The pedestrian crossing speed is one of the important factors in pedestrian crossing facility design.Research studies have shown that the pedestrian crossing speed is influenced by availability of green time at signal...The pedestrian crossing speed is one of the important factors in pedestrian crossing facility design.Research studies have shown that the pedestrian crossing speed is influenced by availability of green time at signalized crosswalks and pedestrian characteristics such as gender and age.However,the effects of vehicular time gap and additional pedestrian behavioural characteristics on pedestrian crossing speed patterns have not been examined at unprotected(un-signalized)mid-block crosswalks.The present study examines the pedestrian crossing speed change patterns considering the effect of vehicular time gap and pedestrian behavioural characteristics such as rolling behaviour,path change,etc.,at selected unprotected mid-block crosswalk locations under mixed traffic conditions in India.Video graphic survey has been conducted at eight selected unprotected mid-block crosswalk locations in Mumbai City for two to three hours duration during normal weather conditions.The data was mined using AVS video editor software,and the extracted data includes pedestrian speed,pedestrian characteristics(gender and age),pedestrian behaviour(rolling behaviour,path change,etc.),vehicle characteristics(type and speed of the vehicle)and traffic characteristics.Pedestrian crossing speed change patterns(whether pedestrian is changing speed or not while crossing a road)was considered as a binary variable and a logistic regression model was developed with vehicular gaps and other pedestrian behavioural characteristics as independent variables.The results revealed that there is a reduction in pedestrian crossing speed change behaviour with an increase in vehicular gap size at unprotected mid-block crosswalks.The younger pedestrians have more probability of exhibiting crossing speed change patterns as compared to the elderly pedestrians at mid-block crosswalks.Further,it is identified that there is an increase in pedestrian crossing speed with increase in vehicle speed as well as heavy vehicle type.Pedestrian behavioural characteristics also have a significant influence on crossing speed.The study findings would provide useful information to designers and policy makers for design of pedestrian crossing facility under mixed traffic conditions.展开更多
When arranging the pedestrian infrastructure,one of the most important components that make a tangible contribution to the safety of pedestrians is to organize the safe road crossing.In cities,pedestrians often cross ...When arranging the pedestrian infrastructure,one of the most important components that make a tangible contribution to the safety of pedestrians is to organize the safe road crossing.In cities,pedestrians often cross a road in the wrong place due to established routes or inadequate location of crosswalks.Accidents with the participation of pedestrians who crossed the road neglecting the traffic rules,make up a significant part of the total amount of road accidents.In this paper,we propose a method that allows us,on the basis of the results of a computer simulation of pedestrian traffic,to obtain predicted routes for road crossing and to indicate optimal locations for crosswalks that take into account established pedestrian routes and increase their safety.The work describes an extension for the existing AntRoadPlanner simulation algorithm,which searches for and clusters points where pedestrians cross the roadway and suggests locations for new crosswalks.This method was tested on the basis of a comparative simulation of several territories before and after its application,as well as on the basis of a field study of the territories.The developed algorithm can also be used to search for other potentially dangerous places for pedestrians on plans of districts,for example,crossings in places with limited visibility.展开更多
In observing driver courtesy towards pedestrians at unsignalized crosswalks, a behavioral model was adopted in a simulation based on the GM Car-Following Model. The SIMI Motion Software was used to extract the vehicle...In observing driver courtesy towards pedestrians at unsignalized crosswalks, a behavioral model was adopted in a simulation based on the GM Car-Following Model. The SIMI Motion Software was used to extract the vehicle operation data from Wenyi South Road and Hanyuan Road in Xi'an City. The parameters of the GM Car-Following Model were calibrated by genetic algorithm. The road simulation environment based on the Car-Following Model was constructed by MATLAB. In the case of no stopping, uniform deceleration avoidance with advance notice, emergency brake avoidance without advance notice, changes such as the displacement of the Car-Following queue, headway, speed, acceleration, and deceleration were analyzed by numerical simulation. The results show that when there is advance notice before the crosswalk, the minimum headway distances of Car1-Car2, Car2-Car3, Car3-Car4 and Car4-Car5 are 7.09 m, 7.38 m, 7.65 m, 7.91 m, and the average rates of change of the headway during deceleration are 0.78 m/s, 0.74 m/s, 0.71 m/s, 0.68 m/s respectively;in the absence of advance notice before the crosswalk, the minimum headway distances of Car1-Car2, Car2-Car3, Car3-Car4 and Car4-Car5 are 7.28 m, 7.75 m, 8.19 m, 8.59 m, and the average rates of change of the headway during deceleration are 1.57 m/s, 1.25 m/s, 1.04 m/s, 0.96 m/s, respectively. Therefore, in order to effectively prevent the occurrence of vehicle rear-end events, it's necessary to set traffic signs and markings on the preceding section of the intersection or road exhibiting behavioral comity.展开更多
The effects of the interactions between bi-directional pedestrians on the crossing time and the crosswalk width are studied. Firstly,the crossing process of bi-directional pedestrians is analyzed.The total crosswalk t...The effects of the interactions between bi-directional pedestrians on the crossing time and the crosswalk width are studied. Firstly,the crossing process of bi-directional pedestrians is analyzed.The total crosswalk time is divided into a discharge time and a crossing time. The interactions between bi-directional pedestrians are quantified with the drag force theory. Then,a model is developed to study the crossing time based on the kinetic energy theory and momentum theory. Subsequently,the related parameters of the proposed model are calibrated with observed information. The relationships among crosswalk width,signal time,pedestrian volume and level of service are simulated with the proposed model. The results are verified and compared with other models. The proposed model has an absolute value of relative error of 9. 38%,which is smaller than that of the Alhajyaseen model( 15. 26%) and Highway Capacity Manual( HCM) model( 12. 42%). Finally,suggested crosswalk widths at different conditions are successfully estimated with the proposed crossing time model.展开更多
Objective: Pedestrian safety is considered as one of the greatest concerns, especially for developing countries. In the year of 2015, about 48% pedestrian accidents with 56% fatalities occurred at mid-blocks in Beijin...Objective: Pedestrian safety is considered as one of the greatest concerns, especially for developing countries. In the year of 2015, about 48% pedestrian accidents with 56% fatalities occurred at mid-blocks in Beijing. Since the high frequency and fatality risk, this study focused on pedestrian accidents taking place at mid-blocks and aimed at identifying significant factors. Methods: Based on total 10,948 crash records, a binary logit model was established to explore the impact of various factors on the probability of pedestrian’s death. Furthermore, first-degree interaction effects were introduced into the basic model. The Hosmer-Lemeshow goodness-of-fit test was used to assess the model performance. Odds ratio was calculated for categorical variables to compare significant accident conditions with the conference level. Variables within consideration in this study included weather, area type, road type, speed limit, pedestrian location, lighting condition, vehicle type, pedestrian gender and pedestrian age. Results: The calibration results of the model show that the increased fatality chances of an accident at mid-blocks are associated with normal weather, rural area, two-way divided road, crossing elsewhere in carriageway, darkness (especially for no street lighting), light vehicle, large vehicle and male pedestrian. With road speed limit increasing by 10 km/h, the probability of death accordingly increases by 46%. Older victims have higher chances of being killed in a crash. Moreover, three interaction effects are found significant: rural area and two-way divided, rural area and crossing elsewhere as well as speed limit and pedestrian age. Conclusions: This study has analyzed police accident data and identified factors significant to the death probability of pedestrians in accidents occurred at mid-blocks. Recommendations and improving measures were proposed correspondingly. Behaviors of different road users at mid-blocks should be taken into account in the future research.展开更多
Existing optimization methodologies for intersection operations assumes a fixed geometric design, however the geometry and operational system should be simultaneously optimized to produce the best performance. Signali...Existing optimization methodologies for intersection operations assumes a fixed geometric design, however the geometry and operational system should be simultaneously optimized to produce the best performance. Signalized crosswalks are complex and critical pedestrian facilities. Their geometry and configuration directly affect the safety, cycle length and resulting delays for all users. As crosswalks become wider or they are placed further upstream, the cycle length will increase due to the all-red time requirement, which deteriorates the overall mobility levels of signalized intersections. In contrast, when crosswalk width decreases, the required minimum pedestrian crossing time increases due to the bi-directional pedestrian flow effects, which leads to longer cycle length. Furthermore, existing manuals and guidelines do not offer any specification for the required crosswalk width under various pedestrian demand conditions. This study aims to propose new criteria for designing crosswalk width at signalized intersections, which can optimize the performance from the viewpoint of vehicular traffic and pedestrians. The proposed methodology considers pedestrian demand and its characteristics (such as bi-directional flow effects), vehicle demand and the geometric characteristics of the intersection The concept of optimized crosswalk width is proposed and demonstrated through a case study. Moreover, a comprehensive discussion regarding the merits and drawbacks of existing strategies on positioning crosswalks is presented. It was found that at signalized intersections, which are characterized by low pedestrian and high vehicle demands, crosswalk width of 2 meters is appropriate to minimize cycle length and resulting delays for all users including pedestrians.展开更多
文摘The pedestrian crossing speed is one of the important factors in pedestrian crossing facility design.Research studies have shown that the pedestrian crossing speed is influenced by availability of green time at signalized crosswalks and pedestrian characteristics such as gender and age.However,the effects of vehicular time gap and additional pedestrian behavioural characteristics on pedestrian crossing speed patterns have not been examined at unprotected(un-signalized)mid-block crosswalks.The present study examines the pedestrian crossing speed change patterns considering the effect of vehicular time gap and pedestrian behavioural characteristics such as rolling behaviour,path change,etc.,at selected unprotected mid-block crosswalk locations under mixed traffic conditions in India.Video graphic survey has been conducted at eight selected unprotected mid-block crosswalk locations in Mumbai City for two to three hours duration during normal weather conditions.The data was mined using AVS video editor software,and the extracted data includes pedestrian speed,pedestrian characteristics(gender and age),pedestrian behaviour(rolling behaviour,path change,etc.),vehicle characteristics(type and speed of the vehicle)and traffic characteristics.Pedestrian crossing speed change patterns(whether pedestrian is changing speed or not while crossing a road)was considered as a binary variable and a logistic regression model was developed with vehicular gaps and other pedestrian behavioural characteristics as independent variables.The results revealed that there is a reduction in pedestrian crossing speed change behaviour with an increase in vehicular gap size at unprotected mid-block crosswalks.The younger pedestrians have more probability of exhibiting crossing speed change patterns as compared to the elderly pedestrians at mid-block crosswalks.Further,it is identified that there is an increase in pedestrian crossing speed with increase in vehicle speed as well as heavy vehicle type.Pedestrian behavioural characteristics also have a significant influence on crossing speed.The study findings would provide useful information to designers and policy makers for design of pedestrian crossing facility under mixed traffic conditions.
基金This work was financially supported by Russian Science Foundation with co-financing of Bank Saint Petersburg[Agreement#17-71-30029].
文摘When arranging the pedestrian infrastructure,one of the most important components that make a tangible contribution to the safety of pedestrians is to organize the safe road crossing.In cities,pedestrians often cross a road in the wrong place due to established routes or inadequate location of crosswalks.Accidents with the participation of pedestrians who crossed the road neglecting the traffic rules,make up a significant part of the total amount of road accidents.In this paper,we propose a method that allows us,on the basis of the results of a computer simulation of pedestrian traffic,to obtain predicted routes for road crossing and to indicate optimal locations for crosswalks that take into account established pedestrian routes and increase their safety.The work describes an extension for the existing AntRoadPlanner simulation algorithm,which searches for and clusters points where pedestrians cross the roadway and suggests locations for new crosswalks.This method was tested on the basis of a comparative simulation of several territories before and after its application,as well as on the basis of a field study of the territories.The developed algorithm can also be used to search for other potentially dangerous places for pedestrians on plans of districts,for example,crossings in places with limited visibility.
基金Supported by the National Natural Science Foundation of China(51678132)the Key Research and Development Project of Science and Technology Department in Jiangxi Province(20161BBG70044)the Fundamental Research Funds for the Central Universities of China(300102218521)
文摘In observing driver courtesy towards pedestrians at unsignalized crosswalks, a behavioral model was adopted in a simulation based on the GM Car-Following Model. The SIMI Motion Software was used to extract the vehicle operation data from Wenyi South Road and Hanyuan Road in Xi'an City. The parameters of the GM Car-Following Model were calibrated by genetic algorithm. The road simulation environment based on the Car-Following Model was constructed by MATLAB. In the case of no stopping, uniform deceleration avoidance with advance notice, emergency brake avoidance without advance notice, changes such as the displacement of the Car-Following queue, headway, speed, acceleration, and deceleration were analyzed by numerical simulation. The results show that when there is advance notice before the crosswalk, the minimum headway distances of Car1-Car2, Car2-Car3, Car3-Car4 and Car4-Car5 are 7.09 m, 7.38 m, 7.65 m, 7.91 m, and the average rates of change of the headway during deceleration are 0.78 m/s, 0.74 m/s, 0.71 m/s, 0.68 m/s respectively;in the absence of advance notice before the crosswalk, the minimum headway distances of Car1-Car2, Car2-Car3, Car3-Car4 and Car4-Car5 are 7.28 m, 7.75 m, 8.19 m, 8.59 m, and the average rates of change of the headway during deceleration are 1.57 m/s, 1.25 m/s, 1.04 m/s, 0.96 m/s, respectively. Therefore, in order to effectively prevent the occurrence of vehicle rear-end events, it's necessary to set traffic signs and markings on the preceding section of the intersection or road exhibiting behavioral comity.
基金Supported by the National Natural Science Foundation of China(51278220)
文摘The effects of the interactions between bi-directional pedestrians on the crossing time and the crosswalk width are studied. Firstly,the crossing process of bi-directional pedestrians is analyzed.The total crosswalk time is divided into a discharge time and a crossing time. The interactions between bi-directional pedestrians are quantified with the drag force theory. Then,a model is developed to study the crossing time based on the kinetic energy theory and momentum theory. Subsequently,the related parameters of the proposed model are calibrated with observed information. The relationships among crosswalk width,signal time,pedestrian volume and level of service are simulated with the proposed model. The results are verified and compared with other models. The proposed model has an absolute value of relative error of 9. 38%,which is smaller than that of the Alhajyaseen model( 15. 26%) and Highway Capacity Manual( HCM) model( 12. 42%). Finally,suggested crosswalk widths at different conditions are successfully estimated with the proposed crossing time model.
文摘Objective: Pedestrian safety is considered as one of the greatest concerns, especially for developing countries. In the year of 2015, about 48% pedestrian accidents with 56% fatalities occurred at mid-blocks in Beijing. Since the high frequency and fatality risk, this study focused on pedestrian accidents taking place at mid-blocks and aimed at identifying significant factors. Methods: Based on total 10,948 crash records, a binary logit model was established to explore the impact of various factors on the probability of pedestrian’s death. Furthermore, first-degree interaction effects were introduced into the basic model. The Hosmer-Lemeshow goodness-of-fit test was used to assess the model performance. Odds ratio was calculated for categorical variables to compare significant accident conditions with the conference level. Variables within consideration in this study included weather, area type, road type, speed limit, pedestrian location, lighting condition, vehicle type, pedestrian gender and pedestrian age. Results: The calibration results of the model show that the increased fatality chances of an accident at mid-blocks are associated with normal weather, rural area, two-way divided road, crossing elsewhere in carriageway, darkness (especially for no street lighting), light vehicle, large vehicle and male pedestrian. With road speed limit increasing by 10 km/h, the probability of death accordingly increases by 46%. Older victims have higher chances of being killed in a crash. Moreover, three interaction effects are found significant: rural area and two-way divided, rural area and crossing elsewhere as well as speed limit and pedestrian age. Conclusions: This study has analyzed police accident data and identified factors significant to the death probability of pedestrians in accidents occurred at mid-blocks. Recommendations and improving measures were proposed correspondingly. Behaviors of different road users at mid-blocks should be taken into account in the future research.
文摘Existing optimization methodologies for intersection operations assumes a fixed geometric design, however the geometry and operational system should be simultaneously optimized to produce the best performance. Signalized crosswalks are complex and critical pedestrian facilities. Their geometry and configuration directly affect the safety, cycle length and resulting delays for all users. As crosswalks become wider or they are placed further upstream, the cycle length will increase due to the all-red time requirement, which deteriorates the overall mobility levels of signalized intersections. In contrast, when crosswalk width decreases, the required minimum pedestrian crossing time increases due to the bi-directional pedestrian flow effects, which leads to longer cycle length. Furthermore, existing manuals and guidelines do not offer any specification for the required crosswalk width under various pedestrian demand conditions. This study aims to propose new criteria for designing crosswalk width at signalized intersections, which can optimize the performance from the viewpoint of vehicular traffic and pedestrians. The proposed methodology considers pedestrian demand and its characteristics (such as bi-directional flow effects), vehicle demand and the geometric characteristics of the intersection The concept of optimized crosswalk width is proposed and demonstrated through a case study. Moreover, a comprehensive discussion regarding the merits and drawbacks of existing strategies on positioning crosswalks is presented. It was found that at signalized intersections, which are characterized by low pedestrian and high vehicle demands, crosswalk width of 2 meters is appropriate to minimize cycle length and resulting delays for all users including pedestrians.