期刊文献+
共找到1,103篇文章
< 1 2 56 >
每页显示 20 50 100
Effect of Modification Treatment on Chloride Ions Permeability and Microstructure of Recycled Brick-mixed Aggregate Concrete
1
作者 何子明 申爱琴 +2 位作者 WANG Xiaobin WU Jinhua WANG Lusheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第3期728-737,共10页
The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength... The modification methods of pozzolan slurry combined with sodium silicate and silicon-based additive were respectively adopted to treat recycled coarse brick-mixed aggregate(RCBA)in this study.The compressive strength and chloride permeability resistance of recycled aggregate concrete(RAC)before and after modification treatment were tested,and the microstructure of RAC was analyzed by mercury intrusion porosimetry(MIP)and scanning electron microscopy(SEM).The results show that the physical properties of RCBA strengthened by modification treatment are improved,and the compressive strength and chloride permeability resistance of treated RAC are also significantly improved.The modification treatment optimizes the pore size distribution of RAC,which increases the number of gel pores and transition pores,and decreases the number of capillary pores and macro pores.The surface fractal dimension shows a significant correlation with chloride diffusion coefficient,indicating that the variation of chloride permeability of treated RAC is consistent with the microstructure evolution. 展开更多
关键词 recycled aggregate concrete modification treatment compressive strength chloride permeability resistance MICROSTRUCTURE
下载PDF
Fundamental Issues Towards Unified Design Theory of Recycled and Natural Aggregate Concrete Components 被引量:1
2
作者 Jianzhuang Xiao Kaijian Zhang +2 位作者 Tao Ding Qingtian Zhang Xuwen Xiao 《Engineering》 SCIE EI CAS CSCD 2023年第10期188-197,共10页
In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Conseque... In the past 20 years,recycled aggregate concrete(RAC),as a type of low-carbon concrete,has become a worldwide focus of research.However,the design methodology for RAC structural components remains a challenge.Consequently,demands for a unified design of natural aggregate concrete(NAC)and RAC components have been presented.Accordingly,this study analyses the necessity of a unified design theory and provides an in-depth demonstration of the strength determination,compressive constitutive relationship,and design method of concrete components.The coefficient of variation of RAC strength is found to be generally higher than that of NAC strength.The compressive and tensile strengths of RAC can be defined and determined using the same method as that used for NAC.The uniaxial compressive constitutive relationship between NAC and RAC has a unified mathematical expression.However,the elastic modulus of RAC decreases,and its brittleness exhibits an increasing trend compared with that of NAC.Finally,to unify the design formulae of RAC and NAC components for bearing capacity,modification factors for RAC components are proposed considering safety and reliability.Additionally,the feasibility of the proposed unified time-dependent design theory is demonstrated in terms of conceptual design and structural measures considering the effects of strength degradation and reinforcement corrosion.It is believed that this study enriches and develops the basic theory of concrete structures. 展开更多
关键词 recycled aggregate concrete(RAC) Natural aggregate concrete(NAC) strength determination Constitutive relation Reliability Unified design theory
下载PDF
Experimental Evaluating of the Physical, Mechanical and Durability Properties of Natural, Recycled and Both Combined Aggregates Based Concretes
3
作者 Etienne Malbila Arba A.T. Ouedraogo +3 位作者 Nicolas Kagambega Gilbert G. Nana Sié Kam David Y. K. Toguyeni 《Materials Sciences and Applications》 2023年第3期117-141,共25页
This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can r... This experimental study aims at the reuse of recycled aggregates (RA), resulting from the demolition of concrete, cement block and cement mortar, in the manufacture of common construction in Burkina Faso. The RA can readily replace natural aggregates in concrete. Then five formulations of natural and recycled aggregates based concrete for characteristic strength of 25 Mpa were prepared in addition to the natural aggregates base concrete named reference concrete (BN): two types of recycled aggregates concrete (BR), three types of recycles and natural combined aggregates base concrete (BC). The properties of natural and recycled aggregates were characterized and the physical, mechanical strength and durability properties were also evaluated for all concrete specimens. All the studied concrete formulation present a density between 2000 kg/m<sup>3</sup> ≤ ρ ≥ 2600 kg/m<sup>3</sup> and an average slump of 4.9 ± 0.1 cm. The obtained results indicate that the recycled aggregates are suitable for current concrete. Two out of the five combinations studied, such as the natural (BN) and combined aggregate (BC2) based concretes satisfy the mechanical characteristics (Rc<sub>28</sub> > 25 MPa) at 28 days of age and an average absorption coefficient of 2.93% and 3.98%. The recycled aggregate based concrete (BR1, BR2) and combined aggregate based concrete (BC1), gave respective average compressive strength of 21.55 MPa, 20.50 MPa and 20.30 MPa, i.e. a difference of 13.80% to 18.80% under the characteristic strength (25 MPa) aimed at 28 days of age. Thus, the recycled aggregates are in conformity with the normative prescriptions and their use for standard concrete gives adequate physical, mechanical and durability properties for the production of the C20/25 concrete series in the common civil engineering applications. 展开更多
关键词 concrete Demolition Waste Aggregate recycled Aggregate strength Water Absorption
下载PDF
Effect of waste concrete with different strength on mechanical properties of recycled fine aggregate mortar 被引量:9
4
作者 Ding Xiaomeng Chen Zhongfan +1 位作者 Liu Qiong Chen Yang 《Journal of Southeast University(English Edition)》 EI CAS 2019年第3期374-380,共7页
The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FR... The influence of source concrete (SC) with different compression strengths on the workability and mechanical properties of recycled mortar made with river sand substituted by 100% fine recycled concrete aggregates (FRCA) is experimentally investigated. The basic physical performance test shows that with the increase in SC strength, FRCA exhibit lower water absorption and crushing index, meanwhile keeping higher densities. Mechanical property tests, including compressive strength, flexural strength and uniaxial compressive stress-strain tests, show that compressive strength,flexural strength and elasticity modulus of recycled sand mortars increase roughly with the increase in SC strength. The proposed mixture design method demonstrates that all of the components can be kept as the same as those in natural mortar mixture design and FRCA must be pre-wetted before making mortar mixture. Meanwhile, the reuse of higher strength SC can ensure that recycled mortar mixtures are able to achieve similar mechanical performance when compared to natural mortar designs. 展开更多
关键词 fine recycled concrete aggregates (FRCA) recycled mortar with FRCA source concrete (SC) strength compressive strength flexural strength uniaxial compressive stress-strain test
下载PDF
Effect of Recycled Coarse Aggregate on Concrete Compressive Strength 被引量:7
5
作者 汪振双 王立久 +1 位作者 崔正龙 周梅 《Transactions of Tianjin University》 EI CAS 2011年第3期229-234,共6页
The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength r... The effect of recycled coarse aggregate on concrete compressive strength was investigated based on the concrete skeleton theory. For this purpose, 30 mix proportions of concrete with target cube compressive strength ranging from 20 to 60 MPa were cast with normal coarse aggregate and recycled coarse aggregate from different strength parent concretes. Results of 28-d test show that the strength of different types of recycled aggregate affects the concrete strength obviously. The coarse aggregate added to mortar matrix plays a skeleton role and improves its compressive strength. The skeleton effect of coarse aggregate increases with the increasing strength of coarse aggregate, and normal coarse aggregate plays the highest, whereas the lowest concrete strength occurs when using the weak recycled coarse aggregate. There is a linear relationship between the concrete strength and the corresponding mortar matrix strength. Coarse aggregate skeleton formula is established, and values from experimental tests match the derived expressions. 展开更多
关键词 recycled coarse aggregate compressive strength concrete skeleton model skeleton formula crushing index
下载PDF
Additional water use influencing strength and fluidity of recycled concrete 被引量:1
6
作者 张学兵 方志 +2 位作者 邓寿昌 成珂 覃银辉 《Journal of Central South University》 SCIE EI CAS 2008年第S1期221-224,共4页
Through adding different additional water use,the compressive strength,splitting tensile strength and fluidity of recycled concrete of three aggregate combination forms were studied by experiment respectively.The expe... Through adding different additional water use,the compressive strength,splitting tensile strength and fluidity of recycled concrete of three aggregate combination forms were studied by experiment respectively.The experimental results show that with the increase of adding additional water use,the compressive strength and splitting tensile strength of recycled coarse aggregate concrete decrease,but that of recycled fine aggregate concrete and recycled all aggregate concrete increase firstly then decrease.When additional water use is added more 15% or 20% than that of basic ordinary concrete,the recycled coarse aggregate concrete and fine one can get pretty good fluidity.When it is added more 30%,the recycled all aggregate concrete has fluidity that is just satisfied. 展开更多
关键词 additional water use basic ordinary concrete recycled concrete COMPRESSIVE strength SPLITTING TENSILE strength FLUIDITY
下载PDF
Strength and Chloride Diffusion Behaviour of Three Generations of Repeated Recycled Fine Aggregate Concrete 被引量:2
7
作者 ZHU Pinghua LIU Wenying +2 位作者 NIU Zhigang WEI Da HU Kun 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1113-1120,共8页
The feasibility of using different generations of recycled fine aggregate(RFA) in structural concrete in a chloride environment was evaluated by studying the performance of the RFA and the corresponding concrete. Th... The feasibility of using different generations of recycled fine aggregate(RFA) in structural concrete in a chloride environment was evaluated by studying the performance of the RFA and the corresponding concrete. The different generations of RFA were recycled by following the cycle of ‘concrete-waste concrete-fine aggregate-concrete'. The properties of three generations of repeatedly recycled fine aggregate(RRFA) were systematically investigated, and we focused on the compressive strength and splitting tensile strength and chloride ion permeability of the related structural concretes with 25%, 75%, and 100% replacement of natural fine aggregates with RFA. The results indicated that the quality of RRFA presents a trend of slow deterioration, but the overall performance of all RRFA still fulfils the quality requirements of recycled fine aggregate for structural concrete. All RRFA concretes achieved the target compressive strength of 40 MPa after 28 days except for the second generation of the recycled aggregate concrete and the third generation of the recycled aggregate concrete with 100% replacement, and all the concrete mixes achieved the target compressive strength after 90 days. The insights obtained in this study demonstrate the feasibility of using at least three generations of RRFA for the production of normal structural concrete with a design service life of 100 years in a chloride environment. 展开更多
关键词 repeated recycled concrete repeatedly recycled fine aggregate compressive strength chloride ion diffusion
下载PDF
Compressive and Flexural Strength of Recycled Reactive Powder Concrete Containing Finely Dispersed Local Wastes
8
作者 Demiss Belachew Asteray Walter Odhiambo Oyawa Stanley Muse Shitote 《Open Journal of Civil Engineering》 2018年第1期12-26,共15页
The main objective of this experimental study is to investigate the behavior of Recycled Reactive Powder Concrete (RRPC) developed from finely dispersed local waste raw materials. In this study, RRPC was developed by ... The main objective of this experimental study is to investigate the behavior of Recycled Reactive Powder Concrete (RRPC) developed from finely dispersed local waste raw materials. In this study, RRPC was developed by utilizing local wastes (finely dispersed waste glass powder, waste fly ash and waste ceramic powder) together with Portland cement, fine sand, admixture, steel fibers and water through full replacement of silica fume as well as quartz powder for sustainable construction practice. In this study, all raw materials for making RRPC were analyzed for X-Ray Fluorescence analysis. For sustainability of local construction works, this study employed standard curing method at ambient temperatures instead of steam curing at higher temperatures. Moreover, hand mixing was used throughout the study. To evaluate the structural performances of the developed RRPC mixes, compressive and flexural strengths of RRPC were investigated experimentally and compared with the control mix. The experimental results indicated that replacing the silica fume fully by finely dispersed local waste glass powder (GP) and fly ash (FA) is a promising approach for local structural construction applications. Accordingly, a mean compressive strength of 62.9 MPa and flexural strength of 8.8 MPa were developed using 50% GP-50% FA at 28thdays standard curing. In this study, 17.56% larger compressive strength and 30.6% flexural strength improvements were observed as compared to the control mix. 展开更多
关键词 LOCAL WASTES recycled Reactive Powder concrete COMPRESSIVE strength FLEXURAL strength Standard CURING
下载PDF
Developing Sustainable High Strength Concrete Mixtures Using Local Materials and Recycled Concrete
9
作者 Anthony Torres Alex Burkhart 《Materials Sciences and Applications》 2016年第2期128-137,共10页
This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtai... This study presents the development of high strength concrete (HSC) that has been made more sustainable by using both local materials from central Texas and recycled concrete aggregate (RCA), which has also been obtained locally. The developed mixtures were proportioned with local constituents to increase the sustainable impact of the material by reducing emissions due to shipping as well as to make HSC more affordable to a wider variety of applications. The specific constituents were: limestone, dolomite, manufactured sand (limestone), locally available Type I/II cement, silica fume, and recycled concrete aggregate, which was obtained from a local recycler which obtains their product from local demolition. Multiple variables were investigated, such as the aggregate type and size, concrete age (7, 14, and 28-days), the curing regimen, and the water-to-cement ratio (w/c) to optimize a HSC mixture that used local materials. This systematic development revealed that heat curing the specimens in a water bath at 50℃ (122oF) after demolding and then dry curing at 200℃ (392oF) two days before testing with a w/c of 0.28 at 28-days produced the highest compressive strengths. Once an optimum HSC mixture was identified a partial replacement of the coarse aggregate with RCA was completed at 10%, 20%, and 30%. The results showed a loss in compressive strength with an increase in RCA replacement percentages, with the highest strength being approximately 93.0 MPa (13,484 psi) at 28-days for the 10% RCA replacement. The lowest strength obtained from an RCA-HSC mixture was approximately 72.9 (MPa) (10,576 psi) at 7-days. The compressive strengths obtained from the HSC mixtures containing RCA developed in this study are comparable to HSC strengths presented in the literature. Developing this innovative material with local materials and RCA ultimately produces a novel sustainable construction material, reduces the costs, and produces mechanical performance similar to prepackaged, commercially, available construction building materials. 展开更多
关键词 High strength concrete SUSTAINABILITY recycled concrete Aggregate Local Products Construction Materials
下载PDF
Experimental Research on the Physical and Mechanical Properties of Concrete with Recycled Plastic Aggregates 被引量:4
10
作者 Haikuan Wu Changwu Liu +1 位作者 Song Shi Kangliang Chen 《Journal of Renewable Materials》 SCIE EI 2020年第7期727-738,共12页
In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete,recycled plastic concrete with 0,3%,5%and 7%content(by weight)was designed.The compressive strength,spli... In order to study the effect of recycled plastic particles on the physical and mechanical properties of concrete,recycled plastic concrete with 0,3%,5%and 7%content(by weight)was designed.The compressive strength,splitting tensile strength and the change of mass caused by water absorption during curing were measured.The results show that the strength of concrete is increased by adding recycled plastic into concrete.Among them,the compressive strength and the splitting tensile strength of concrete is the best when the plastic content is 5%.With the increase of plastic content,the development speed of early strength slows down.Silane coupling agent plays a positive role in the strength of recycled plastic concrete.The water absorption saturation of concrete has been basically completed in the early stage.The addition of silane coupling agent makes the porosity of concrete reduce and the water absorption of concrete become poor.By summing up the physical and mechanical properties of recycled plastic concrete,it could be found that the addition of recycled plastic was effective for the modification of concrete materials.Under the control of the amount of recycled plastic,the strength of concrete with recycled plastic aggregates can meet the engineering requirements. 展开更多
关键词 Compressive strength recycled plastic concrete splitting tensile strength water absorption mechanical properties
下载PDF
Effects of Recycled Aggregate Content on Pervious Concrete Performance 被引量:2
11
作者 Lei Guo Zi Guan +4 位作者 Lixia Guo Weiping Shen Zhilong Xue Pingping Chen Mingru Li 《Journal of Renewable Materials》 SCIE EI 2020年第12期1711-1727,共17页
A recycled aggregate(RA)was prepared by crushing and sieving demolished discarded concrete pavements and was subsequently tested and analyzed to determine its various physical properties.On this basis,pervious concre... A recycled aggregate(RA)was prepared by crushing and sieving demolished discarded concrete pavements and was subsequently tested and analyzed to determine its various physical properties.On this basis,pervious concrete(PC)mix proportions were designed.Coarse RA particles with sizes of 5–10 and 10–20 mm were selected.Concrete specimens were prepared with a water–cement ratio of 0.3,an aggregate–cement ratio of 4.5,the substitute rates of RA with 0,25%,50%,75%and a single-/double-gap-graded RA mix(mass ratio of particles with sizes of 5–10 mm to particles with sizes of 10–20 mm:1:1,1:2,2:1,2:3 and 3:2).Various properties of the RA-containing PC(RPC)were determined by analyzing the compressive strength,splitting tensile strength,effective porosity,permeation coefficient and impact and abrasion resistance of the specimens.The results showed the following:The density of the RPC decreased with an increasing RA replacement ratio.The density of the RPC prepared with a double-gapgraded RA mix was lower than that prepared with a single-gap-graded RA(particle size:10–20 mm)mix.The permeation coefficient of the RPC increased with increasing porosity.The splitting tensile strength of the RPC was positively correlated with its compressive strength.The compressive strength of the RPC decreased with increasing porosity.The regression analysis showed that the impact and abrasion resistance of the RPC increased with increasing compressive strength.In addition,all of the RPC specimens met the strength and permeation requirements.This study can provide theoretical support for the application of RPC. 展开更多
关键词 recycled aggregate recycled pervious concrete strength PERMEABILITY wear resistance mix proportion
下载PDF
Mechanical Properties and ITZ Microstructure of Recycled Aggregate Concrete Using Carbonated Recycled Coarse Aggregate 被引量:7
12
作者 伍君勇 张云升 +2 位作者 ZHU Pinghua FENG Jincai 胡坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第3期648-653,共6页
The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concr... The effect of carbonation treatment and mixing method on the mechanical properties and interfacial transition zone(ITZ) properties of recycled aggregate concrete(RAC) was investigated. Properties of recycled concrete aggregate(RCA) were tested firstly. Then, five types of concretes were made and slump of fresh concrete was measured immediately after mixing. Compressive strength and splitting tensile strength of hardened concrete were measured at 28 d. Meanwhile, the microstructure of RAC was analyzed by backscattered electron(BSE) image. It was found that the water absorption ratio of carbonated recycled concrete aggregate(CRCA) was much lower when compared to the untreated RCA. Comparatively, the apparent density of CRCA was not significantly modified. The concrete strength results indicate that the mix CRAC-2 prepared with CRCA by adopting two-stage mixing approach shows the highest compressive strength value compared to the other mixes. The microstructural analysis demonstrate that the mix CRAC-2 has a much denser old ITZ than the untreated RAC because of the chemical reaction between CO2 and the hydration products of RCA. This study confirms that the ITZ microstructure of RAC can be efficiently modified by carbonation treatment of RCA and encourages broadening the application of construction and demolition wastes. 展开更多
关键词 recycled aggregate concrete compressive strength interfacial transition zone carbonation treatment two-stage mixing approach back scattered electron
下载PDF
Study of the Mechanical Performance of a Recycled Aggregate Concrete with Admixture Addition 被引量:3
13
作者 Larbi Belagraa Miloud Beddar 《Open Journal of Civil Engineering》 2013年第2期99-103,共5页
The needs of the construction sector are still increasing for concrete. However the shortage of natural resources of aggregate could be a problem for the concrete industry. In addition, the negative impact on the envi... The needs of the construction sector are still increasing for concrete. However the shortage of natural resources of aggregate could be a problem for the concrete industry. In addition, the negative impact on the environment is due to the construction demolition;where disposal wastes create a severe ecological and environmental hazard. In the last decade, a major interest has been developed for the reuse of recycled aggregates that present more than 70% of the concrete volume. The reused products should fulfill the requirements of lower cost and better quality, in order to establish its role in the concrete. The aim of this study is to assess the effect of the local admixtures on the mechanical behavior of recycled aggregate concrete (RAC). Physical and mechanical properties of RAC were investigated including density, compressive and flexural strength. The non-destructive test methods (NDT: pulse-velocity and rebound hammer) were used to determine the concrete strength. The results obtained were compared with crushed aggregate concrete (CAC) using the normal compressive testing machine test method. Thus, the convenience of indirect tests in the case of a recycled aggregate concrete were demonstrated. 展开更多
关键词 recycled concrete AGGREGATE DEMOLITION WASTE NON-DESTRUCTIVE Tests Mechanical strength ADMIXTURE
下载PDF
Performance Degradation of the Repeated Recycled Aggregate Concrete with 70% Replacement of Three-generation Recycled Coarse Aggregate 被引量:3
14
作者 朱平华 ZHANG Xinxin +1 位作者 伍君勇 王新杰 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2016年第5期989-995,共7页
The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concrete... The feasibility of using different generations recycled coarse aggregate(RCA) on structural concrete was fully evaluated by studying the performance of the recycled coarse aggregates and their corresponding concretes, the different generations of RCA were recycled by following the repeated mode of ‘concrete-waste concrete-coarse aggregate-concrete'. Moreover, the focus was on ‘three generations' of repeated RCAs, the RCA was produced by crushing and regenerating the artificial accelerated degraded concrete, the process was designed to follow the nature degradation of the concrete with a coupling action of accelerated carbonation and bending load. The properties of x-generation(x=1, 2 or 3) of repeated RCA were systematically investigated and the compressive and splitting tensile strengths of relating structural concretes(with 70% replacement of x-generation of RCA) were studied accordingly. The results show a competent compressive and splitting tensile strength of 30 MPa at 28 th day of structural concretes with all generations of repeated RAC. And the gradual degraded performance of the repeated RCAs was observed with an increased numbers of repetition(1〉2〉3 generations), the overall performances of all repeated RCAs fulfill the Class Ⅲ according to Chinese Standards GB25177-2010. Our gained insight demonstrates a feasibility of using at least 3 generations of repeated RCA for the production of normal structural concrete. 展开更多
关键词 repeated recycled concrete repeated recycled coarse aggregate coupling action compressive strength ordinary atmosphere environment
下载PDF
A Simple Mix Proportion Design Method Based on Frost Durability for Recycled High Performance Concrete Using Fully Coarse Recycled Aggregate 被引量:3
15
作者 王新杰 LIU Wenying +2 位作者 WEI Da 朱平华 胡坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1119-1124,共6页
Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix propo... Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use. 展开更多
关键词 recycled high performance concrete mix proportion design frost durability compressive strength water absorption
下载PDF
Recycled Aggregate Pervious Concrete: Analysis of Influence of Water-Cement Ratio and Fly Ash under Single Action and Optimal Design of Mix Proportion 被引量:1
16
作者 Shoukai Chen Chunpeng Xing +3 位作者 Mengdie Zhao Junfeng Zhang Lunyan Wang Qidong He 《Journal of Renewable Materials》 SCIE EI 2022年第3期799-819,共21页
Pervious concrete is recommended,which is of great benefit to the ecological environment and human living environment.In this paper,the influences of five water-cement ratios and four fly ash contents to replace the c... Pervious concrete is recommended,which is of great benefit to the ecological environment and human living environment.In this paper,the influences of five water-cement ratios and four fly ash contents to replace the cement by mass with a water-cement ratio of 0.30 on the properties of Recycled Aggregate Pervious Concrete(RAPC)were studied.Following this,based on the Grey relational-Technique for Order Preference by Similarity to an Ideal Solution(TOPSIS)optimization method,the strength,permeability,abrasion loss rate,and material costs of RAPC were adopted as evaluation indices to establish a mix proportion optimization model.The results show that the increase of water-cement ratio and fly ash replacement level of RAPC leads to decreased compres-sive strength while an increase in the permeability and abrasion loss rate.According to test results based on the optimal model 0.30 was identified as the best mix proportion.In addition,ecological-economic analysis of RAPC raw materials was carried out by comparing different natural aggregates.The results of EE(embodied energy)and ECO 2e(embodied CO_(2) emission)pointed out that the combination of recycled aggregate and fly ash leads to sig-nificant ecological and economic benefits. 展开更多
关键词 recycled aggregate pervious concrete(RAPC) fly ash optimal model strength and permeability ecological and economic benefits
下载PDF
Study on the Durability of Recycled Powder Concrete against Sulfate Attack under Partial Immersion Condition
17
作者 Hualei Bai Ying Li Dahu Dai 《Journal of Renewable Materials》 SCIE EI 2022年第11期3059-3078,共20页
In order to make full use of waste recycled fine powder(RFP)in concrete and achieve the goal of carbon neutrality in the concrete industry,the durability of sulfate resistance is an important aspect of evaluating the ... In order to make full use of waste recycled fine powder(RFP)in concrete and achieve the goal of carbon neutrality in the concrete industry,the durability of sulfate resistance is an important aspect of evaluating the performance of recycled powder concrete(RPC).Therefore,the durability of RPC under partial sulfate immersion was studied to provide theoretical guidance for understanding the erosion mechanism of RPC.The compressive strength,mass loss,and microstructure change patterns of RPC under partial immersion of 5%Na2SO4 and MgSO4 solutions were analyzed by cubic compressive strength,mass loss rate,SEM-EDS,and XRD.The results showed that the surface crystalline matter of concrete in Na2SO4 solution was mainly white powders,and that of concrete in MgSO4 solution was mainly transparent paste,both of which had a little spalling on the outer surface of the concrete.The compressive strength and mass loss rate of concrete with 20%RFP was relatively good,indicating that concrete with 20%RFP had better durability against sulfate.The compressive strength of the lower part of the concrete partially immersed in Na2SO4 solution was higher than that of the upper part and the strength of the lower part of RPC-2 was 3.11%higher than the upper part at 180 d;The pattern was reversed in the MgSO4 solution,where the strength of the lower part of RPC-2 was 19.74%lower than the upper part at 180 d.Microscopic analysis showed that the hydration products of RPC were mainly gypsum and ettringite,while the RPC produced more hydration products with the promotion of magnesium ion in the MgSO4 solution.The higher the replacement rate of RFP,the more frequent the gypsum-type failures in the concrete. 展开更多
关键词 recycled powder concrete recycled fine powder sulfate resistance compressive strength
下载PDF
Finite Element Analysis on the Uniaxial Compressive Behavior of Concrete with Large-Size Recycled Coarse Aggregate
18
作者 Tan Li Jianzhuang Xiao Amardeep Singh 《Journal of Renewable Materials》 SCIE EI 2022年第3期699-720,共22页
To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differ... To model the concrete with complex internal structure of concrete with large sized aggregates the effect of internal structure on uniaxial compression behavior are studied.Large-sized recycled aggregates behave differently in the concrete matrix.To understand the influence on concrete matrix,a finite element model was developed to model recycled aggregate concrete composed of multiple randomly distributed irregular aggregates and cement mortar.The model was used to calculate the effect of large-size recycled coarse aggregate(LRCA)on the strength of recycled aggregate concrete and simulate the compressive strength of cubes and prisms.The factors such as the strength of new concrete,the strength of old concrete,the defective element content,the shape of LRCA,the incorporation ratio of LRCA and the size of LRCA that can affect the strength of concrete are analyzed in this paper.Results showed that the influence of various factors on concrete strength are in the following desend-ing order:(i)strength of newly poured concrete;(ii)original strength of recycled aggregates;and(iii)defects.It can be seen that the cracking of the phase material elements starts along the bonding zones between gravel and mortar or the new and old mortar,then spreads to mortar and finally to LRCA.The cracking tendency is most significant in LRCA,which means that the fracturing is related to the fracture of the LRCA.After evaluating the variations in strength and quality of the recycled concrete,the influences on concrete strength and quality were studied.The results showed that the proposed concrete model with LRCA was successfully applied to studying the uniaxial compressive behavior of concrete with large-size recycled coarse aggregate. 展开更多
关键词 recycled aggregate concrete(RAC) large-size recycled coarse aggregates(LRCA) finite element simulation strength CRACKING
下载PDF
Utilization of Recycled Coarse Aggregate in Concrete Mixes
19
作者 Akmal Abdelfatah Sami Tabsh Sherif Yehia 《Journal of Civil Engineering and Architecture》 2011年第6期562-566,共5页
In this paper, the effect of the source of recycled coarse aggregate on the properties of concrete is investigated. The tests were conducted on concrete made from three sources of recycled aggregates: (1) old concr... In this paper, the effect of the source of recycled coarse aggregate on the properties of concrete is investigated. The tests were conducted on concrete made from three sources of recycled aggregates: (1) old concrete with unknown strength, (2) old concrete with a known compressive strength of 21 MPa, and (3) old concrete with a known strength of 42 MPa. The three sources of recycled aggregates were used to produce new concrete with a target compressive strength of 21 MPa. The first and third sources of recycled aggregates were used in producing concrete with target strength of 42 MPa. A control mix was designed with aggregates from natural sources. The research included two methods of making recycled concrete. One concrete mix was produced using the recycled aggregate and adding more water than the control mix, to reach the target slump, while the second concrete mix was produced using the same amount of water as the control mix but with additional superplasticizer to maintain the target slump. The results obtained in this research showed that the concrete compressive strength depends on the source of recycled aggregates; the stronger the source of recycled aggregate, the higher the compressive strength of the produced concrete. Furthermore, the compressive strength of the first concrete mix was about 10%-20% lower than the compressive strength of the control mix. However, when superplasticizers were used, the compressive strength was around the same value as the control mix. 展开更多
关键词 Compressive strength concrete ENVIRONMENT recycled concrete.
下载PDF
Rheological Properties of Recycled Aggregate Concrete Using Superplasticizers
20
作者 Sandrine Braymand Pierre Francois +1 位作者 Francoise Feugeas Christophe Fond 《Journal of Civil Engineering and Architecture》 2015年第5期591-597,共7页
The mechanical properties of recycled aggregates concrete from demolition have been studied for several years. It has been documented that rheological properties of these concrete are generally affected by use of recy... The mechanical properties of recycled aggregates concrete from demolition have been studied for several years. It has been documented that rheological properties of these concrete are generally affected by use of recycled aggregates. They could present mechanical properties less affected by the presence of recycled aggregates if the initial concrete were of good quality. However, manufacturing problems, mainly attributed to the angular character of these aggregates and to the granulometry of recycled sand, limit their industrial use. The worth point of this study consists in the optimization of the concrete formulation using specific admixture, adapted to this aggregates in order to facilitate its manufacturing. It shows that the new generation of superplasticizers containing some copolymer polycarboxylate makes it possible to significantly improve the fluidity of the recycled aggregates concrete in its fresh state. The aim of this research is to control rheologica] properties of fresh recycled aggregates concrete with fine and coarse recycled aggregates to limit the negative influence of aggregates on mechanical properties of concrete. 展开更多
关键词 SUPERPLASTICIZER recycled aggregate concrete WORKABILITY VISCOSITY mechanical strength grading.
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部