. 89.9% of our patients had undetectable viremia after 12 months of treatment (p < 0.005) with an average viral load which had evolved from 681315.65 copies/ml ± 1616908.484 to M0 at 5742.36 copies /ml ± 35756.883 at M12 (p Conclusion: Generally speaking, antiretroviral treatment had contributed to controlling viral loads, however the therapeutic combination TDF + 3TC + DTG had made it possible to obtain more patients with undetectable viremia instead.展开更多
Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate ...Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate of composites was established. Then the upper limit of strain rate, restricted by stress equilibrium and constant loading rate, was rationally estimated and confirmed by tests. Within the achievable range of 0.001/s-895/s, it was found that the strength increased first and subsequently decreased as the strain rate increased. This feature was also reflected by the turning point(579/s) of the bilinear model for strength prediction. The transition in failure mechanism, from local opening damage to completely splitting destruction, was mainly responsible for such strain rate effects. And three major failure modes were summarized under microscopic observations: fiber fracture, inter-fiber fracture, and interface delamination. Finally, by introducing a nonlinear damage variable, a simplified ZWT model was developed to characterize the dynamic mechanical response. Excellent agreement was shown between the experimental and simulated results.展开更多
The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly...The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.展开更多
In this paper, the dynamic properties of a discrete predator-prey model are discussed. The properties of non-hyperbolic fixed points and hyperbolic fixed points of the model are analyzed. First, by using the classic S...In this paper, the dynamic properties of a discrete predator-prey model are discussed. The properties of non-hyperbolic fixed points and hyperbolic fixed points of the model are analyzed. First, by using the classic Shengjin formula, we find the existence conditions for fixed points of the model. Then, by using the qualitative theory of ordinary differential equations and matrix theory we indicate which points are hyperbolic and which are non-hyperbolic and the associated conditions.展开更多
The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the effi...The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.展开更多
BACKGROUND Non-proliferative diabetic retinopathy(NPDR)poses a significant challenge in diabetes management due to its microvascular changes in the retina.Laser photocoagulation,a conventional therapy,aims to mitigate...BACKGROUND Non-proliferative diabetic retinopathy(NPDR)poses a significant challenge in diabetes management due to its microvascular changes in the retina.Laser photocoagulation,a conventional therapy,aims to mitigate the risk of progressing to proliferative diabetic retinopathy(PDR).AIM To compare the efficacy and safety of multi-spot vs single-spot scanning panretinal laser photocoagulation in NPDR patients.METHODS Forty-nine NPDR patients(86 eyes)treated between September 2020 and July 2022 were included.They were randomly allocated into single-spot(n=23,40 eyes)and multi-spot(n=26,46 eyes)groups.Treatment outcomes,including bestcorrected visual acuity(BCVA),central macular thickness(CMT),and mean threshold sensitivity,were assessed at predetermined intervals over 12 months.Adverse reactions were also recorded.RESULTS Energy levels did not significantly differ between groups(P>0.05),but the multi-spot group exhibited lower energy density(P<0.05).BCVA and CMT improvements were noted in the multi-spot group at one-month posttreatment(P<0.05).Adverse reaction incidence was similar between groups(P>0.05).CONCLUSION While energy intensity and safety were comparable between modalities,multi-spot scanning demonstrated lower energy density and showed superior short-term improvements in BCVA and CMT for NPDR patients,with reduced laser-induced damage.展开更多
To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-sca...To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.展开更多
In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and...In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and inherently sparse.Therefore,it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space.Most current methods either focus on local feature aggregation or long-range context dependency,but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks.In this paper,we propose a Transformer-based stratified graph convolutional network(SGT-Net),which enlarges the effective receptive field and builds direct long-range dependency.Specifically,we first propose a novel dense-sparse sampling strategy that provides dense local vertices and sparse long-distance vertices for subsequent graph convolutional network(GCN).Secondly,we propose a multi-key self-attention mechanism based on the Transformer to further weight augmentation for crucial neighboring relationships and enlarge the effective receptive field.In addition,to further improve the efficiency of the network,we propose a similarity measurement module to determine whether the neighborhood near the center point is effective.We demonstrate the validity and superiority of our method on the S3DIS and ShapeNet datasets.Through ablation experiments and segmentation visualization,we verify that the SGT model can improve the performance of the point cloud semantic segmentation.展开更多
基金supported in part by the Nationa Natural Science Foundation of China (61876011)the National Key Research and Development Program of China (2022YFB4703700)+1 种基金the Key Research and Development Program 2020 of Guangzhou (202007050002)the Key-Area Research and Development Program of Guangdong Province (2020B090921003)。
文摘Recently, there have been some attempts of Transformer in 3D point cloud classification. In order to reduce computations, most existing methods focus on local spatial attention,but ignore their content and fail to establish relationships between distant but relevant points. To overcome the limitation of local spatial attention, we propose a point content-based Transformer architecture, called PointConT for short. It exploits the locality of points in the feature space(content-based), which clusters the sampled points with similar features into the same class and computes the self-attention within each class, thus enabling an effective trade-off between capturing long-range dependencies and computational complexity. We further introduce an inception feature aggregator for point cloud classification, which uses parallel structures to aggregate high-frequency and low-frequency information in each branch separately. Extensive experiments show that our PointConT model achieves a remarkable performance on point cloud shape classification. Especially, our method exhibits 90.3% Top-1 accuracy on the hardest setting of ScanObjectN N. Source code of this paper is available at https://github.com/yahuiliu99/PointC onT.
基金financially supported by the National Key Research and Development Program(Grant No.2022YFE0107000)the General Projects of the National Natural Science Foundation of China(Grant No.52171259)the High-Tech Ship Research Project of the Ministry of Industry and Information Technology(Grant No.[2021]342)。
文摘Identification of the ice channel is the basic technology for developing intelligent ships in ice-covered waters,which is important to ensure the safety and economy of navigation.In the Arctic,merchant ships with low ice class often navigate in channels opened up by icebreakers.Navigation in the ice channel often depends on good maneuverability skills and abundant experience from the captain to a large extent.The ship may get stuck if steered into ice fields off the channel.Under this circumstance,it is very important to study how to identify the boundary lines of ice channels with a reliable method.In this paper,a two-staged ice channel identification method is developed based on image segmentation and corner point regression.The first stage employs the image segmentation method to extract channel regions.In the second stage,an intelligent corner regression network is proposed to extract the channel boundary lines from the channel region.A non-intelligent angle-based filtering and clustering method is proposed and compared with corner point regression network.The training and evaluation of the segmentation method and corner regression network are carried out on the synthetic and real ice channel dataset.The evaluation results show that the accuracy of the method using the corner point regression network in the second stage is achieved as high as 73.33%on the synthetic ice channel dataset and 70.66%on the real ice channel dataset,and the processing speed can reach up to 14.58frames per second.
基金The financial supports from National Outstanding Youth Science Fund Project of National Natural Science Foundation of China(Grant No.52022112)the International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program,Grant No.YJ20220219)。
文摘The material point method(MPM)has been gaining increasing popularity as an appropriate approach to the solution of coupled hydro-mechanical problems involving large deformation.In this paper,we survey the current state-of-the-art in the MPM simulation of hydro-mechanical behaviour in two-phase porous geomaterials.The review covers the recent advances and developments in the MPM and their extensions to capture the coupled hydro-mechanical problems involving large deformations.The focus of this review is aiming at providing a clear picture of what has or has not been developed or implemented for simulating two-phase coupled large deformation problems,which will provide some direct reference for both practitioners and researchers.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12274455,12274459,and 12204533)the National Key R&D Program of China (Grant No.2022YFA1403800)the Beijing Natural Science Foundation (Grant No.Z200005)。
文摘Using angle-resolved photoemission spectroscopy and density functional theory calculations methods,we investigate the electronic structures and topological properties of ternary tellurides NbIrTe_(4),a candidate for type-II Weyl semimetal.We demonstrate the presence of several Fermi arcs connecting their corresponding Weyl points on both termination surfaces of the topological material.Our analysis reveals the existence of Dirac points,in addition to Weyl points,giving both theoretical and experimental evidences of the coexistence of Dirac and Weyl points in a single material.These findings not only confirm NbIrTe_(4) as a unique topological semimetal but also open avenues for exploring novel electronic devices based on its coexisting Dirac and Weyl fermions.
基金supported by the National Key R&D Program of China(Grant Nos.2022YFA1603300 and 2022YFA1603200)the Science Challenge Project(Grant No.TZ2018005)in China+1 种基金the National Natural Science Foundation of China(Grant Nos.11805188 and 12175209)the Laser Fusion Research Center Funds for Young Talents(Grant No.RCFPD6-2022-1).
文摘We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated.
基金partly funded by the Natural Science Foundation of Shandong Province of China (Grant Nos. ZR2021MA091 and ZR2018MA044)Introduction and Cultivation Plan of Youth Innovation Talents for Universities of Shandong Province (Research and Innovation Team on Materials Modification and Optoelectronic Devices at extreme conditions)。
文摘We study the exceptional-point(EP) structure and the associated quantum dynamics in a system consisting of a non-Hermitian qubit and a Hermitian qubit. We find that the system possesses two sets of EPs, which divide the systemparameter space into PT-symmetry unbroken, partially broken and fully broken regimes, each with distinct quantumdynamics characteristics. Particularly, in the partially broken regime, while the PT-symmetry is generally broken in the whole four-dimensional Hilbert space, it is preserved in a two-dimensional subspace such that the quantum dynamics in the subspace are similar to those in the PT-symmetry unbroken regime. In addition, we reveal that the competition between the inter-qubit coupling and the intra-qubit driving gives rise to a complex pattern in the EP variation with system parameters.
基金This work is supported by the National Natural Science Foundation of China under Grant No.62001341the National Natural Science Foundation of Jiangsu Province under Grant No.BK20221379the Jiangsu Engineering Research Center of Digital Twinning Technology for Key Equipment in Petrochemical Process under Grant No.DTEC202104.
文摘This paper focuses on the task of few-shot 3D point cloud semantic segmentation.Despite some progress,this task still encounters many issues due to the insufficient samples given,e.g.,incomplete object segmentation and inaccurate semantic discrimination.To tackle these issues,we first leverage part-whole relationships into the task of 3D point cloud semantic segmentation to capture semantic integrity,which is empowered by the dynamic capsule routing with the module of 3D Capsule Networks(CapsNets)in the embedding network.Concretely,the dynamic routing amalgamates geometric information of the 3D point cloud data to construct higher-level feature representations,which capture the relationships between object parts and their wholes.Secondly,we designed a multi-prototype enhancement module to enhance the prototype discriminability.Specifically,the single-prototype enhancement mechanism is expanded to the multi-prototype enhancement version for capturing rich semantics.Besides,the shot-correlation within the category is calculated via the interaction of different samples to enhance the intra-category similarity.Ablation studies prove that the involved part-whole relations and proposed multi-prototype enhancement module help to achieve complete object segmentation and improve semantic discrimination.Moreover,under the integration of these two modules,quantitative and qualitative experiments on two public benchmarks,including S3DIS and ScanNet,indicate the superior performance of the proposed framework on the task of 3D point cloud semantic segmentation,compared to some state-of-the-art methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.72071153 and 72231008)the Natural Science Foundation of Shaanxi Province(Grant No.2020JM-486)the Fund of the Key Laboratory of Equipment Integrated Support Technology(Grant No.6142003190102)。
文摘Ecosystems generally have the self-adapting ability to resist various external pressures or disturbances,which is always called resilience.However,once the external disturbances exceed the tipping points of the system resilience,the consequences would be catastrophic,and eventually lead the ecosystem to complete collapse.We capture the collapse process of ecosystems represented by plant-pollinator networks with the k-core nested structural method,and find that a sufficiently weak interaction strength or a sufficiently large competition weight can cause the structure of the ecosystem to collapse from its smallest k-core towards its largest k-core.Then we give the tipping points of structure and dynamic collapse of the entire system from the one-dimensional dynamic function of the ecosystem.Our work provides an intuitive and precise description of the dynamic process of ecosystem collapse under multiple interactions,and provides theoretical insights into further avoiding the occurrence of ecosystem collapse.
基金supported by the National Natural Science Foundation of China (Grant No. 11903025)the Starting Fund of China West Normal University (Grant No. 18Q062)+2 种基金the Sichuan Science and Technology Program (Grant No. 2023ZYD0023)the Sichuan Youth Science and Technology Innovation Research Team (Grant No. 21CXTD0038)the Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC1833)。
文摘By considering the negative cosmological constant Λ as a thermodynamic pressure, we study the thermodynamics and phase transitions of the D-dimensional dyonic Ad S black holes(BHs) with quasitopological electromagnetism in Einstein–Gauss–Bonnet(EGB) gravity. The results indicate that the small/large BH phase transition that is similar to the van der Waals(vdW) liquid/gas phase transition always exists for any spacetime dimensions. Interestingly, we then find that this BH system exhibits a more complex phase structure in 6-dimensional case that is missed in other dimensions.Specifically, it shows for D = 6 that we observed the small/intermediate/large BH phase transitions in a specific parameter region with the triple point naturally appeared. Moreover, when the magnetic charge turned off, we still observed the small/intermediate/large BH phase transitions and triple point only in 6-dimensional spacetime, which is consistent with the previous results. However, for the dyonic Ad S BHs with quasitopological electromagnetism in Einstein–Born–Infeld(EBI) gravity, the novel phase structure composed of two separate coexistence curves observed by Li et al. [Phys. Rev. D105 104048(2022)] disappeared in EGB gravity. This implies that this novel phase structure is closely related to gravity theories, and seems to have nothing to do with the effect of quasitopological electromagnetism. In addition, it is also true that the critical exponents calculated near the critical points possess identical values as mean field theory. Finally, we conclude that these findings shall provide some deep insights into the intriguing thermodynamic properties of the dyonic Ad S BHs with quasitopological electromagnetism in EGB gravity.
基金Major Scientific and Technological Projects in Agricultural Biological Breeding of China(2023ZD0404302)Youth Program of National Natural Science Foundation of China(32202754)。
文摘Porcine reproductive and respiratory syndrome(PRRS)is a globally prevalent contagious disease caused by the positive-strand RNA PRRS virus(PRRSV),resulting in substantial economic losses in the swine industry.Modifying the CD163 SRCR5 domain,either through deletion or substitution,can eff1ectively confer resistance to PRRSV infection in pigs.However,large fragment modifications in pigs inevitably raise concerns about potential adverse effects on growth performance.Reducing the impact of genetic modifications on normal physiological functions is a promising direction for developing PRRSV-resistant pigs.In the current study,we identified a specific functional amino acid in CD163 that influences PRRSV proliferation.Viral infection experiments conducted on Marc145 and PK-15CD163 cells illustrated that the mE535G or corresponding pE529G mutations markedly inhibited highly pathogenic PRRSV(HP-PRRSV)proliferation by preventing viral binding and entry.Furthermore,individual viral challenge tests revealed that pigs with the E529G mutation had viral loads two orders of magnitude lower than wild-type(WT)pigs,confirming effective resistance to HP-PRRSV.Examination of the physiological indicators and scavenger function of CD163 verified no significant differences between the WT and E529G pigs.These findings suggest that E529G pigs can be used for breeding PRRSV-resistant pigs,providing novel insights into controlling future PRRSV outbreaks.
基金funding support from the National Nature Science Foundation of China(Grant No.52022060)the Key Laboratory of Impact and Safety Engineering(Ningbo University).
文摘The grid-based multi-velocity field technique has become increasingly popular for simulating the Material Point Method(MPM)in contact problems.However,this traditional technique has some shortcomings,such as(1)early contact and contact penetration can occur when the contact conditions are unsuitable,and(2)the method is not available for contact problems involving rigid-nonrigid materials,which can cause numerical instability.This study presents a new hybrid contact approach for the MPM to address these limitations to simulate the soil and structure interactions.The approach combines the advantages of point-point and point-segment contacts to implement contact detection,satisfying the impenetrability condition and smoothing the corner contact problem.The proposed approach is first validated through a disk test on an inclined slope.Then,several typical cases,such as granular collapse,bearing capacity,and deformation of a flexible retaining wall,are simulated to demonstrate the robustness of the proposed approach compared with FEM or analytical solutions.Finally,the proposed method is used to simulate the impact of sand flow on a deformable structure.The results show that the proposed contact approach can well describe the phenomenon of soil-structure interaction problems.
基金supported by National Natural Science Foundation of China (Nos. 11975062, 11605021 and 12375009)the Fundamental Research Funds for the Central Universities (No. 3132023192)。
文摘The configuration of electrode voltage and zero magnetic point position has a significant impact on the performance of the double-stage Hall effect thruster. A 2D-3V model is established based on the two-magnetic peak type double-stage Hall thruster configuration, and a particle-in-cell simulation is carried out to investigate the influences of both acceleration electrode voltage value and zero magnetic point position on the thruster discharge characteristics and performances.The results indicate that increasing the acceleration voltage leads to a larger potential drop in the acceleration stage, allowing ions to gain higher energy, while electrons are easily absorbed by the intermediate electrode, resulting in a decrease in the anode current and ionization rate. When the acceleration voltage reaches 500 V, the thrust and efficiency are maximized, resulting in a 15%increase in efficiency. After the acceleration voltage exceeds 500 V, a potential barrier forms within the channel, leading to a decrease in thruster efficiency. Further study shows that as the second zero magnetic point moves towards the outlet of the channel, more electrons easily traverse the zero magnetic field region, participating in the ionization. The increase in the ionization rate leads to a gradual enhancement in both thrust and efficiency.
文摘Introduction: HIV, the human immunodeficiency virus, is the etiological agent of acquired immunodeficiency syndrome (AIDS). The aim of this study was to assess the evolution of the viral load in patients under treatment. Methodology: This was a study carried out from July 2017 to June 2022 at the Point G University Hospital laboratory. The determination of the viral load of patients was carried out by PCR on the ABOTT M2000sp/rt platform. Results: A total of 129 patients infected with HIV-1, aged 19 to 72 years with a mean age of 40.05 years ± 10.71;all on antiretroviral chemotherapy. The female gender predominated among our patients. The most common treatment regimen was 2INTI + 1INNTI with 72.9% followed by 2INTI + 1INI with 13.2%. As for the combinations of molecules, the combination TDF + 3TC + EFV and TDF + 3TC + DTG predominated, respectively 65.1% and 13.2%. 89.9% of our patients had undetectable viremia after 12 months of treatment (p < 0.005) with an average viral load which had evolved from 681315.65 copies/ml ± 1616908.484 to M0 at 5742.36 copies /ml ± 35756.883 at M12 (p Conclusion: Generally speaking, antiretroviral treatment had contributed to controlling viral loads, however the therapeutic combination TDF + 3TC + DTG had made it possible to obtain more patients with undetectable viremia instead.
基金the National Science and Technology Major Project(Grant No.2017-VII-0011-0106)Natural Science Foundation of Heilongjiang Province(Grant No.ZD2019A001).
文摘Experimental investigations on dynamic in-plane compressive behavior of a plain weave composite were performed using the split Hopkinson pressure bar. A quantitative criterion for calculating the constant strain rate of composites was established. Then the upper limit of strain rate, restricted by stress equilibrium and constant loading rate, was rationally estimated and confirmed by tests. Within the achievable range of 0.001/s-895/s, it was found that the strength increased first and subsequently decreased as the strain rate increased. This feature was also reflected by the turning point(579/s) of the bilinear model for strength prediction. The transition in failure mechanism, from local opening damage to completely splitting destruction, was mainly responsible for such strain rate effects. And three major failure modes were summarized under microscopic observations: fiber fracture, inter-fiber fracture, and interface delamination. Finally, by introducing a nonlinear damage variable, a simplified ZWT model was developed to characterize the dynamic mechanical response. Excellent agreement was shown between the experimental and simulated results.
基金the Liaoning Province Nature Fundation Project(2022-MS-291)the National Programme for Foreign Expert Projects(G2022006008L)+2 种基金the Basic Research Projects of Liaoning Provincial Department of Education(LJKMZ20220781,LJKMZ20220783,LJKQZ20222457)King Saud University funded this study through theResearcher Support Program Number(RSPD2023R704)King Saud University,Riyadh,Saudi Arabia.
文摘The existing algorithms for solving multi-objective optimization problems fall into three main categories:Decomposition-based,dominance-based,and indicator-based.Traditional multi-objective optimization problemsmainly focus on objectives,treating decision variables as a total variable to solve the problem without consideringthe critical role of decision variables in objective optimization.As seen,a variety of decision variable groupingalgorithms have been proposed.However,these algorithms are relatively broad for the changes of most decisionvariables in the evolution process and are time-consuming in the process of finding the Pareto frontier.To solvethese problems,a multi-objective optimization algorithm for grouping decision variables based on extreme pointPareto frontier(MOEA-DV/EPF)is proposed.This algorithm adopts a preprocessing rule to solve the Paretooptimal solution set of extreme points generated by simultaneous evolution in various target directions,obtainsthe basic Pareto front surface to determine the convergence effect,and analyzes the convergence and distributioneffects of decision variables.In the later stages of algorithm optimization,different mutation strategies are adoptedaccording to the nature of the decision variables to speed up the rate of evolution to obtain excellent individuals,thusenhancing the performance of the algorithm.Evaluation validation of the test functions shows that this algorithmcan solve the multi-objective optimization problem more efficiently.
文摘In this paper, the dynamic properties of a discrete predator-prey model are discussed. The properties of non-hyperbolic fixed points and hyperbolic fixed points of the model are analyzed. First, by using the classic Shengjin formula, we find the existence conditions for fixed points of the model. Then, by using the qualitative theory of ordinary differential equations and matrix theory we indicate which points are hyperbolic and which are non-hyperbolic and the associated conditions.
基金supported by the Innovation Fund Project of the Gansu Education Department(Grant No.2021B-099).
文摘The objective of reliability-based design optimization(RBDO)is to minimize the optimization objective while satisfying the corresponding reliability requirements.However,the nested loop characteristic reduces the efficiency of RBDO algorithm,which hinders their application to high-dimensional engineering problems.To address these issues,this paper proposes an efficient decoupled RBDO method combining high dimensional model representation(HDMR)and the weight-point estimation method(WPEM).First,we decouple the RBDO model using HDMR and WPEM.Second,Lagrange interpolation is used to approximate a univariate function.Finally,based on the results of the first two steps,the original nested loop reliability optimization model is completely transformed into a deterministic design optimization model that can be solved by a series of mature constrained optimization methods without any additional calculations.Two numerical examples of a planar 10-bar structure and an aviation hydraulic piping system with 28 design variables are analyzed to illustrate the performance and practicability of the proposed method.
文摘BACKGROUND Non-proliferative diabetic retinopathy(NPDR)poses a significant challenge in diabetes management due to its microvascular changes in the retina.Laser photocoagulation,a conventional therapy,aims to mitigate the risk of progressing to proliferative diabetic retinopathy(PDR).AIM To compare the efficacy and safety of multi-spot vs single-spot scanning panretinal laser photocoagulation in NPDR patients.METHODS Forty-nine NPDR patients(86 eyes)treated between September 2020 and July 2022 were included.They were randomly allocated into single-spot(n=23,40 eyes)and multi-spot(n=26,46 eyes)groups.Treatment outcomes,including bestcorrected visual acuity(BCVA),central macular thickness(CMT),and mean threshold sensitivity,were assessed at predetermined intervals over 12 months.Adverse reactions were also recorded.RESULTS Energy levels did not significantly differ between groups(P>0.05),but the multi-spot group exhibited lower energy density(P<0.05).BCVA and CMT improvements were noted in the multi-spot group at one-month posttreatment(P<0.05).Adverse reaction incidence was similar between groups(P>0.05).CONCLUSION While energy intensity and safety were comparable between modalities,multi-spot scanning demonstrated lower energy density and showed superior short-term improvements in BCVA and CMT for NPDR patients,with reduced laser-induced damage.
文摘To address the current issues of inaccurate segmentation and the limited applicability of segmentation methods for building facades in point clouds, we propose a facade segmentation algorithm based on optimal dual-scale feature descriptors. First, we select the optimal dual-scale descriptors from a range of feature descriptors. Next, we segment the facade according to the threshold value of the chosen optimal dual-scale descriptors. Finally, we use RANSAC (Random Sample Consensus) to fit the segmented surface and optimize the fitting result. Experimental results show that, compared to commonly used facade segmentation algorithms, the proposed method yields more accurate segmentation results, providing a robust data foundation for subsequent 3D model reconstruction of buildings.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.U20A20197,62306187the Foundation of Ministry of Industry and Information Technology TC220H05X-04.
文摘In recent years,semantic segmentation on 3D point cloud data has attracted much attention.Unlike 2D images where pixels distribute regularly in the image domain,3D point clouds in non-Euclidean space are irregular and inherently sparse.Therefore,it is very difficult to extract long-range contexts and effectively aggregate local features for semantic segmentation in 3D point cloud space.Most current methods either focus on local feature aggregation or long-range context dependency,but fail to directly establish a global-local feature extractor to complete the point cloud semantic segmentation tasks.In this paper,we propose a Transformer-based stratified graph convolutional network(SGT-Net),which enlarges the effective receptive field and builds direct long-range dependency.Specifically,we first propose a novel dense-sparse sampling strategy that provides dense local vertices and sparse long-distance vertices for subsequent graph convolutional network(GCN).Secondly,we propose a multi-key self-attention mechanism based on the Transformer to further weight augmentation for crucial neighboring relationships and enlarge the effective receptive field.In addition,to further improve the efficiency of the network,we propose a similarity measurement module to determine whether the neighborhood near the center point is effective.We demonstrate the validity and superiority of our method on the S3DIS and ShapeNet datasets.Through ablation experiments and segmentation visualization,we verify that the SGT model can improve the performance of the point cloud semantic segmentation.