With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the rou...With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.展开更多
This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformatio...This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformation and multi-level matching strategies have been proven effective and successful as the experiments show while the control point database is established.展开更多
In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between p...In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.展开更多
Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition const...Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods.展开更多
The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degrad...The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.展开更多
For the unsorted database quantum search with the unknown fraction λ of target items, there are mainly two kinds of methods, i.e., fixed-point and trail-and-error.(i) In terms of the fixed-point method, Yoder et al. ...For the unsorted database quantum search with the unknown fraction λ of target items, there are mainly two kinds of methods, i.e., fixed-point and trail-and-error.(i) In terms of the fixed-point method, Yoder et al. [Phys. Rev. Lett.113 210501(2014)] claimed that the quadratic speedup over classical algorithms has been achieved. However, in this paper, we point out that this is not the case, because the query complexity of Yoder’s algorithm is actually in O(1/λ01/2)rather than O(1/λ1/2), where λ0 is a known lower bound of λ.(ii) In terms of the trail-and-error method, currently the algorithm without randomness has to take more than 1 times queries or iterations than the algorithm with randomly selected parameters. For the above problems, we provide the first hybrid quantum search algorithm based on the fixed-point and trail-and-error methods, where the matched multiphase Grover operations are trialed multiple times and the number of iterations increases exponentially along with the number of trials. The upper bound of expected queries as well as the optimal parameters are derived. Compared with Yoder’s algorithm, the query complexity of our algorithm indeed achieves the optimal scaling in λ for quantum search, which reconfirms the practicality of the fixed-point method. In addition, our algorithm also does not contain randomness, and compared with the existing deterministic algorithm, the query complexity can be reduced by about 1/3. Our work provides a new idea for the research on fixed-point and trial-and-error quantum search.展开更多
光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该...光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。展开更多
针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲...针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。展开更多
针对跳点搜索(jump point search,JPS)算法在寻路过程中所存在的路径拐点多、中间搜索跳点数多、寻找跳点的过程中扩展节点数多和寻路时间较长等问题,提出改进双向动态JPS算法。改进算法动态定义正、反扩展方向上的目标点,动态定义启发...针对跳点搜索(jump point search,JPS)算法在寻路过程中所存在的路径拐点多、中间搜索跳点数多、寻找跳点的过程中扩展节点数多和寻路时间较长等问题,提出改进双向动态JPS算法。改进算法动态定义正、反扩展方向上的目标点,动态定义启发函数,并利用动态约束椭圆对算法的扩展区域加以限制,以区分椭圆内、外区域的扩展优先级。在算法从起点和目标点两个方向上分别向对方进行扩展的过程中,以寻找到的新的代价最小点为新椭圆的焦点,椭圆的方位和约束区域也随之动态调整。仿真结果表明,经过优化改进的双向动态JPS算法在一般地图中有一定的表现,在障碍物较少且目标点距离起点较近的室内环境地图中表现尤为良好。展开更多
实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足...实际工程中,光伏阵列在随机变化的环境中会出现局部遮光的情况,从而导致光伏阵列的功率-电压特性曲线会呈现多峰值状态,传统的最大功率点跟踪(maximum power point tracking, MPPT)算法易陷入局部最优解,追踪速度和精准度无法得到满足。针对这一问题,提出一种基于布谷鸟搜索算法(cuckoo search algorithm, CS)和电导增量法(conductivity increment method, CI)结合的光伏MPPT算法,在算法前期利用布谷鸟搜索算法将大步长和小步长交替使用使得全局搜索能力增强,找到全局最大功率点所处区域附近;在后期,采用步长小、控制精度高的CI进行局部寻优,快速准确地锁定到最大功率点。在MATLAB/Simulink中搭建仿真模型,并与原始布谷鸟搜索算法和粒子群优化(particle swam optimization, PSO)算法进行比较。仿真结果表明,将CS与CI结合的算法使得收敛速度更快,精度更高,稳定状态时功率曲线的波动更小。展开更多
稠密地图估计是同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的重要目标。针对经典的深度滤波算法重建精度不高的问题,提出一种基于逆深度滤波的改进单目稠密点云重建方法,在极线搜索阶段通过设置阈值提高效率,通...稠密地图估计是同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的重要目标。针对经典的深度滤波算法重建精度不高的问题,提出一种基于逆深度滤波的改进单目稠密点云重建方法,在极线搜索阶段通过设置阈值提高效率,通过逆深度高斯滤波器更新后验逆深度概率分布,通过帧内检测剔除外点。实验结果验证改进后的稠密重建算法具有更稠密、更精确的重建效果,且无须GPU加速。展开更多
基金supported by the Natural Science Foundation of Zhejiang Province(LY19A020001).
文摘With the increasing demand for electrical services,wind farm layout optimization has been one of the biggest challenges that we have to deal with.Despite the promising performance of the heuristic algorithm on the route network design problem,the expressive capability and search performance of the algorithm on multi-objective problems remain unexplored.In this paper,the wind farm layout optimization problem is defined.Then,a multi-objective algorithm based on Graph Neural Network(GNN)and Variable Neighborhood Search(VNS)algorithm is proposed.GNN provides the basis representations for the following search algorithm so that the expressiveness and search accuracy of the algorithm can be improved.The multi-objective VNS algorithm is put forward by combining it with the multi-objective optimization algorithm to solve the problem with multiple objectives.The proposed algorithm is applied to the 18-node simulation example to evaluate the feasibility and practicality of the developed optimization strategy.The experiment on the simulation example shows that the proposed algorithm yields a reduction of 6.1% in Point of Common Coupling(PCC)over the current state-of-the-art algorithm,which means that the proposed algorithm designs a layout that improves the quality of the power supply by 6.1%at the same cost.The ablation experiments show that the proposed algorithm improves the power quality by more than 8.6% and 7.8% compared to both the original VNS algorithm and the multi-objective VNS algorithm.
基金Project supported by the National Oommission of Defense Science and Technotocjy(No.Y96-10)
文摘This paper discusses the approaches for automatical searching of control points in the NOAA AVHRR image on the basis of data rearrangement in the form of latitude and longitude grid. The vegetation index transformation and multi-level matching strategies have been proven effective and successful as the experiments show while the control point database is established.
基金supported by the National Science Council under Grant No. NSC98-2221-E-468-017 and NSC 100-2221-E-468-023the Research Project of Asia University under Grant No. 100-A-04
文摘In this study, we extend our previous adaptive steganographic algorithm to support point geometry. For the purpose of the vertex decimation process presented in the previous work, the neighboring information between points is necessary. Therefore, a nearest neighbors search scheme, considering the local complexity of the processing point, is used to determinate the neighbors for each point in a point geometry. With the constructed virtual connectivity, the secret message can be embedded successfully after the vertex decimation and data embedding processes. The experimental results show that the proposed algorithm can preserve the advantages of previous work, including higher estimation accuracy, high embedding capacity, acceptable model distortion, and robustness against similarity transformation attacks. Most importantly, this work is the first 3D steganographic algorithm for point geometry with adaptation.
基金financial support from the National Natural Science Foundation of China(Grant Nos.32171789,32211530031)Wuhan University(No.WHUZZJJ202220)Academy of Finland(Nos.334060,334829,331708,344755,337656,334830,293389/314312,334830,319011)。
文摘Forest is one of the most challenging environments to be recorded in a three-dimensional(3D)digitized geometrical representation,because of the size and the complexity of the environment and the data-acquisition constraints brought by on-site conditions.Previous studies have indicated that the data-acquisition pattern can have more influence on the registration results than other factors.In practice,the ideal short-baseline observations,i.e.,the dense collection mode,is rarely feasible,considering the low accessibility in forest environments and the commonly limited labor and time resources.The wide-baseline observations that cover a forest site using a few folds less observations than short-baseline observations,are therefore more preferable and commonly applied.Nevertheless,the wide-baseline approach is more challenging for data registration since it typically lacks the required sufficient overlaps between datasets.Until now,a robust automated registration solution that is independent of special hardware requirements has still been missing.That is,the registration accuracy is still far from the required level,and the information extractable from the merged point cloud using automated registration could not match that from the merged point cloud using manual registration.This paper proposes a discrete overlap search(DOS)method to find correspondences in the point clouds to solve the low-overlap problem in the wide-baseline point clouds.The proposed automatic method uses potential correspondences from both original data and selected feature points to reconstruct rough observation geometries without external knowledge and to retrieve precise registration parameters at data-level.An extensive experiment was carried out with 24 forest datasets of different conditions categorized in three difficulty levels.The performance of the proposed method was evaluated using various accuracy criteria,as well as based on data acquired from different hardware,platforms,viewing perspectives,and at different points of time.The proposed method achieved a 3D registration accuracy at a 0.50-cm level in all difficulty categories using static terrestrial acquisitions.In the terrestrial-aerial registration,data sets were collected from different sensors and at different points of time with scene changes,and a registration accuracy at the raw data geometric accuracy level was achieved.These results represent the highest automated registration accuracy and the strictest evaluation so far.The proposed method is applicable in multiple scenarios,such as 1)the global positioning of individual under-canopy observations,which is one of the main challenges in applying terrestrial observations lacking a global context,2)the fusion of point clouds acquired from terrestrial and aerial perspectives,which is required in order to achieve a complete forest observation,3)mobile mapping using a new stop-and-go approach,which solves the problems of lacking mobility and slow data collection in static terrestrial measurements as well as the data-quality issue in the continuous mobile approach.Furthermore,this work proposes a new error estimate that units all parameter-level errors into a single quantity and compensates for the downsides of the widely used parameter-and object-level error estimates;it also proposes a new deterministic point sets registration method as an alternative to the popular sampling methods.
基金supported by the Natural Science Foundation of Gansu Province(Grant No.21JR7RA321)。
文摘The existing Maximum Power Point Tracking(MPPT)method has low tracking efficiency and poor stability.It is easy to fall into the Local Maximum Power Point(LMPP)in Partial Shading Condition(PSC),resulting in the degradation of output power quality and efficiency.It was found that various bio-inspired MPPT based optimization algorithms employ different mechanisms,and their performance in tracking the Global Maximum Power Point(GMPP)varies.Thus,a Cuckoo search algorithm(CSA)combined with the Incremental conductance Algorithm(INC)is proposed(CSA-INC)is put forward for the MPPT method of photovoltaic power generation.The method can improve the tracking speed by more than 52%compared with the traditional Cuckoo Search Algorithm(CSA),and the results of the study using this algorithm are compared with the popular Particle Swarm Optimization(PSO)and the Gravitational Search Algorithm(GSA).CSA-INC has an average tracking efficiency of 99.99%and an average tracking time of 0.19 s when tracking the GMPP,which improves PV power generation’s efficiency and power quality.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11504430 and 61502526)the National Basic Research Program of China(Grant No.2013CB338002)
文摘For the unsorted database quantum search with the unknown fraction λ of target items, there are mainly two kinds of methods, i.e., fixed-point and trail-and-error.(i) In terms of the fixed-point method, Yoder et al. [Phys. Rev. Lett.113 210501(2014)] claimed that the quadratic speedup over classical algorithms has been achieved. However, in this paper, we point out that this is not the case, because the query complexity of Yoder’s algorithm is actually in O(1/λ01/2)rather than O(1/λ1/2), where λ0 is a known lower bound of λ.(ii) In terms of the trail-and-error method, currently the algorithm without randomness has to take more than 1 times queries or iterations than the algorithm with randomly selected parameters. For the above problems, we provide the first hybrid quantum search algorithm based on the fixed-point and trail-and-error methods, where the matched multiphase Grover operations are trialed multiple times and the number of iterations increases exponentially along with the number of trials. The upper bound of expected queries as well as the optimal parameters are derived. Compared with Yoder’s algorithm, the query complexity of our algorithm indeed achieves the optimal scaling in λ for quantum search, which reconfirms the practicality of the fixed-point method. In addition, our algorithm also does not contain randomness, and compared with the existing deterministic algorithm, the query complexity can be reduced by about 1/3. Our work provides a new idea for the research on fixed-point and trial-and-error quantum search.
文摘光伏电池板所处环境的非线性变化使得光伏电池的功率保持在最大功率点(maximum power point,MPP)非常困难。传统的最大功率点跟踪(maximum power point tracking,MPPT)方法普遍存在技术缺陷,无法满足当前需求。针对光伏发电MPPT问题,该文提出了一种基于麻雀搜索算法优化的极限学习机(sparrow search algorithm-extreme learning machine,SSA-ELM)神经网络控制器的MPPT方法。与传统技术相比,该MPPT方法在稳定性、速度、超调和MPP的振荡等方面的效果均较好。使用MATLAB/Simulink平台进行仿真实验,验证了所提控制策略及理论分析的正确性。
文摘针对传统蚁群算法在移动机器人路径规划中存在搜索盲目性、收敛速度慢及路径转折点多等问题,提出了一种基于改进蚁群算法的移动机器人路径规划算法。首先,利用跳点搜索(Jump Point Search,JPS)算法不均匀分配初始信息素,降低蚁群前期盲目搜索的概率;然后,引入切比雪夫距离加权因子和转弯代价改进启发函数,提高算法的收敛速度、全局路径寻优能力和搜索路径的平滑程度;最后,提出一种新的信息素更新策略,引入自适应奖惩因子,自适应调整迭代前、后期的信息素奖惩因子,保证了算法全局最优收敛。实验仿真结果表明,在不同地图环境下,与现有文献结果对比,该算法可以有效地缩短路径搜索的迭代次数和最优路径长度,并提高路径的平滑程度。
文摘针对跳点搜索(jump point search,JPS)算法在寻路过程中所存在的路径拐点多、中间搜索跳点数多、寻找跳点的过程中扩展节点数多和寻路时间较长等问题,提出改进双向动态JPS算法。改进算法动态定义正、反扩展方向上的目标点,动态定义启发函数,并利用动态约束椭圆对算法的扩展区域加以限制,以区分椭圆内、外区域的扩展优先级。在算法从起点和目标点两个方向上分别向对方进行扩展的过程中,以寻找到的新的代价最小点为新椭圆的焦点,椭圆的方位和约束区域也随之动态调整。仿真结果表明,经过优化改进的双向动态JPS算法在一般地图中有一定的表现,在障碍物较少且目标点距离起点较近的室内环境地图中表现尤为良好。
文摘稠密地图估计是同步定位与地图构建(Simultaneous Localization and Mapping,SLAM)的重要目标。针对经典的深度滤波算法重建精度不高的问题,提出一种基于逆深度滤波的改进单目稠密点云重建方法,在极线搜索阶段通过设置阈值提高效率,通过逆深度高斯滤波器更新后验逆深度概率分布,通过帧内检测剔除外点。实验结果验证改进后的稠密重建算法具有更稠密、更精确的重建效果,且无须GPU加速。