Mid-infrared (mid-IR) lasers, generally defined as having an operation wavelength in the spectral region of 2μm to 20μm, have attracted great scientific and technological interests owing to their widespread applic...Mid-infrared (mid-IR) lasers, generally defined as having an operation wavelength in the spectral region of 2μm to 20μm, have attracted great scientific and technological interests owing to their widespread applications. This wavelength range not only contains some strong vibration transitions of many important molecules, thus, exhibiting enormous potential in medical, spectroscopy.展开更多
A newly grown Ba Ga4Se7 crystal has been synthesized via the Bridgman-Stockbarger technique.This new crystal has advantages of high nonlinear optics(NLO) coefficients,high laser damage thresholds,and wide transparen...A newly grown Ba Ga4Se7 crystal has been synthesized via the Bridgman-Stockbarger technique.This new crystal has advantages of high nonlinear optics(NLO) coefficients,high laser damage thresholds,and wide transparent regions.The Ba Ga4Se7 crystal has bright application prospects as a nonlinear gain medium in mid-infrared and terahertz regions.In this paper,the crystalline structure and synthetic method of the Ba Ga4Se7 crystal are introduced.The refractive indices and absorption coefficients along three dielectric axes between 0.1 THz and 1.0 THz are also obtained.The terahertz difference frequency generation(THz-DFG) characteristics based on the BaG a4Se7 crystal in the frequency range of 0.1 THz to 1.0 THz are analyzed theoretically and the phase-matching conditions are calculated.The application of Ba Ga4Se7 crystals in terahertz wave generation is also discussed.展开更多
Mid-infrared(IR)detectors based on the emerging low-dimensional(two-dimensional and quasi one-dimensional)materials offer unique characteristics including large bandgap tunability,optical polarization sensitivity and ...Mid-infrared(IR)detectors based on the emerging low-dimensional(two-dimensional and quasi one-dimensional)materials offer unique characteristics including large bandgap tunability,optical polarization sensitivity and integrability with typical silicon process,which are not available in the mid-IR detectors based on traditional compound semiconductors.Here,we review the recent progress in study of mid-IR detectors based on the low-dimensional materials,including black phosphorus,black arsenic phosphorus,tellurene and BaTiS3,from the perspectives of crystal structure,material synthesis,optical properties,and the detector characteristics.The detector gain and detectivity are benchmarked,and the unique properties,such as the polarization sensitivity,are discussed.We also provide our perspective about key future research directions in this field.展开更多
We demonstrate an integrated all-fiber mid-infrared(mid-IR)supercontinuum(SC)source generated by a 1.95μm master oscillator power amplifier system and a single-mode ZBLAN(ZrF_4–BaF_2–LaF_3–AlF_3–NaF)fiber.The max...We demonstrate an integrated all-fiber mid-infrared(mid-IR)supercontinuum(SC)source generated by a 1.95μm master oscillator power amplifier system and a single-mode ZBLAN(ZrF_4–BaF_2–LaF_3–AlF_3–NaF)fiber.The maximum average output power is 10.67 W with spectral bandwidth covering from~1.9 to 4.1μm.The single-mode ZBLAN fiber and silica fiber are thermal-spliced to enhance the robustness and practicability of the system.It is,to the best of our knowledge,the first high-power integrated compacted all-fiber mid-IR SC source based on thermal-spliced silica fiber and ZBLAN fiber.展开更多
Gapless linear energy dispersion of graphene endows it with unique nonlinear optical properties, including broadband nonlinear absorption and giant nonlinear refractive index. Herein, we experimentally observed that f...Gapless linear energy dispersion of graphene endows it with unique nonlinear optical properties, including broadband nonlinear absorption and giant nonlinear refractive index. Herein, we experimentally observed that fewlayers graphene has obvious nonlinear absorption and large nonlinear refraction, as investigated by the Z-scan technique in the mid-infrared(mid-IR) regime. Our study may not only, for the first time to our knowledge, verify the giant nonlinear refractive index of graphene(~10-7cm2∕W) at the mid-IR, which is 7 orders of magnitude larger than other conventional bulk materials, but also provide some new insights for graphene-based mid-IR photonics,potentially leading to the emergence of several new conceptual mid-IR optoelectronics devices.展开更多
The study of the spatial patterns and temporal changes of cropland is important to understand the underlying factors and the functional effects of the agricultural landscape. On the other hand, crop dynamics mapping i...The study of the spatial patterns and temporal changes of cropland is important to understand the underlying factors and the functional effects of the agricultural landscape. On the other hand, crop dynamics mapping is essential to know the overall agro-spatial diversity of the area. Therefore, this paper addressed a spatio-temporal analysis of cropland and cropping pattern change in the Bogra district of Bangladesh over the last 16 years (between 1988/89 and 2004/05). In this paper, crop mapping from multi-temporal and multi-sensor satellite images was described. Landsat TM and IRS P6 LlSS Ⅲ satellite images were used with GIS for spatial dynamics of cropland and cropping pattern change analysis. First, seasonal cropland maps were derived from object-based classification of satellite images, then two-date classified image differencing with GIS overlay technique and decision rules were applied. Cropping pattern change was analyzed in a spatial and quantitative way for the 16 years and for this, Integrated Land and Water Information System (ILWIS) and Land Change Modular (LCM) of IDRISl Andes were used. The results showed that in the area, mono crop cultivation was found in summer, but in winter, areas under different crop cultivation had changed dramatically. Change analysis showed that the changes mainly occurred in the north northwest and southwest of the areas, and during the time the highest change area was found under the rice-potato pattern.展开更多
A wideband receiver RP front-end for IR-UWB applications is implemented in 0.13μm CMOS technology. Thanks to the direct sub-sampling architecture,there is no mixing process.Both LNA and VGA work at RF frequencies.To ...A wideband receiver RP front-end for IR-UWB applications is implemented in 0.13μm CMOS technology. Thanks to the direct sub-sampling architecture,there is no mixing process.Both LNA and VGA work at RF frequencies.To optimize noise as well as linearity,a differential common-source LNA with capacitive cross- coupling is used,which only consumes current of 1.8 mA from a 1.2 V power supply.Following LNA,a two-stage current-steering VGA is adopted for gain tuning.To extend the overall bandwidth,a three-stage staggered peaking technique is used.Measurement results show that the proposed receiver front-end achieves a gain tuning range from 5 to 40 dB within 6-7 GHz,a minimum noise figure of 4.5 dB and a largest IIP_3 of-11 dBm.The core receiver (without test buffer) consumes 14 mW from a 1.2 V power supply and occupies 0.58 mm^2 area.展开更多
In this study,we design a refractive index(RI)sensor using a novel cadmium telluride photonic crystal fiber(TPCF).Based on four-wave mixing(FWM),the changes in RI can be accurately detected,and RI sensing in the mid-i...In this study,we design a refractive index(RI)sensor using a novel cadmium telluride photonic crystal fiber(TPCF).Based on four-wave mixing(FWM),the changes in RI can be accurately detected,and RI sensing in the mid-infrared region(MIR)can be achieved by detecting wavelength shifts in the Stokes and anti-Stokes spectra caused by the changes in RI of the liquid to be measured.When the pump wavelength of FWM lies in the normal and abnormal dispersion regions of the TPCF,the RI response of the idler frequency wave and the signal wave are analyzed by numerical simulation methods.The simulation results show that the RI sensitivity of the sensor can be as high as 7692 nm/RIU with a linearity is up to 99.9%at the pump wavelength of 3380 nm.To our knowledge,the RI sensing sensitivity of the MIR is presented for the first time in this study by using FWM in the non-silicon PCF.展开更多
文摘Mid-infrared (mid-IR) lasers, generally defined as having an operation wavelength in the spectral region of 2μm to 20μm, have attracted great scientific and technological interests owing to their widespread applications. This wavelength range not only contains some strong vibration transitions of many important molecules, thus, exhibiting enormous potential in medical, spectroscopy.
基金supported by the National Basic Research Program of China(973)under Grant No.2015CB755403 and No.2014CB339802National High Technology Research and Development Program(863)under Grant No.2011AA010205+6 种基金National Natural Science Foundation of China under Grant No.61107086No.61172010and No.61471257Natural Science Foundation of Tianjin under Grant No.14JCQNJC02200Science and Technology Support Program of Tianjin under Grant No.14ZCZDGX00030Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20120032110053CAEP THz Science and Technology Foundation under Grant No.CAEPTHZ201304
文摘A newly grown Ba Ga4Se7 crystal has been synthesized via the Bridgman-Stockbarger technique.This new crystal has advantages of high nonlinear optics(NLO) coefficients,high laser damage thresholds,and wide transparent regions.The Ba Ga4Se7 crystal has bright application prospects as a nonlinear gain medium in mid-infrared and terahertz regions.In this paper,the crystalline structure and synthetic method of the Ba Ga4Se7 crystal are introduced.The refractive indices and absorption coefficients along three dielectric axes between 0.1 THz and 1.0 THz are also obtained.The terahertz difference frequency generation(THz-DFG) characteristics based on the BaG a4Se7 crystal in the frequency range of 0.1 THz to 1.0 THz are analyzed theoretically and the phase-matching conditions are calculated.The application of Ba Ga4Se7 crystals in terahertz wave generation is also discussed.
基金the support from Army Research Office(No.W911NF1910111).
文摘Mid-infrared(IR)detectors based on the emerging low-dimensional(two-dimensional and quasi one-dimensional)materials offer unique characteristics including large bandgap tunability,optical polarization sensitivity and integrability with typical silicon process,which are not available in the mid-IR detectors based on traditional compound semiconductors.Here,we review the recent progress in study of mid-IR detectors based on the low-dimensional materials,including black phosphorus,black arsenic phosphorus,tellurene and BaTiS3,from the perspectives of crystal structure,material synthesis,optical properties,and the detector characteristics.The detector gain and detectivity are benchmarked,and the unique properties,such as the polarization sensitivity,are discussed.We also provide our perspective about key future research directions in this field.
基金National High-tech R&D Program of China(863 Program)(2015AA021102)Innovative Research and Development Project of Nanshan District(KC2013JSCX0013A)+3 种基金China Postdoctoral Science Foundation(2015M572353,2015M582407)Natural Science Foundation of SZU(201457)National Natural Science Foundation of China(NSFC)(61275144,61308049)Science and Technology Projects of Shenzhen City(JCYJ20130329103213543,JCYJ20140418091413568,JCYJ20150324140036862)
文摘We demonstrate an integrated all-fiber mid-infrared(mid-IR)supercontinuum(SC)source generated by a 1.95μm master oscillator power amplifier system and a single-mode ZBLAN(ZrF_4–BaF_2–LaF_3–AlF_3–NaF)fiber.The maximum average output power is 10.67 W with spectral bandwidth covering from~1.9 to 4.1μm.The single-mode ZBLAN fiber and silica fiber are thermal-spliced to enhance the robustness and practicability of the system.It is,to the best of our knowledge,the first high-power integrated compacted all-fiber mid-IR SC source based on thermal-spliced silica fiber and ZBLAN fiber.
基金supported by the National 973 Program of China (Grant No. 2012CB315701)the National Natural Science Foundation of China (Grant Nos. 61205125, 61222505, and 61475102)
文摘Gapless linear energy dispersion of graphene endows it with unique nonlinear optical properties, including broadband nonlinear absorption and giant nonlinear refractive index. Herein, we experimentally observed that fewlayers graphene has obvious nonlinear absorption and large nonlinear refraction, as investigated by the Z-scan technique in the mid-infrared(mid-IR) regime. Our study may not only, for the first time to our knowledge, verify the giant nonlinear refractive index of graphene(~10-7cm2∕W) at the mid-IR, which is 7 orders of magnitude larger than other conventional bulk materials, but also provide some new insights for graphene-based mid-IR photonics,potentially leading to the emergence of several new conceptual mid-IR optoelectronics devices.
文摘The study of the spatial patterns and temporal changes of cropland is important to understand the underlying factors and the functional effects of the agricultural landscape. On the other hand, crop dynamics mapping is essential to know the overall agro-spatial diversity of the area. Therefore, this paper addressed a spatio-temporal analysis of cropland and cropping pattern change in the Bogra district of Bangladesh over the last 16 years (between 1988/89 and 2004/05). In this paper, crop mapping from multi-temporal and multi-sensor satellite images was described. Landsat TM and IRS P6 LlSS Ⅲ satellite images were used with GIS for spatial dynamics of cropland and cropping pattern change analysis. First, seasonal cropland maps were derived from object-based classification of satellite images, then two-date classified image differencing with GIS overlay technique and decision rules were applied. Cropping pattern change was analyzed in a spatial and quantitative way for the 16 years and for this, Integrated Land and Water Information System (ILWIS) and Land Change Modular (LCM) of IDRISl Andes were used. The results showed that in the area, mono crop cultivation was found in summer, but in winter, areas under different crop cultivation had changed dramatically. Change analysis showed that the changes mainly occurred in the north northwest and southwest of the areas, and during the time the highest change area was found under the rice-potato pattern.
基金supported by the National High Technology Research and Development Program of China(No.2009AA01Z261)the State Key Laboratory of Wireless Telecommunication,Southeast University.
文摘A wideband receiver RP front-end for IR-UWB applications is implemented in 0.13μm CMOS technology. Thanks to the direct sub-sampling architecture,there is no mixing process.Both LNA and VGA work at RF frequencies.To optimize noise as well as linearity,a differential common-source LNA with capacitive cross- coupling is used,which only consumes current of 1.8 mA from a 1.2 V power supply.Following LNA,a two-stage current-steering VGA is adopted for gain tuning.To extend the overall bandwidth,a three-stage staggered peaking technique is used.Measurement results show that the proposed receiver front-end achieves a gain tuning range from 5 to 40 dB within 6-7 GHz,a minimum noise figure of 4.5 dB and a largest IIP_3 of-11 dBm.The core receiver (without test buffer) consumes 14 mW from a 1.2 V power supply and occupies 0.58 mm^2 area.
基金This work was supported by the National Natural Science Foundation of China(Grant No.61775032)the National Key Research and Development Program of China(Grant No.2017YFA0701200)+4 种基金the Fundamental Research Funds for the Central Universities(Grant Nos.N2104022 and N2004021)the China Postdoctoral Science Foundation(Grant No.2021M690563)the Natural Science Foundation of Science and Technology Department of Liaoning Province(Grant No.2020-BS-046)the Hebei Natural Science Foundation(Grant No.F2020501040)the 111 Project(Grant No.B16009).
文摘In this study,we design a refractive index(RI)sensor using a novel cadmium telluride photonic crystal fiber(TPCF).Based on four-wave mixing(FWM),the changes in RI can be accurately detected,and RI sensing in the mid-infrared region(MIR)can be achieved by detecting wavelength shifts in the Stokes and anti-Stokes spectra caused by the changes in RI of the liquid to be measured.When the pump wavelength of FWM lies in the normal and abnormal dispersion regions of the TPCF,the RI response of the idler frequency wave and the signal wave are analyzed by numerical simulation methods.The simulation results show that the RI sensitivity of the sensor can be as high as 7692 nm/RIU with a linearity is up to 99.9%at the pump wavelength of 3380 nm.To our knowledge,the RI sensing sensitivity of the MIR is presented for the first time in this study by using FWM in the non-silicon PCF.