Salidroside,the main active ingredient extracted from Rhodiola crenulata,has been shown to be neuroprotective in ischemic cerebral injury,but the underlying mechanism for this neuroprotection is poorly understood.In t...Salidroside,the main active ingredient extracted from Rhodiola crenulata,has been shown to be neuroprotective in ischemic cerebral injury,but the underlying mechanism for this neuroprotection is poorly understood.In the current study,the neuroprotective effect of salidroside on cerebral ischemia-induced oxidative stress and the role of the nuclear factor erythroid 2-related factor 2(Nrf2)pathway was investigated in a rat model of middle cerebral artery occlusion.Salidroside(30 mg/kg)reduced infarct size,improved neurological function and histological changes,increased activity of superoxide dismutase and glutathione-S-transferase,and reduced malon-dialdehyde levels after cerebral ischemia and reperfusion.Furthermore,salidroside apparently increased Nrf2 and heme oxygenase-1 expression.These results suggest that salidroside exerts its neuroprotective effect against cerebral ischemia through anti-oxidant mechanisms and that activation of the Nrf2 pathway is involved.The Nrf2/antioxidant response element pathway may become a new therapeutic target for the treatment of ischemic stroke.展开更多
Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their appli...Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their application in the treatment of ischemic stroke,therefore their therapeutic effect requires further verification.In this study,h WJ-MSCs were transplanted into an ischemic stroke rat model via the tail vein 48 hours after transient middle cerebral artery occlusion.After 4 weeks,neurological functions of the rats implanted with h WJ-MSCs were significantly recovered.Furthermore,many h WJ-MSCs homed to the ischemic frontal cortex whereby they differentiated into neuron-like cells at this region.These results confirm that h WJ-MSCs transplanted into the ischemic stroke rat can differentiate into neuron-like cells to improve rat neurological function and behavior.展开更多
基金supported by the Independent Research Project of Fujian Academy of Traditional Chinese Medicine in China,No.2012fjzyyk-4the Natural Science Foundation of Fujian Province in China,No.2014J01340+1 种基金the Research Project of Fujian Provincial Health and Family Planning Commission,No.2014-ZQN-JC-32a grant from the Platform for Preclinical Studies of Traditional Chinese Medicine and Quality Control Engineering Technology Research Center of Fujian Province in China,No.2009Y2003
文摘Salidroside,the main active ingredient extracted from Rhodiola crenulata,has been shown to be neuroprotective in ischemic cerebral injury,but the underlying mechanism for this neuroprotection is poorly understood.In the current study,the neuroprotective effect of salidroside on cerebral ischemia-induced oxidative stress and the role of the nuclear factor erythroid 2-related factor 2(Nrf2)pathway was investigated in a rat model of middle cerebral artery occlusion.Salidroside(30 mg/kg)reduced infarct size,improved neurological function and histological changes,increased activity of superoxide dismutase and glutathione-S-transferase,and reduced malon-dialdehyde levels after cerebral ischemia and reperfusion.Furthermore,salidroside apparently increased Nrf2 and heme oxygenase-1 expression.These results suggest that salidroside exerts its neuroprotective effect against cerebral ischemia through anti-oxidant mechanisms and that activation of the Nrf2 pathway is involved.The Nrf2/antioxidant response element pathway may become a new therapeutic target for the treatment of ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.31171038the Natural Science Foundation of Jiangsu Province of China,No.BK2011385+3 种基金the "333" Program Funding of Jiangsu Province of China,No.BRA2016450the Training Program of Innovation and Entrepreneurship for Undergraduates of Nantong University of China,No.201510304033Z,201610304053Zthe Training Program of Innovation and Entrepreneurship for Graduates of Nantong University of China,No.YKC14050,YKC15046a grant from Funds for the Priority Academic Program Development of Jiangsu Higher Education Institutions of China
文摘Human Wharton's jelly-derived mesenchymal stem cells(h WJ-MSCs)have excellent proliferative ability,differentiation ability,low immunogenicity,and can be easily obtained.However,there are few studies on their application in the treatment of ischemic stroke,therefore their therapeutic effect requires further verification.In this study,h WJ-MSCs were transplanted into an ischemic stroke rat model via the tail vein 48 hours after transient middle cerebral artery occlusion.After 4 weeks,neurological functions of the rats implanted with h WJ-MSCs were significantly recovered.Furthermore,many h WJ-MSCs homed to the ischemic frontal cortex whereby they differentiated into neuron-like cells at this region.These results confirm that h WJ-MSCs transplanted into the ischemic stroke rat can differentiate into neuron-like cells to improve rat neurological function and behavior.