期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Precipitation cycles in the middle and lower reaches of the Yellow River (1736-2000) 被引量:22
1
作者 HAO Zhixin ZHENG Jingyun GE Quansheng 《Journal of Geographical Sciences》 SCIE CSCD 2008年第1期17-25,共9页
Based on the long-term precipitation series with annual time resolution in the middle and lower reaches of the Yellow River and its four sub-regions during 1736-2000 reconstructed from the rainfall and snowfall archiv... Based on the long-term precipitation series with annual time resolution in the middle and lower reaches of the Yellow River and its four sub-regions during 1736-2000 reconstructed from the rainfall and snowfall archives of the Qing Dynasty, the precipitation cycles are analyzed by wavelet analysis and the possible climate forcings, which drive the precipitation changes, are explored. The results show that: the precipitation in the middle and lower reaches of the Yellow River has inter-annual and inter-decadal oscillations like 2-4a, quasi-22a and 70-80a. The 2-4a cycle is linked with El Nino events, and the precipitation is lower than normal year in the occurrence of the El Nino year or the next year; for the quasi-22a and the 70-80a cycles, Wolf Sun Spot Numbers and Pacific Decadal Oscillation (PDO) coincide with the two cycle signals. However, on a 70-80a time scale, the coincidence between solar activity and precipitation is identified before 1830, and strong (weak) solar activity is generally correlated to the dry (wet) periods; after 1830, the solar activity changes to 80-100a quasi-century long oscillation, and the adjusting action to the precipitation is becoming weaker and weaker; the coincidence between PDO and precipitation is shown in the whole time series. Moreover, in recent 100 years, PDO is becoming a pace-maker of the precipitation on the 70-80a time scale. 展开更多
关键词 wavelet analysis precipitation cycles climate forcing middle and lower reaches of the yellow river last 300 years
下载PDF
Impact of vegetation restoration on hydrological processes in the middle reaches of the Yellow River,China 被引量:4
2
作者 XIN Zhong-bao YU Xin-xiao 《Forestry Studies in China》 CAS 2009年第4期209-218,共10页
Sediment discharge from the Yellow River originates mainly from the drainage area between Hekouzhen and Longmen, i.e., the Helong area. Spatial-temporal variations of the vegetation cover in this area during the 1981-... Sediment discharge from the Yellow River originates mainly from the drainage area between Hekouzhen and Longmen, i.e., the Helong area. Spatial-temporal variations of the vegetation cover in this area during the 1981-2007 period have been investigated using GIMMS and SPOT VGT NDVI data. We have also analyzed the interannual variations in vegetation cover and changes in annual runoff and sediment discharge, the consequences from precipitation change and the Grain for Green Project (GGP). The results show that vegetation cover of the Helong area has increased during the 1981-2007 period. The northwestern part the Helong area, where the flat sandy lands are covered by grass, has experienced the largest increase. The region where the vegetation cover has declined is largely found in the southern and southeastern Helong area, which is a gullied hilly area or forested. Although precipitation was relatively low during the 1999-2007 period, the vegetation cover showed a significant increase in the Helong area, due to the implementation of the GGP. During this period, the most significant improvement in the vegetation cover occurred mainly in the gullied hilly areas of the Loess Plateau, such as the drainage basins of the Kuyehe and Tuweihe rivers and the middle and lower reaches of the Wudinghe and Yanhe rivers. A comparison of the average annual maximum NDVI between the earlier (1998-2002) stage and the next five years (2003-2007) of the GGP indicates that the areas with increases of 10% and 20% in NDVI account for 72.5% and 36.4% of the total area, respectively. Interannual variation of annual runoff and sediment discharge shows a declining trend, especially since the 1980s, when the decrease became very obvious. Compared with the 1950-1969 period, the average runoff during the 1980-2007 period was reduced by 34.8 × 10^8 m3 and the sediment discharge by 6.4 ×10^8 t, accounting for 49.4% and 64.9% of that in the 1950-1969 period, respectively. There is a positive correlation between the annual maximum NDVI and annual runoff and sediment discharge. This correlation was reversed since the implementation of the GGP in 1999 and vegetation cover in the He- long area has increased, associated with the decrease in runoff and sediment discharge. Less precipitation has been an important fac- tor driving the decrease in runoff and sediment discharge during 1999 2007. However, restoration and improvement of the vegetation cover may also have played a significant role in accelerating the decrease in annual runoff and sediment discharge by enhancing evapotranspiration and alleviating soil erosion. 展开更多
关键词 middle reaches of the yellow river Hekouzhen to Longmen area (Helong area) vegetation restoration Grain forGreen Project (GGP) runoff and sediment
下载PDF
Farm Production Growth in the Upper and Middle Parts of the Yellow River Basin,China,During 1980-1999 被引量:2
3
作者 LI Xiang-lian LUO Yu-zhou +2 位作者 GAO Qiong DONG Suo-cheng YANG Xiu-sheng 《Agricultural Sciences in China》 CAS CSCD 2008年第3期344-355,共12页
The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were emplo... The impact of inputs on farm production growth was evaluated by analyzing the economic data of the upper and middle parts of the Yellow River basin, China for the period of 1980-1999. Descriptive statistics were employed to characterize the temporal trends and spatial patterns in farm production and five pertinent inputs of cultivated cropland, irrigation ratio, agricultural labor, machinery power and chemical fertilizer. Stochastic frontier production function was applied to quantify the dependence of the farm production on these inputs. The growth of farm production was decomposed to reflect the contributions by input growths and change in total factor productivity.. The change in total factor productivity was further decomposed into the changes in technology and in technical efficiency. The gross value of farm production in the region of study increased by 1.6 fold during 1980-1999. Among the five selected farm inputs, machinery power and chemical fertilizer increased by 1.8 and 2.8 fold, respectively. The increases in cultivated cropland, irrigated cropland, and agricultural labor were all less than 0.16 fold. The growth in the farm production was primarily contributed by the increase in the total factor productivity during 1980-1985, and by input growths after 1985. More than 80% of the contributions by input growths were attributed to the increased application of fertilizer and machinery. In the change of total factor productivity, the technology change dominated over the technical efficiency change in the study period except in the period of 1985-1990, implying that institution and investment played important roles in farm production growth. There was a decreasing trend in the technical efficiency in the region of study, indicating a potential to increase farm production by improving the technical efficiency in farm activities. Given the limited natural resources in the basin, the results of this study suggested that, for a sustainable growth of farm production in the area, efforts should be directed to technology progress and improvement in technical efficiency in the use of available resources. 展开更多
关键词 farm production stochastic frontier production function total factor productivity upper and middle parts of the yellow river basin
下载PDF
Slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River
4
作者 CHEN Hao(Institute of Geography, Chinese Academy of Sciences, Beijing 100101, China) 《Journal of Geographical Sciences》 SCIE CSCD 1999年第2期105-115,共11页
The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment i... The slope-gully erosion relationship in small catchments of the middle reaches of the Yellow River has long been a topic concerned by relevant departments in China Slope-gully relationship in typical small catchment is determined determined on the concept of net increase of sediment yield by using analytical method of sediment formation at different positions in the catchment The result shows that sediments in a small catchment in the middle reaches of the Yellow River mainly come from slopes. ms paper indicated that the sediment sources from slopes are roughly 55, 60, 78 and 85 % of the total sediment yield of a small catchment in Yangdaogou. Wangjiagou. Jiuyuangou and Nanxiaohegou, respectively, due to impacts of varying degress from slope runoff. 展开更多
关键词 small catchment slope-gully erosion relationship sediment sources the middle reaches of the yellow river
下载PDF
CRITICAL ENVIRONMENTAL SITUATION IN THE MIDDLE REACHES OF THE YELLOW RIVER IN CHINA
5
作者 Yang Qinye Liu Xuehua Li Guodong(Institute of Geography, CAS, Beijing 100101People’s Republic of China) 《Journal of Geographical Sciences》 SCIE CSCD 1996年第1期36-47,共12页
This paper researches and analyses the critical envirormental situation in the Middle Reaches of the Yellow River and compiles the map of critical environmental situation of this area (1:2,000,000). Five types of envi... This paper researches and analyses the critical envirormental situation in the Middle Reaches of the Yellow River and compiles the map of critical environmental situation of this area (1:2,000,000). Five types of environmental situation (ES) are divided, namely, conflict ES, critical ES, crisis ES, disastrous ES and accidental ES and 7 groups of main factors are used to identify and classify the critical environmental situation after considering the speciality of this region and the law of guiding factors. They are pollution, endemic disease, soil erosion, drought and water-shortage, forest degeration, wind-erosion and desertification, and soil salinization. Based on mapping and analysis, the paper also concludes the regional distribution law of critical environmental situation of this region and divides it into 8 small districts through combining the critical envirormental situation, regional distribution law and guiding factors. This can provide scientific basis and reference for preserving and renovating the environments with different fragile types and fragile levels. 展开更多
关键词 middle reaches of the yellow river critical environmental situation mapping district division of critical environment
下载PDF
Comparison of River Terraces in the Middle Reach Valleys of the Yellow River and Analysis on the Multi-Gradational Features of Tectonism in the Formation of Terrace Series
6
作者 XingChengqi DingGuoyu +5 位作者 LuYanchou ShenXuhui TianQinjian YinGongming ChaiZhizhang WeiKaibo 《Earthquake Research in China》 2003年第2期183-198,共16页
Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among ... Where the Yellow River flows through the Haiyuan-Tongxin arc-form tectonic region on the northeastern side of the Qinghai-Xizang (Tibet) Plateau, as many as 10~21 basis and erosion terraces have been produced, among which the biggest altitude above river level is 401m and the formation age of the highest terrace is 1.57 Ma B.P. Based on comparative analysis of the Yellow River terraces located separately in the Mijiashan mountain, the Chemuxia gorge, the Heishanxia gorge and the other river terraces in the vast extent of the northern part of China, it has been found that the tectonic processes resulting in the formation of the terrace series is one of multi-gradational features, i.e., a terrace series can include the various terraces produced by tectonic uplifts of different scopes or scales and different ranks. The Yellow River terrace series in the study region can be divided into three grades. Among them, in the first grade there are 6 terraces which were formed separately at the same time in the vast extent of the northern part of China and represent the number and magnitude of uplift of the Qinghai-Xizang Plateau since 1.6 Ma B. P.; in the second grade there are 5 terraces which were separately and simultaneously developed within the Haiyuan-Tianjingshan tectonic region and represent the number and magnitude of uplift of this tectonic region itself since 1.6Ma B.P.; in the third grade there are 10 terraces which developed on the eastern slope of the Mijiashan mountain and represent the number and amplitude of uplift of the Haiyuan tectonic belt itself since 1.6Ma B.P. Comparison of the terrace ages with loess-paleosoil sequence has also showed that the first grade terraces reflecting the vast scope uplifts of the Qinghai-Xizang Plateau are very comparable with climatic changes and their formation ages all correspond to the interglacial epochs during which paleosoils were formed. This implies that the vast extent tectonic uplifts resulting in river down-cutting are closely related to the warm-humid climatic periods which can also result in river downward erosion after strong dry and cold climatic periods, and they have jointly formed the tectonic-climatic cycles. There exists no unanimous and specific relationship between the formation ages of the second and third grade terraces and climatic changes and it is shown that the formation of those terraces was most mainly controlled by tectonic uplifts of the Tianjingshan block and the Haiyuan belt. The river terraces in the study region, therefore, may belong to 2 kinds of formation cause. One is a tectonic-climatic cyclical terrace produced jointly by vast extent tectonic uplifts and climatic changes, and the terraces of this kind are extensively distributed and can be well compared with each other among regions. Another is a pulse-tectonic cyclical terrace produced by local tectonic uplifts as dominant elements, and their distribution is restricted within an active belt and can not be compared with among regions. 展开更多
关键词 Comparison of river terraces Terrace series Multi-gradational features of tectonic process Origin of terraces Climatic changes The middle reaches of the yellow river
下载PDF
Sediment Variation Characteristics of Major Rivers in the Middle Reaches of the Yellow River
7
作者 Yaxi Cai Xiaodong Yang 《Journal of Architectural Research and Development》 2021年第5期20-25,共6页
The sediment sequence analysis of Mann-Kendall method based on major rivers of 10 hydrological station in the middle reaches of the Yellow River*[1]*t,.The results show that:The main rivers in the middle reaches of th... The sediment sequence analysis of Mann-Kendall method based on major rivers of 10 hydrological station in the middle reaches of the Yellow River*[1]*t,.The results show that:The main rivers in the middle reaches of the Yellow River hydrologic station sediment overall showed a trend of decreased significantly.Sediment discharge of all stations except Gao Jiachuan station have reached the maximum in 1956-1969s[2_3].Among various hydrologic station sediment discharge of inter-generational are generally shows the tendency of reducing year by year.Calculate the sediment transport of major river basin of Yellow River,which average is 0.63. 展开更多
关键词 The middle reaches of the yellow river Sediment load Trend analysis
下载PDF
Ecological risk assessment and ecological security pattern optimization in the middle reaches of the Yellow River based on ERI+MCR model 被引量:3
8
作者 YANG Lian'an LI Yali +2 位作者 JIA Lujing JI Yongfan HU Guigui 《Journal of Geographical Sciences》 SCIE CSCD 2023年第4期823-844,共22页
The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a... The middle reaches of the Yellow River represent an important area for the protection and development of the Yellow River Basin.Most of the area of the river basin is within the Loess Plateau,which establishes it as a fragile ecological environment.Firstly,using high-resolution data of land use in the watershed from the past 30 years,landscape ecological risk(LER)sample units are defined and an ecological risk index(ERI)model is constructed.Kriging interpolation is used to display the LER spatial patterns,and the temporal and spatial evolution of risk is examined.Secondly,the spatial evolution of land use landscape change(LULC)is analyzed,and the correlation between land use landscape and ecological risk is discussed.Finally,Based on the LER model,a risk-based minimum cumulative resistance(MCR)model is established,and a comprehensive protection and management network system for the ecological source-corridor-node system designed.The results suggest that in the past 30 years,LER has a high spatial correlation and areas with extremely high ecological risks are concentrated in northwest and southeast areas of the region,of which the northwest area accounts for the highest proportion.Risk intensity is closely related to the spatial pattern of land use landscape.ERI values of forestland,grasslands,and unused land and farmland are low,medium,and high,respectively.The trend of risk evolution is“overall improvement and partial deterioration”.Man-made construction and exploitation is the most direct reason for the increase of local ecological risks.The high ecological-risk areas in the northwest are dominated by deserts which reduce excessive interference by human activities on the natural landscape.Recommendations are:high-quality farmland should be protected;forestland should be restored and rebuilt;repair and adjust the existing ecosystem to assist in landscape regeneration and reconstruction;utilize the overall planning vision of“mountain,water,forest,field,lake,grass,sand”to design a management project at the basin scale;adhere to problem-oriented and precise policy implementation. 展开更多
关键词 landscape ecological risk MCR model ecological security pattern middle reaches of the yellow river
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部