An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean ...An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean in the mid-Holocene East Asian monsoon climate is analyzed and some mechanisms are revealed. At the forcing of changed solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM, compared with when there is orbital forcing alone, there is more precipitation and the monsoon is stronger in the summer of East Asia, and the winter temperature increases over China. These agree better with the reconstructed data. It is revealed that the change of solar radiation can displace northward the ITCZ and the East Asia subtropical jet, which bring more precipitation over the south of Tibet and North and Northeast China. By analyzing the summer meridional latent heat transport, it is found that the influence of solar radiation change is mainly to increase the convergence of atmosphere toward the land, and the influence of SST change is mainly to transport more moisture to the sea surface atmosphere. Their synergistic effect on East Asian precipitation is much stronger than the sum of their respective effects.展开更多
By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East...By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 6000 calendar years before the present (6 kyr BP). With the Earth's orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer. The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon.展开更多
Using the simulations performed by 15 cli mate models under the latest protocol of the Paleoclimate Modeling Intercomparison Project(PMIP)Phase 3(PMIP3),the authors revisited the annual and seasona temperature changes...Using the simulations performed by 15 cli mate models under the latest protocol of the Paleoclimate Modeling Intercomparison Project(PMIP)Phase 3(PMIP3),the authors revisited the annual and seasona temperature changes over China during the mid-Holocene Similar to the previous results produced by PMIP Phase 1(PMIP1)and 2(PMIP2)models,14(15)of the 15 PMIP3models reproduced colder annual(boreal winter and spring)temperature in response to mid-Holocene insola tion changes,with an average cooling of 0.33 K(1.31 K and 1.58 K)over China.The mid-Holocene boreal sum mer(autumn)temperature increased in all(13)of the 15PMIP3 models,with an average warming of 1.02 K(0.61K)at the national scale.Those changes simulated by the PMIP3 models were similar to those from the PMIP2simulations but generally weaker than those from the PMIP1 models.A considerable mismatch still existed between the simulated cooling by the PMIP3 models and the reconstructed warming for annual and winter tem peratures over China during the mid-Holocene,as wa also the case between the previous PMIP1/2 simulation and proxy data.展开更多
Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOA...Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOALS-s2 and g2) are evaluated in this study. The MH is characterized by changes of insolation induced by orbital parameters, and the LGM is a glacial period with large changes in greenhouse gases, sea level and ice sheets. For the MH, both versions of FGOALS simulate reasonable responses to the changes of insolation, such as the enhanced summer monsoon in African-Asian regions. Model differences can be identified at regional and seasonal scales. The global annual mean surface air temperature (TAS) shows no significant change in FGOALS-s2, while FGOALS-g2 shows a global cooling of about 0.7~C that is related with a strong cooling during boreal winter. The amplitude of ENSO is weaker in FGOALS-g2, which agrees with proxy data. For the LGM, FGOALS-g2 captures the features of the cold and dry glacial climate, including a global cooling of 4.6℃ and a decrease in precipitation by 10%. The ENSO is weaker at the LGM, with a tendency of stronger ENSO cold events. Sensitivity analysis shows that the Equilibrium Climate Sensitivity (ECS) estimated for FGOALS ranges between 4.23℃ and 4.59℃. The sensitivity of precipitation to the changes of TAS is -2.3%℃-1, which agrees with previous studies. FGOALS-g2 shows better simulations of the Atlantic Meridional Overturning Circulation (AMOC) and African summer monsoon precipitation in the MH when compared with FGOALS-gl.0; however, it is hard to conclude any improvements for the LGM.展开更多
Mid-Holocene ocean feedback on global monsoon area, global monsoon precipitation(GMP), and GMP intensity(GMPI) was investigated by a set of numerical experiments performed with the Community Climate System Model versi...Mid-Holocene ocean feedback on global monsoon area, global monsoon precipitation(GMP), and GMP intensity(GMPI) was investigated by a set of numerical experiments performed with the Community Climate System Model version 4. Results showed that ocean feedback induced an increase in land monsoon area for northern Africa but a decrease for Asia and North and South America, and led to an increase in ocean monsoon area for the western Indian Ocean and southeastern Pacific but a decrease for the eastern Indian Ocean, tropical western Pacific, and tropical West Atlantic between the mid-Holocene and pre-industrial period. Dynamic oceaninduced changes in GMP and GMPI were 10.9×109 m3 d-1and-0.11 mm d-1 between the two periods, respectively.Ocean feedback induced consistent change between the Northern and Southern Hemisphere land or ocean but opposite change between land and ocean in the Northern or Southern Hemisphere monsoon areas for monsoon precipitation. The mid-Holocene summer changes in meridional temperature gradient and land-sea thermal contrast were the underlying mechanisms.展开更多
In this study, the climate changes over Arid Central Asia(ACA) during the mid-Holocene(approximately 6,000 calendar years ago, MH) and the Last Glacial Maximum(approximately 21,000 calendar years ago, LGM) were invest...In this study, the climate changes over Arid Central Asia(ACA) during the mid-Holocene(approximately 6,000 calendar years ago, MH) and the Last Glacial Maximum(approximately 21,000 calendar years ago, LGM) were investigated using multimodel simulations derived from the Paleoclimate Modelling Intercomparison Project Phase 3(PMIP3). During the MH, the multimodel median(MMM) shows that in the core region of ACA, the regionally averaged annual surface air temperature(SAT) decreases by 0.13°C and annual precipitation decreases by 3.45%, compared with the preindustrial(PI) climate. The MMM of the SAT increases by 1.67/0.13°C in summer/autumn, whereas it decreases by 1.23/1.11°C in spring/winter. The amplitude of the seasonal cycles of the SAT increases over ACA due to different MH orbital parameters. For precipitation, the regionally averaged MMM decreases by 5.77%/5.69%/0.39%/5.24% in spring/summer/autumn/winter, respectively. Based on the analysis of the aridity index(AI), compared with the PI, a drier climate appears in southern Central Asia and western Xinjiang due to decreasing precipitation. During the LGM, the MMM shows that the regionally averaged SAT decreases by 5.04/4.36/4.70/5.12/5.88°C and precipitation decreases by 27.78%/28.16%/31.56%/27.74%/23.29% annually and in the spring, summer, autumn, and winter, respectively. Robust drying occurs throughout almost the whole core area. Decreasing precipitation plays a dominant role in shaping the drier conditions, whereas strong cooling plays a secondary but opposite role. In response to the LGM external forcings, over Central Asia and Xinjiang, the seasonal cycle of precipitation has a smaller amplitude compared with that under the PI climate. In the model-data comparison, the simulated MH moisture changes over ACA are to some extent consistent with the reconstructions, further confirming that drier conditions occurred during that period than during the PI.展开更多
The concentrations of rare earth elements(REEs)in the bulk sediment of Core X2,which was collected from southeastern Hainan Island,were analyzed to investigate the relative contributions of various provenance regions ...The concentrations of rare earth elements(REEs)in the bulk sediment of Core X2,which was collected from southeastern Hainan Island,were analyzed to investigate the relative contributions of various provenance regions since mid-Holocene.The results show that sediments in Core X2 were primarily derived from Hainan Island with lesser amounts from Taiwan and limited input from the Pearl River.Based on the application of quantitative inversion to model the REE data,the average contributions of river materials from southeastern Hainan Island and southwestern Taiwan to the study area were 68%and 32%,respectively.Furthermore,starting at 4.0 kyr BP,the transport of fluvial sediments from Taiwan to the study region increased due to enhanced hydrodynamics in South China Sea(SCS).These results indicate that the contributions of mountain river materials from Hainan Island and Taiwan to the continental shelf of northern SCS are non-negligible.Furthermore,these results demonstrate that mountain rivers can play an important role in the material cycle of continental margins and may feature a greater impact than large river systems in specific continental shelf areas.展开更多
Previous research on climatic change in the Mid-Holocene in China indicates that it was a warm and humid period, accompanied by stronger summer monsoons, and it is defined as the Megatherrnal in the Holocene, or the H...Previous research on climatic change in the Mid-Holocene in China indicates that it was a warm and humid period, accompanied by stronger summer monsoons, and it is defined as the Megatherrnal in the Holocene, or the Holocene Optimum period. However, this conclusion is mainly dh'eeted at the monsoonal region in eastem China. In this research, we chose the Gonghe Basin in the northeastern Qinghai-Tibetan Plateau as the study area. Geochemical analysis of the profiles of paleosols and aeolian sand in the Santala area in the middle of the Gonghe Basin, along with OSL (optically stimulated luminescence) dating, indicates that the regional climate has experienced several warm-humid and cold-dry cycles since 11.8 ka. In particular, the Mid-Holocene (8.14.6 ka) was relatively cold and dry as evidenced by drastic fluctuations in chemical weathering degree and humidity, a higher aridity index, and sparse vegetation, accompanying increased winter monsoonal strength. In order to clarify whether this is an individual or local signal, we compared our geochemical analysis results with lake and peat records and aeolian de- posits of the monsoonal boundary region. The results indicate that the climate deteriorated widely, with declines in temperature and moisture, in the Mid-Holocene in the modem monsoonal boundary zone. Furthermore, the duration of climate deteriora- tion (relatively dry period) generally decreased from west to east in the aforementioned regions. Therefore, this dry phase in Gonghe Basin may be representative of dry events in Mid-Holocene in northem China. In addition, we discuss the reasons for this dry climate from several perspectives: (1) it probably can be attributed to a decline in summer monsoonal strength; (2) the regional evaporation loss (forced by high temperature) was not compensated by regional precipitation; (3) the thermal dynamic effect of the Qinghai-Tibetan Plateau.展开更多
Early proxy-based studies suggested that there potentially occurred a "southern drought/northern flood" (SDNF) over East China in the mid-Holocene (from roughly 7000 to 5000 years before present).In this study,w...Early proxy-based studies suggested that there potentially occurred a "southern drought/northern flood" (SDNF) over East China in the mid-Holocene (from roughly 7000 to 5000 years before present).In this study,we used both global and regional atmospheric circulation models to demonstrate that the SDNF-namely,the precipitation increases over North China and decreases over the the lower reaches of the Yangtze River Valley--could have taken place in the mid-Holocene.We found that the SDNF in the mid-Holocene was likely caused by the lower SST in the Pacific.The lowered SST and the higher air temperature over China's Mainland increased the land-sea thermal contrast and,as a result,strengthened the East Asian summer monsoon and enhanced the precipitation over North China.展开更多
In this study, to reconstruct the paleoclimatic history, pollen and oxygen isotope were analyzed on the 160 samples of a 2.7 m peat core from Taishizhuang, Huailai County, Hebei Province. Combining our data with other...In this study, to reconstruct the paleoclimatic history, pollen and oxygen isotope were analyzed on the 160 samples of a 2.7 m peat core from Taishizhuang, Huailai County, Hebei Province. Combining our data with other information of climate history and archaeology from this area, we found that there is a close linkage between cultural development and the mid-Holocene (6000-3000 cal. aBP) environment changes. The main results and conclusions are presented as the following: The climate during 5678-5400 cal. aBP was unstable and in general colder and drier than today. From 5400 to 4800 cal. aBP the climate was much warmer and wetter than before. The climate during 4800-4300 cal. aBP was persistently cold, with an exceptional cold event occurring at 4600-4300 cal. aBP. This cold event was recorded at several other localities in Northern China even the Northern Hemisphere and played an important role in the cultural development. After the cold event, there was a return to warmer conditions between 4200 and展开更多
Climate proxies, such as total organic carbon and nitrogen (TOC, TN), carbonate content (CaCO3), grain-size and pollen of the sediment core retrieved from enclosed Lake Daihai which lies in the north China environment...Climate proxies, such as total organic carbon and nitrogen (TOC, TN), carbonate content (CaCO3), grain-size and pollen of the sediment core retrieved from enclosed Lake Daihai which lies in the north China environment sensitive zone are analyzed to reconstruct the environment evolution of the area based on high-resolution radiocarbon chronology. The results reveal that the TOC and TN contents of the sediments correlate well with pollen percentage and pollen flux variations during the Holocene, and both reach their peak values simultaneously at 6.7―3.5 ka BP (calendar age, 7.6―3.6 ka BP). Since 6.7 ka BP, both the CaCO3 and organic matter contents of the core have simultaneous variations, and their high values also occur during 6.7―3.5 ka BP. While during 9.0―6.7 ka BP (calendar age, 10―7.6 ka BP) relatively lower level of organic matter content and pollen flux corre- spond to the higher level of carbonate content. The above relations suggest that during 6.7―3.5 ka BP, the productivity and effective precipitation were greatly improved in the lake drainage area, and this would probably strengthen the hydrodynamic conditions, enhancing organic matter, pollen and carbonate inputs from terrestrial sources. Such processes would account for the enrichment of both organic matter and carbonate in the sediments. While during 9.0―6.7 ka BP, the lower level of or- ganic matter, pollen flux but high carbonate content show depressed productivity and declined vege- tation coverage. The higher carbonate content at this stage would have probably resulted from the higher evaporation ratio of the lake water under relatively drier climate conditions. Therefore, it is in- ferred that during 6.7―3.5 ka BP, the climate was more humid with abundant rainfalls and vegetation was more flourishing in the Lake Daihai area. This can be seen as Holocene Climate Optimum (HCO). As a result, this has evident discrepancies with the traditional notion that the HCO occurs at Early Holocene or early Mid-Holocene.展开更多
IN recent years, much progress has been made in the research of the temporal and spatial changes of East Asian monsoon. To research the environmental evolution and monsoon variations in Holocene in the region of South...IN recent years, much progress has been made in the research of the temporal and spatial changes of East Asian monsoon. To research the environmental evolution and monsoon variations in Holocene in the region of Southwest China, a 310-cm continuous lake sediments core in Erhai Lake, Yunnan Province was sampled with Livingston sampler on July 6, 1996. The lake sediments were separated at 2-cm intervals and the core samples were analyzed with chronology, stable isotope ratios of organic carbon and diatoms determination. Three <sup>14</sup>C ages are (4 473±40)a B.P. (98—102 cm), (5 825±85) a B. P. (144—148 cm) and (7 754±45) a B.P. (198—202 cm). By <sup>137</sup>Cs dating, the sedimentation rate is about 0.3 mm/a and this result is close to the <sup>14</sup>C dating results. The average sedimentation rates展开更多
Biomization provides an important way to assign pollen taxa to biomes and to simulate palaeo-vegetation patterns, so that pollen data can be mapped to reconstruct biogeography and climate. The authors have tested the ...Biomization provides an important way to assign pollen taxa to biomes and to simulate palaeo-vegetation patterns, so that pollen data can be mapped to reconstruct biogeography and climate. The authors have tested the applicability of this procedure to assign modern pollen surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to 6 ka B.P. fossil pollen samples, the reconstructions showed that the forest zones were systematically shifted northwards ca. 300\500 km beyond their present northern limits in eastern China; the area of desert and steppe vegetation was reduced compared to the present in northwestern China; the area of tundra was reduced largely on the Tibetan Plateau. This research is a contribution to the project of BIOME 6000 in Pacific-Asian regions.展开更多
Using a regional climate model MM5 nested with an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate responses of the mid-Holocene climate to ...Using a regional climate model MM5 nested with an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate responses of the mid-Holocene climate to different factors over China. Model simulations of the mid-Holocene climate change, especially the precipitation change, are in good agreement with the geologic records. Model results show that relative to the present day (PD) climate, the temperature over China increased in the mid-Holocene, and the increase in summer is more than that in winter. The summer monsoon strengthened over the eastern China north of 30°N, and the winter monsoon weakened over the whole eastern China; the precipitation increased over the west part of China, North China, and Northeast China, and decreased over the south part of China. The sensitive experiments indicate that changes in the global climate (large-scale circulation background), vegetation, earth orbital parameter, and CO2 concentration led to the mid-Holocene climate change relative to the PD climate, and changes in precipitation, temperature and wind fields were mainly affected by change of the large-scale circulation background, especially with its effect on precipitation exceeding 50%. Changes in vegetation resulted in increasing of temperature in both winter and summer over China, especially over eastern China; furthermore, its effect on precipitation in North China accounts for 25% of the total change. Change in the orbital parameter produced the larger seasonal variation of solar radiation in the mid-Holocene than the PD, which resulted in declining of temperature in winter and increasing in summer; and also had an important effect on precipitation with an effect equivalent to vegetation in Northeast China and North China. During the mid-Holocene, CO2 content was only 280×10^-6, which reduced temperature in a very small magnitude. Therefore, factors affecting the mid-Holocene climate change over China from strong to weak are large-scale circulation pattern, vegetation, earth orbital parameter, and CO2 concentration.展开更多
A 700-year record (1.0-1.5 a resolution) of the East Asian winter monsoon (EAWM), based on grain-size analysis and AMSI4C dating of Core EC2005 from the inner-shelf mud wedge of the East China Sea (ECS), was com...A 700-year record (1.0-1.5 a resolution) of the East Asian winter monsoon (EAWM), based on grain-size analysis and AMSI4C dating of Core EC2005 from the inner-shelf mud wedge of the East China Sea (ECS), was compared with the Dongge stalagmite 8180 record during the mid-Holocene. The upper muddy section of Core EC2005 has been formed mainly by suspended sediments derived from the Changjiang (Yangtze) River mouth since 7.3 ka BP. High precipitation and a strengthened EAWM might have played key roles in the high sedimentation rate (1 324-1 986 crn/ka) between 5.9-5.2 ka BP. The EAWM strengthened when the Asian summer monsoon weakened, especially around 5 500 a BE which corresponded to a worldwide cold event. The EAWM during the mid-Holocene shows statistically significant solar periodicities at 62 and 11 a. The 5 500 a BP cold event might be resulted from orbital forcing and changes in solar activity.展开更多
Paleoclimate modelling is one of the core topics in the Past Global Changes project under the International Geosphere-Biosphere Programme and has received much attention worldwide in recent decades. Here we summarize ...Paleoclimate modelling is one of the core topics in the Past Global Changes project under the International Geosphere-Biosphere Programme and has received much attention worldwide in recent decades. Here we summarize the research on the Paleoclimate modeling, including the Holocene, Last Glacial Maximum, and pre-Quaternary climate intervals or events performed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP/CAS) for over one decade. As an attempt to review these academic activities, we emphasize that vegetation and ocean feedbacks can amplify East Asian climate response to the Earth's orbital parameters and atmospheric CO2 concentration at the mid-Holocene. At the Last Glacial Maximum, additional cooling in interior China is caused by the feedback effects of East Asian vegetation and the ice sheet over the Tibetan Plateau, and the regional climate model RegCM2 generally reduces data-model discrepancies in East Asia. The simulated mid-Pliocene climate is characterized by warmer and drier conditions as well as significantly weakened summer and winter monsoon systems in interior China. On a tectonic timescale, both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of East Asian monsoon-dominant environmental pattern during the Cenozoic.展开更多
The heavy mineral compositions of the sediments in core D04 with a length of 20.2 m from the muddy area outside the Oujiang Estuary along the coast of Zhejiang-Fujian Provinces have been analyzed. Core D04 can be divi...The heavy mineral compositions of the sediments in core D04 with a length of 20.2 m from the muddy area outside the Oujiang Estuary along the coast of Zhejiang-Fujian Provinces have been analyzed. Core D04 can be divided into three units: DU1(0–7.4 m), DU2(7.4–11.4 m) and DU3(11.4–20.2 m). The results showed that the heavy minerals are authigenic pyrite(65.6%)– hornblende(16.0%) – epidote(4.6%) assemblages. The core sediments are mainly composed of clayey silt, which belongs to the clinoform deposit formed since 5.8 kyr, indicating a weak hydrodynamic environment. The deposition rates changed in the trend of high-low-high upward. Quantitative analysis shows that the core sediments were mainly from the suspended sediments of the Changjiang(Yangtze) River, accounting for 79.2%, with only 10.0% from Oujiang, and 10.8% from other provenance. The Oujiang-derived sediments were gradually increased from the bottom unit DU3(3.1%) to the top unit DU1(17.8%), but the Changjiang-derived sediments were gradually decreased. The source changes are closely related to the development of Yangtze River Delta and Wenzhou Bay, climate changes and human activities. During the period of 2.1–3.7 kyr, the sediment supply was greatly reduced due to the poor reclamation capacity of the river basins, resulting in a low deposition rate. Since 2 kyr, the enhancement of human activities in the Yangtze River Basin and the Oujiang River Basin led to more soils to be eroded and transported to the study area. Due to the short distance of the site of core D04 from the Oujiang River mouth, the study area received more Oujiang-derived sediments when upper unit(DU1) deposited than the lower units(DU2 and DU3).展开更多
The effective precipitation and the frame of atmospheric circulation in the past three key periods, i.e. 30 ka BP, 18 ka BP and 6 ka BP, have been analyzed on the basis of the palaeolake status record produced by the ...The effective precipitation and the frame of atmospheric circulation in the past three key periods, i.e. 30 ka BP, 18 ka BP and 6 ka BP, have been analyzed on the basis of the palaeolake status record produced by the Chinese Lake Status Data Base. The results show that the west-central part of China was characterized by high lake-levels at 30 ka BP, resulting from strengthened southwest monsoons; whereas the high lake stand, occurring in the west-central part of China at 18 ka BP, was caused by the southward shift and the strengthening of westerlies although the high-stand distribution was reduced. Meanwhile, the east-central part of China was under the control of strong winter monsoons at 18 ka BP. The high lake-levels, which occurred in the east-central part of China at 6 ka BP, are related to the enhanced East-Asian summer monsoons; while the lowering of the lake-level in the west-central part of China at 6 ka BP was due to the northward shift and corresponding shrink of the westerlies.A comparison between the lake status and the palaeoclimate models has shown that there do exist discrepancies between the geological evidence and the model simulations. The agreement between them provides a possible mechanical explanation on the geological phenomena, but the discrepancy shows that the model needs to be revised to a great extent.展开更多
Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recog...Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recognized species, of which A. bivittatus, A. grayanus and A. pannonicus are documented from Iran. In the present study, we modeled with MaxEnt the potential distribution areas and determined the suitable habitats in past (mid-Holocene [MH], and the Last Interglacial [LIG]) and their current distribution for two species of snake-eyed skinks (A. grayanus and A. pannonicus) separately. Models of the species indicated good fit by the average high area under the curve (AUC) values (A. grayanus = 0.929 4- 0.087 and A. pannonicus = 0.979 4- 0.007). Precipitation of the driest quarter of the year, mean temperature of the coldest quarter of the year, and precipitation of the driest month variables made important contributions to A. grayanus. Two important climate variables contributed importantly to A. pannonicus; temperature seasonality, and mean temperature of the wettest quarter of the year, and one topographic variable, slope. We conclude that these variables form a natural barrier for species dispersal. The MH and the LGM models indicated a larger suitable area than the current distribution.展开更多
In order to investigate pluvial lakes in the Gobi two places were selected for field studies: Khongoryn Els inSouth- and Mongol Els in West-Mongolia. In the eastern and central parts of Khongoryn Els two small endorhe...In order to investigate pluvial lakes in the Gobi two places were selected for field studies: Khongoryn Els inSouth- and Mongol Els in West-Mongolia. In the eastern and central parts of Khongoryn Els two small endorheic basins,Bayan Tukhem and Khongoryn Gol depressions were studied. Pluvial lake deposits and beach ridges both supposedly mid-Holocenein age give evidence of a 9m and a 15m deep freshwater lake,respectively. Today both depressions are nearlydried out and exposed to wind deflation. A different situation was found at Uujin Sair river valley which cuts through thedune field at its lowest and narrowest (3 km) part. Here, a 22.5 m thick fossil accumulation of at least 20 layers of fine sand(dune sand)alternating with silt(fluvial playa sediment)was exposed and OSL dated. 12 dates ranging between 14ka and17ka reveal the accumulation as Late Glacial which correlates well with the aridity at that time reported for Central Asia byseveral authors. Interpreting the dates it seems obvious that the whole sediment was quickly deposited in a period of about16ka,and shortly after dissected by the Uujin Sair during a similar short time due to increasing humidity of the climate.Another situation was found at the eastern rim of Mongol Els. Two rivers,Shurgiyn Gol and Zavran Gol are impinging hereon the high dunes which have damed both rivers in the past. A younger, shallow lake existed during mid-Holocene( ^(14)C-dated to some 5.5ka)and a large, 17m deep lake( ^(14)C -- dated to some 39ka) probably during stage 4. Expected OSLdates will hopefully support this hypothesis. Anyhow, the palaeogeography of the dune field was different from today; itmoved eastward daming the large river Shurgiyn Gol.展开更多
基金supported by the National Outstanding Youth Foundation under Grant No.40125014the Chinese Academy of Sciences Key Project under Grant KZCX3-AW-133.
文摘An atmospheric general circulation model (AGCM) and an oceanic general circulation model (OGCM) are asynchronously coupled to simulate the climate of the mid-Holocene period. The role of the solar radiation and ocean in the mid-Holocene East Asian monsoon climate is analyzed and some mechanisms are revealed. At the forcing of changed solar radiation induced by the changed orbital parameters and the changed SST simulated by the OGCM, compared with when there is orbital forcing alone, there is more precipitation and the monsoon is stronger in the summer of East Asia, and the winter temperature increases over China. These agree better with the reconstructed data. It is revealed that the change of solar radiation can displace northward the ITCZ and the East Asia subtropical jet, which bring more precipitation over the south of Tibet and North and Northeast China. By analyzing the summer meridional latent heat transport, it is found that the influence of solar radiation change is mainly to increase the convergence of atmosphere toward the land, and the influence of SST change is mainly to transport more moisture to the sea surface atmosphere. Their synergistic effect on East Asian precipitation is much stronger than the sum of their respective effects.
基金This research was supported by the Na- tional Natural Science Foundation of China (NSFC) (Grant No. 40571169) the NSFC Innovation Team Project (Grant No. 40421101).
文摘By using a 9-level global atmospheric general circulation model developed at the Institute of Atmospheric Physics (IAP9L-AGCM) under the Chinese Academy of Sciences, the authors investigated the response of the East Asian monsoon climate to changes both in orbital forcing and the snow and glaciers over the Tibetan Plateau at the mid-Holocene, about 6000 calendar years before the present (6 kyr BP). With the Earth's orbital parameters appropriate for the mid-Holocene, the IAP9L-AGCM computed warmer and wetter conditions in boreal summer than for the present day. Under the precondition of continental snow and glacier cover existing over part of the Tibetan Plateau at the mid-Holocene, the authors examined the regional climate response to the Tibetan Plateau cooling. The simulations indicated that climate changes in South Asia and parts of central Asia as well as in East Asia are sensitive to the Tibetan Plateau cooling at the mid-Holocene, showing a significant decrease in precipitation in northern India, northern China and southern Mongolia and an increase in Southeast Asia during boreal summer. The latter seems to correspond to the weakening, southeastward shift of the Asian summer monsoon system resulting from reduced heat contrast between the Eurasian continent and the Pacific and Indian Oceans when a cooling over the Tibetan Plateau was imposed. The simulation results suggest that the snow and glacier environment over the Tibetan Plateau is an important factor for mid-Holocene climate change in the areas highly influenced by the Asian monsoon.
基金supported by the National Natural Science Foundation of China(Grant No.41222034)
文摘Using the simulations performed by 15 cli mate models under the latest protocol of the Paleoclimate Modeling Intercomparison Project(PMIP)Phase 3(PMIP3),the authors revisited the annual and seasona temperature changes over China during the mid-Holocene Similar to the previous results produced by PMIP Phase 1(PMIP1)and 2(PMIP2)models,14(15)of the 15 PMIP3models reproduced colder annual(boreal winter and spring)temperature in response to mid-Holocene insola tion changes,with an average cooling of 0.33 K(1.31 K and 1.58 K)over China.The mid-Holocene boreal sum mer(autumn)temperature increased in all(13)of the 15PMIP3 models,with an average warming of 1.02 K(0.61K)at the national scale.Those changes simulated by the PMIP3 models were similar to those from the PMIP2simulations but generally weaker than those from the PMIP1 models.A considerable mismatch still existed between the simulated cooling by the PMIP3 models and the reconstructed warming for annual and winter tem peratures over China during the mid-Holocene,as wa also the case between the previous PMIP1/2 simulation and proxy data.
基金supported by the Chinese National Basic Research Program(Grant Nos.2010CB950502 and 2012CB955202)the "Strategic Priority Research Program Climate Change:Carbon Budget and Relevant Issues" of the Chinese Academy of Sciences(Grant No.XDA05110301)+2 种基金the National Natural Science Foundation of China(Grant Nos.41006008 and 41023002)the public science and technology research funds projects of meteorology(Grant No.GYHY200906020)the National Key Technologies R&D Program project(Grant No.2010AA012302)
文摘Paleoclimate simulations of the mid-Holocene (MH) and Last Glacial maximum (LGM) by the latest versions of the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 and Grid-point Version 2 (FGOALS-s2 and g2) are evaluated in this study. The MH is characterized by changes of insolation induced by orbital parameters, and the LGM is a glacial period with large changes in greenhouse gases, sea level and ice sheets. For the MH, both versions of FGOALS simulate reasonable responses to the changes of insolation, such as the enhanced summer monsoon in African-Asian regions. Model differences can be identified at regional and seasonal scales. The global annual mean surface air temperature (TAS) shows no significant change in FGOALS-s2, while FGOALS-g2 shows a global cooling of about 0.7~C that is related with a strong cooling during boreal winter. The amplitude of ENSO is weaker in FGOALS-g2, which agrees with proxy data. For the LGM, FGOALS-g2 captures the features of the cold and dry glacial climate, including a global cooling of 4.6℃ and a decrease in precipitation by 10%. The ENSO is weaker at the LGM, with a tendency of stronger ENSO cold events. Sensitivity analysis shows that the Equilibrium Climate Sensitivity (ECS) estimated for FGOALS ranges between 4.23℃ and 4.59℃. The sensitivity of precipitation to the changes of TAS is -2.3%℃-1, which agrees with previous studies. FGOALS-g2 shows better simulations of the Atlantic Meridional Overturning Circulation (AMOC) and African summer monsoon precipitation in the MH when compared with FGOALS-gl.0; however, it is hard to conclude any improvements for the LGM.
基金supported by the National Natural Science Foundation of China(Grant Nos. 41222034 and 41175072)
文摘Mid-Holocene ocean feedback on global monsoon area, global monsoon precipitation(GMP), and GMP intensity(GMPI) was investigated by a set of numerical experiments performed with the Community Climate System Model version 4. Results showed that ocean feedback induced an increase in land monsoon area for northern Africa but a decrease for Asia and North and South America, and led to an increase in ocean monsoon area for the western Indian Ocean and southeastern Pacific but a decrease for the eastern Indian Ocean, tropical western Pacific, and tropical West Atlantic between the mid-Holocene and pre-industrial period. Dynamic oceaninduced changes in GMP and GMPI were 10.9×109 m3 d-1and-0.11 mm d-1 between the two periods, respectively.Ocean feedback induced consistent change between the Northern and Southern Hemisphere land or ocean but opposite change between land and ocean in the Northern or Southern Hemisphere monsoon areas for monsoon precipitation. The mid-Holocene summer changes in meridional temperature gradient and land-sea thermal contrast were the underlying mechanisms.
基金This research was supported by the National Key R&D Program of China (Grant No. 2018YFA0606403)the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDA20070103)+1 种基金the National Natural Science Foundation of China (Grants 41822502)the CAS–PKU Joint Research Program
文摘In this study, the climate changes over Arid Central Asia(ACA) during the mid-Holocene(approximately 6,000 calendar years ago, MH) and the Last Glacial Maximum(approximately 21,000 calendar years ago, LGM) were investigated using multimodel simulations derived from the Paleoclimate Modelling Intercomparison Project Phase 3(PMIP3). During the MH, the multimodel median(MMM) shows that in the core region of ACA, the regionally averaged annual surface air temperature(SAT) decreases by 0.13°C and annual precipitation decreases by 3.45%, compared with the preindustrial(PI) climate. The MMM of the SAT increases by 1.67/0.13°C in summer/autumn, whereas it decreases by 1.23/1.11°C in spring/winter. The amplitude of the seasonal cycles of the SAT increases over ACA due to different MH orbital parameters. For precipitation, the regionally averaged MMM decreases by 5.77%/5.69%/0.39%/5.24% in spring/summer/autumn/winter, respectively. Based on the analysis of the aridity index(AI), compared with the PI, a drier climate appears in southern Central Asia and western Xinjiang due to decreasing precipitation. During the LGM, the MMM shows that the regionally averaged SAT decreases by 5.04/4.36/4.70/5.12/5.88°C and precipitation decreases by 27.78%/28.16%/31.56%/27.74%/23.29% annually and in the spring, summer, autumn, and winter, respectively. Robust drying occurs throughout almost the whole core area. Decreasing precipitation plays a dominant role in shaping the drier conditions, whereas strong cooling plays a secondary but opposite role. In response to the LGM external forcings, over Central Asia and Xinjiang, the seasonal cycle of precipitation has a smaller amplitude compared with that under the PI climate. In the model-data comparison, the simulated MH moisture changes over ACA are to some extent consistent with the reconstructions, further confirming that drier conditions occurred during that period than during the PI.
基金funded by the National Natural Science Foundation of China (Nos. 41576058, 41106040)the China Postdoctoral Science Foundation (No. 2017M6 10403)+1 种基金the Taishan Scholar Project Funding (No. tspd2016 1007)Project of China Geological Survey (No. DD 20191010)
文摘The concentrations of rare earth elements(REEs)in the bulk sediment of Core X2,which was collected from southeastern Hainan Island,were analyzed to investigate the relative contributions of various provenance regions since mid-Holocene.The results show that sediments in Core X2 were primarily derived from Hainan Island with lesser amounts from Taiwan and limited input from the Pearl River.Based on the application of quantitative inversion to model the REE data,the average contributions of river materials from southeastern Hainan Island and southwestern Taiwan to the study area were 68%and 32%,respectively.Furthermore,starting at 4.0 kyr BP,the transport of fluvial sediments from Taiwan to the study region increased due to enhanced hydrodynamics in South China Sea(SCS).These results indicate that the contributions of mountain river materials from Hainan Island and Taiwan to the continental shelf of northern SCS are non-negligible.Furthermore,these results demonstrate that mountain rivers can play an important role in the material cycle of continental margins and may feature a greater impact than large river systems in specific continental shelf areas.
基金funded by the National Natural Science Foundation of China (No. 40971005)
文摘Previous research on climatic change in the Mid-Holocene in China indicates that it was a warm and humid period, accompanied by stronger summer monsoons, and it is defined as the Megatherrnal in the Holocene, or the Holocene Optimum period. However, this conclusion is mainly dh'eeted at the monsoonal region in eastem China. In this research, we chose the Gonghe Basin in the northeastern Qinghai-Tibetan Plateau as the study area. Geochemical analysis of the profiles of paleosols and aeolian sand in the Santala area in the middle of the Gonghe Basin, along with OSL (optically stimulated luminescence) dating, indicates that the regional climate has experienced several warm-humid and cold-dry cycles since 11.8 ka. In particular, the Mid-Holocene (8.14.6 ka) was relatively cold and dry as evidenced by drastic fluctuations in chemical weathering degree and humidity, a higher aridity index, and sparse vegetation, accompanying increased winter monsoonal strength. In order to clarify whether this is an individual or local signal, we compared our geochemical analysis results with lake and peat records and aeolian de- posits of the monsoonal boundary region. The results indicate that the climate deteriorated widely, with declines in temperature and moisture, in the Mid-Holocene in the modem monsoonal boundary zone. Furthermore, the duration of climate deteriora- tion (relatively dry period) generally decreased from west to east in the aforementioned regions. Therefore, this dry phase in Gonghe Basin may be representative of dry events in Mid-Holocene in northem China. In addition, we discuss the reasons for this dry climate from several perspectives: (1) it probably can be attributed to a decline in summer monsoonal strength; (2) the regional evaporation loss (forced by high temperature) was not compensated by regional precipitation; (3) the thermal dynamic effect of the Qinghai-Tibetan Plateau.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant XDB03020602)the National Natural Science Foundation of China (Grant No. 41130103)+1 种基金the "Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05120703)the "Introduction of Advanced International Forestry Science and Technology" of the State Forestry Administration (2012-4-79)
文摘Early proxy-based studies suggested that there potentially occurred a "southern drought/northern flood" (SDNF) over East China in the mid-Holocene (from roughly 7000 to 5000 years before present).In this study,we used both global and regional atmospheric circulation models to demonstrate that the SDNF-namely,the precipitation increases over North China and decreases over the the lower reaches of the Yangtze River Valley--could have taken place in the mid-Holocene.We found that the SDNF in the mid-Holocene was likely caused by the lower SST in the Pacific.The lowered SST and the higher air temperature over China's Mainland increased the land-sea thermal contrast and,as a result,strengthened the East Asian summer monsoon and enhanced the precipitation over North China.
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 49894170, 49571066 and 49733130).
文摘In this study, to reconstruct the paleoclimatic history, pollen and oxygen isotope were analyzed on the 160 samples of a 2.7 m peat core from Taishizhuang, Huailai County, Hebei Province. Combining our data with other information of climate history and archaeology from this area, we found that there is a close linkage between cultural development and the mid-Holocene (6000-3000 cal. aBP) environment changes. The main results and conclusions are presented as the following: The climate during 5678-5400 cal. aBP was unstable and in general colder and drier than today. From 5400 to 4800 cal. aBP the climate was much warmer and wetter than before. The climate during 4800-4300 cal. aBP was persistently cold, with an exceptional cold event occurring at 4600-4300 cal. aBP. This cold event was recorded at several other localities in Northern China even the Northern Hemisphere and played an important role in the cultural development. After the cold event, there was a return to warmer conditions between 4200 and
基金This work was supported by the National Basic Research Program of China(Grant No.2004CB720200)the National Natural Science Foundation of China(Grant No.40502020)+1 种基金the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX2-SW-118)the Foundation of State Key Lab of Loess and Quaternary Geology(Grant No.SKLLG015).
文摘Climate proxies, such as total organic carbon and nitrogen (TOC, TN), carbonate content (CaCO3), grain-size and pollen of the sediment core retrieved from enclosed Lake Daihai which lies in the north China environment sensitive zone are analyzed to reconstruct the environment evolution of the area based on high-resolution radiocarbon chronology. The results reveal that the TOC and TN contents of the sediments correlate well with pollen percentage and pollen flux variations during the Holocene, and both reach their peak values simultaneously at 6.7―3.5 ka BP (calendar age, 7.6―3.6 ka BP). Since 6.7 ka BP, both the CaCO3 and organic matter contents of the core have simultaneous variations, and their high values also occur during 6.7―3.5 ka BP. While during 9.0―6.7 ka BP (calendar age, 10―7.6 ka BP) relatively lower level of organic matter content and pollen flux corre- spond to the higher level of carbonate content. The above relations suggest that during 6.7―3.5 ka BP, the productivity and effective precipitation were greatly improved in the lake drainage area, and this would probably strengthen the hydrodynamic conditions, enhancing organic matter, pollen and carbonate inputs from terrestrial sources. Such processes would account for the enrichment of both organic matter and carbonate in the sediments. While during 9.0―6.7 ka BP, the lower level of or- ganic matter, pollen flux but high carbonate content show depressed productivity and declined vege- tation coverage. The higher carbonate content at this stage would have probably resulted from the higher evaporation ratio of the lake water under relatively drier climate conditions. Therefore, it is in- ferred that during 6.7―3.5 ka BP, the climate was more humid with abundant rainfalls and vegetation was more flourishing in the Lake Daihai area. This can be seen as Holocene Climate Optimum (HCO). As a result, this has evident discrepancies with the traditional notion that the HCO occurs at Early Holocene or early Mid-Holocene.
文摘IN recent years, much progress has been made in the research of the temporal and spatial changes of East Asian monsoon. To research the environmental evolution and monsoon variations in Holocene in the region of Southwest China, a 310-cm continuous lake sediments core in Erhai Lake, Yunnan Province was sampled with Livingston sampler on July 6, 1996. The lake sediments were separated at 2-cm intervals and the core samples were analyzed with chronology, stable isotope ratios of organic carbon and diatoms determination. Three <sup>14</sup>C ages are (4 473±40)a B.P. (98—102 cm), (5 825±85) a B. P. (144—148 cm) and (7 754±45) a B.P. (198—202 cm). By <sup>137</sup>Cs dating, the sedimentation rate is about 0.3 mm/a and this result is close to the <sup>14</sup>C dating results. The average sedimentation rates
文摘Biomization provides an important way to assign pollen taxa to biomes and to simulate palaeo-vegetation patterns, so that pollen data can be mapped to reconstruct biogeography and climate. The authors have tested the applicability of this procedure to assign modern pollen surface samples from China to biomes. The procedure successfully delineated the major vegetation types of China. When the same procedure was applied to 6 ka B.P. fossil pollen samples, the reconstructions showed that the forest zones were systematically shifted northwards ca. 300\500 km beyond their present northern limits in eastern China; the area of desert and steppe vegetation was reduced compared to the present in northwestern China; the area of tundra was reduced largely on the Tibetan Plateau. This research is a contribution to the project of BIOME 6000 in Pacific-Asian regions.
基金the National Natural Science Foundation of China under Grant Nos.40231011,90102055,and 40233034.
文摘Using a regional climate model MM5 nested with an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate responses of the mid-Holocene climate to different factors over China. Model simulations of the mid-Holocene climate change, especially the precipitation change, are in good agreement with the geologic records. Model results show that relative to the present day (PD) climate, the temperature over China increased in the mid-Holocene, and the increase in summer is more than that in winter. The summer monsoon strengthened over the eastern China north of 30°N, and the winter monsoon weakened over the whole eastern China; the precipitation increased over the west part of China, North China, and Northeast China, and decreased over the south part of China. The sensitive experiments indicate that changes in the global climate (large-scale circulation background), vegetation, earth orbital parameter, and CO2 concentration led to the mid-Holocene climate change relative to the PD climate, and changes in precipitation, temperature and wind fields were mainly affected by change of the large-scale circulation background, especially with its effect on precipitation exceeding 50%. Changes in vegetation resulted in increasing of temperature in both winter and summer over China, especially over eastern China; furthermore, its effect on precipitation in North China accounts for 25% of the total change. Change in the orbital parameter produced the larger seasonal variation of solar radiation in the mid-Holocene than the PD, which resulted in declining of temperature in winter and increasing in summer; and also had an important effect on precipitation with an effect equivalent to vegetation in Northeast China and North China. During the mid-Holocene, CO2 content was only 280×10^-6, which reduced temperature in a very small magnitude. Therefore, factors affecting the mid-Holocene climate change over China from strong to weak are large-scale circulation pattern, vegetation, earth orbital parameter, and CO2 concentration.
基金Supported by the National Natural Science Foundation of China (Nos. 40576032 and 40776030)Doctor Foundation of China University of Petroleum
文摘A 700-year record (1.0-1.5 a resolution) of the East Asian winter monsoon (EAWM), based on grain-size analysis and AMSI4C dating of Core EC2005 from the inner-shelf mud wedge of the East China Sea (ECS), was compared with the Dongge stalagmite 8180 record during the mid-Holocene. The upper muddy section of Core EC2005 has been formed mainly by suspended sediments derived from the Changjiang (Yangtze) River mouth since 7.3 ka BP. High precipitation and a strengthened EAWM might have played key roles in the high sedimentation rate (1 324-1 986 crn/ka) between 5.9-5.2 ka BP. The EAWM strengthened when the Asian summer monsoon weakened, especially around 5 500 a BE which corresponded to a worldwide cold event. The EAWM during the mid-Holocene shows statistically significant solar periodicities at 62 and 11 a. The 5 500 a BP cold event might be resulted from orbital forcing and changes in solar activity.
基金the National Natural Science Foundation of China under Grant Nos. 40620130113 , 40405015 by tile CAS Innovative Research International Partnership Project.
文摘Paleoclimate modelling is one of the core topics in the Past Global Changes project under the International Geosphere-Biosphere Programme and has received much attention worldwide in recent decades. Here we summarize the research on the Paleoclimate modeling, including the Holocene, Last Glacial Maximum, and pre-Quaternary climate intervals or events performed at the Institute of Atmospheric Physics under the Chinese Academy of Sciences (IAP/CAS) for over one decade. As an attempt to review these academic activities, we emphasize that vegetation and ocean feedbacks can amplify East Asian climate response to the Earth's orbital parameters and atmospheric CO2 concentration at the mid-Holocene. At the Last Glacial Maximum, additional cooling in interior China is caused by the feedback effects of East Asian vegetation and the ice sheet over the Tibetan Plateau, and the regional climate model RegCM2 generally reduces data-model discrepancies in East Asia. The simulated mid-Pliocene climate is characterized by warmer and drier conditions as well as significantly weakened summer and winter monsoon systems in interior China. On a tectonic timescale, both the Tibetan Plateau uplift and the Paratethys Sea retreat play important roles in the formation of East Asian monsoon-dominant environmental pattern during the Cenozoic.
基金funded by China-ASEAN maritime cooperation fund: Comparative Study of Holocene Sedimentary Evolution of the Yangtze River Delta and the Red River Deltathe National Natural Science Foundation of China (Nos. 41706074 and 41506107)
文摘The heavy mineral compositions of the sediments in core D04 with a length of 20.2 m from the muddy area outside the Oujiang Estuary along the coast of Zhejiang-Fujian Provinces have been analyzed. Core D04 can be divided into three units: DU1(0–7.4 m), DU2(7.4–11.4 m) and DU3(11.4–20.2 m). The results showed that the heavy minerals are authigenic pyrite(65.6%)– hornblende(16.0%) – epidote(4.6%) assemblages. The core sediments are mainly composed of clayey silt, which belongs to the clinoform deposit formed since 5.8 kyr, indicating a weak hydrodynamic environment. The deposition rates changed in the trend of high-low-high upward. Quantitative analysis shows that the core sediments were mainly from the suspended sediments of the Changjiang(Yangtze) River, accounting for 79.2%, with only 10.0% from Oujiang, and 10.8% from other provenance. The Oujiang-derived sediments were gradually increased from the bottom unit DU3(3.1%) to the top unit DU1(17.8%), but the Changjiang-derived sediments were gradually decreased. The source changes are closely related to the development of Yangtze River Delta and Wenzhou Bay, climate changes and human activities. During the period of 2.1–3.7 kyr, the sediment supply was greatly reduced due to the poor reclamation capacity of the river basins, resulting in a low deposition rate. Since 2 kyr, the enhancement of human activities in the Yangtze River Basin and the Oujiang River Basin led to more soils to be eroded and transported to the study area. Due to the short distance of the site of core D04 from the Oujiang River mouth, the study area received more Oujiang-derived sediments when upper unit(DU1) deposited than the lower units(DU2 and DU3).
基金sponsored by the One-hundred Talents Project of the Chinese Academy of SciencesNational Natural Science Foundation of China(49971075)the Key Project A of the Chinese Academy of Sciences(KZ951-A1-402-04-06).
文摘The effective precipitation and the frame of atmospheric circulation in the past three key periods, i.e. 30 ka BP, 18 ka BP and 6 ka BP, have been analyzed on the basis of the palaeolake status record produced by the Chinese Lake Status Data Base. The results show that the west-central part of China was characterized by high lake-levels at 30 ka BP, resulting from strengthened southwest monsoons; whereas the high lake stand, occurring in the west-central part of China at 18 ka BP, was caused by the southward shift and the strengthening of westerlies although the high-stand distribution was reduced. Meanwhile, the east-central part of China was under the control of strong winter monsoons at 18 ka BP. The high lake-levels, which occurred in the east-central part of China at 6 ka BP, are related to the enhanced East-Asian summer monsoons; while the lowering of the lake-level in the west-central part of China at 6 ka BP was due to the northward shift and corresponding shrink of the westerlies.A comparison between the lake status and the palaeoclimate models has shown that there do exist discrepancies between the geological evidence and the model simulations. The agreement between them provides a possible mechanical explanation on the geological phenomena, but the discrepancy shows that the model needs to be revised to a great extent.
基金Razi University(Kermanshah-Iran) authorities for the financial support during the field work
文摘Study of the climate variability in the past and present, and correlating those with changes in the distribution range of species has attracted considerable research interest. The genus Ablepharus consists of 10 recognized species, of which A. bivittatus, A. grayanus and A. pannonicus are documented from Iran. In the present study, we modeled with MaxEnt the potential distribution areas and determined the suitable habitats in past (mid-Holocene [MH], and the Last Interglacial [LIG]) and their current distribution for two species of snake-eyed skinks (A. grayanus and A. pannonicus) separately. Models of the species indicated good fit by the average high area under the curve (AUC) values (A. grayanus = 0.929 4- 0.087 and A. pannonicus = 0.979 4- 0.007). Precipitation of the driest quarter of the year, mean temperature of the coldest quarter of the year, and precipitation of the driest month variables made important contributions to A. grayanus. Two important climate variables contributed importantly to A. pannonicus; temperature seasonality, and mean temperature of the wettest quarter of the year, and one topographic variable, slope. We conclude that these variables form a natural barrier for species dispersal. The MH and the LGM models indicated a larger suitable area than the current distribution.
文摘In order to investigate pluvial lakes in the Gobi two places were selected for field studies: Khongoryn Els inSouth- and Mongol Els in West-Mongolia. In the eastern and central parts of Khongoryn Els two small endorheic basins,Bayan Tukhem and Khongoryn Gol depressions were studied. Pluvial lake deposits and beach ridges both supposedly mid-Holocenein age give evidence of a 9m and a 15m deep freshwater lake,respectively. Today both depressions are nearlydried out and exposed to wind deflation. A different situation was found at Uujin Sair river valley which cuts through thedune field at its lowest and narrowest (3 km) part. Here, a 22.5 m thick fossil accumulation of at least 20 layers of fine sand(dune sand)alternating with silt(fluvial playa sediment)was exposed and OSL dated. 12 dates ranging between 14ka and17ka reveal the accumulation as Late Glacial which correlates well with the aridity at that time reported for Central Asia byseveral authors. Interpreting the dates it seems obvious that the whole sediment was quickly deposited in a period of about16ka,and shortly after dissected by the Uujin Sair during a similar short time due to increasing humidity of the climate.Another situation was found at the eastern rim of Mongol Els. Two rivers,Shurgiyn Gol and Zavran Gol are impinging hereon the high dunes which have damed both rivers in the past. A younger, shallow lake existed during mid-Holocene( ^(14)C-dated to some 5.5ka)and a large, 17m deep lake( ^(14)C -- dated to some 39ka) probably during stage 4. Expected OSLdates will hopefully support this hypothesis. Anyhow, the palaeogeography of the dune field was different from today; itmoved eastward daming the large river Shurgiyn Gol.