The Middle Route of the South-to-North Water Diversion Project(MR-SNWDP)in China,with construction beginning in 2003,diverts water from Danjiangkou Reservoir to North China for residential,agriculture and industrial u...The Middle Route of the South-to-North Water Diversion Project(MR-SNWDP)in China,with construction beginning in 2003,diverts water from Danjiangkou Reservoir to North China for residential,agriculture and industrial use.The water source area of the MR-SNWDP is the region that is most sensitive to and most affected by the construction of this water diversion project.In this study,we used Landsat Thematic Mapper(TM)and HJ-1 A/B images from 2000 to 2015 by an object-based approach with a hierarchical classification method for mapping land cover in the water source area.The changes in land cover were illuminated by transfer matrixes,single dynamic degree,slope zones and fractional vegetation cover(FVC).The results indicated that the area of cropland decreased by 31%and was replaced mainly by shrub over the past 15 years,whereas forest and settlements showed continuous increases of 29.2% and 77.7%,respectively.The changes in cropland were obvious in all slope zones and decreased most remarkably(–43.8%)in the slope zone above 25°.Compared to the FVC of forest and shrub,significant improvement was exhibited in the FVC of grassland,with a growth rate of 16.6%.We concluded that local policies,including economic development,water conservation and immigration resulting from the construction of the MR-SNWDP,were the main drivers of land cover changes;notably,they stimulated the substantial and rapid expansion of settlements,doubled the wetlands and drove the transformation from cropland to settlements in immigration areas.展开更多
This paper assess the eco-environmental benefits that may come from the middle route project of China's South-North Water Transfer Scheme(SNWT) with principles and methods of eco-economics and planning reports of ...This paper assess the eco-environmental benefits that may come from the middle route project of China's South-North Water Transfer Scheme(SNWT) with principles and methods of eco-economics and planning reports of SNWT's middle route project. Some benefits were calculated in monetary units. To make sure that the results can be comparable with normal monetary indices, concrete assessment objects and the parameters are prudently selected according to the major characteristics of the project and its water import region. Primary assessment revealed that in different project construction stages, the benefit could be more than 13 07 billion RMB Yuan in 2010 and 19 79 billion RMB Yuan in 2030, respectively. The monetary value tends to increase with social-economic development. To realize these potential benefits, however, calls for more endeavors.展开更多
Taking 13 water-receiving areas on the East Route of the South-to-North Water Diversion Project(ERSNWDP)in Shandong Province as the study area,and comparing it with Jiangsu Province on the ERSNWDP and the Middle Route...Taking 13 water-receiving areas on the East Route of the South-to-North Water Diversion Project(ERSNWDP)in Shandong Province as the study area,and comparing it with Jiangsu Province on the ERSNWDP and the Middle Route of the South-to-North(MRSNWDP),the current water-saving potential of the water-receiving areas within the municipalities of Shandong was analyzed.Different water-saving scenarios were constructed and analyzed with key water-saving indexes in various industries.These indexes include the effective utilization coefficient of farmland irrigation water,total water consumption of industrial sectors with an added value of over 10000 RMB,average leakage rate of the urban public water supply pipe network and the penetration rate of water-saving appliances.Based on the scenarios,comprehensive water-saving potential of the 13 water-receiving area cities was calculated.The results show that the water-saving potential of the study area is at a relative high level.However,some cities still have a certain amount of water-saving potential for agriculture and industry to be elevated.Under the recommended water-saving scenario,the water-saving potential is 1.134 billion m3,accounting for 5.33%of the current total water consumption,of which 460 million m3 is in agriculture,600 million m3 in industry,is and 74.20 million m3 in urban domestic sector.Comprehensive water-saving measures for the study area were proposed from the aspects of agricultural,industrial and domestic water uses.Agricultural and industrial water saving are more significant.The major cities for agricultural water saving include Jining City,Heze City,Weifang City and Jinan City;the focus cities of industrial water saving mainly include Weihai City,Jining City and Qingdao City and etc.;the key water-saving areas for urban use mainly include Zaozhuang City,Jining City and Heze City.展开更多
It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin ...It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.展开更多
This paper presents a study of the middle route of the South-North Water Diversion Project. The middle route runs through the Northern China plain, where the water shortages are the most severe. There is not only a sh...This paper presents a study of the middle route of the South-North Water Diversion Project. The middle route runs through the Northern China plain, where the water shortages are the most severe. There is not only a shortage of water for human usage, but also a shortage of ecological water. Although the current plan for the middle route is strictly focused on supplying water for residential and industrial use, the water can also potentially be used for ecological purposes. This paper evaluates the potential ecological benefits that can be brought to the fragile ecology in northern China by the middle route, in addition to the water supplied to residences and industry. The study describes ecological benefits of the middle route project, such as mitigation of groundwater extraction in the region and positive influences on the climate, the ecological uses of the middle route project itself, such as creating artificial niches along the channel and directly using the channel for ecological purposes, and the ecological uses of the water along the middle route such as diversion of the water into dyer channels that have suffered from drought conditions for decades.展开更多
Payment for ecosystem services (PES) has attracted considerable attention as an economic incentive for promoting natural resource management recently. As emphasis has been placed on using the incentive-based mechani...Payment for ecosystem services (PES) has attracted considerable attention as an economic incentive for promoting natural resource management recently. As emphasis has been placed on using the incentive-based mechanism by the central government, rapid progress on PES research and practice has been achieved. However PES still faces many difficulties. A key issue is the lack of a fully-fledged theory and method to clearly define the design scope, accounting and feasibility of PES criteria. An improved watershed criteria model was developed in light of research on PES practices in China, investigations on the water source area for the Middle Route Project of South-to-North Water Diversion and ecosystem services outflows theory. The basic principle of assessment is the direct and opportunity cost for ecological conservation and environmental protection in the water source area deduct nationally-financed PES and internal effect. Then the scope and the criteria methods were determined, and internal effect was put forward to define benefits brought from water source area. Finally, Shiyan City, which is the main water source area for the Project of Water Diversion, was analyzed by this model and its payment was calculated. The results showed that: (1) during 2003–2050, the total direct cost and opportunity cost would reach up to 262.70 billion and 256.33 billion Chinese Yuan (CNY, 2000 constant prices), i.e., 50.61% and 49.38% of total cost, respectively; (2) Shiyan City would gain 0.23, 0.06 and 0.03 CNY/m3 in 2014–2020, 2021–2030, and 2031–2050, respectively.展开更多
Nutrient levels in the artificial channel constructed for the Middle Route Project are significant indicators of water quality safety and aquatic ecological integrity for this large,interbasin scheme.However,the distr...Nutrient levels in the artificial channel constructed for the Middle Route Project are significant indicators of water quality safety and aquatic ecological integrity for this large,interbasin scheme.However,the distribution and transport of nutrients along the channel were poorly understood.Based on a time-series dataset as well as mass balance and material flow analysis methods,the water and nutrient transport fluxes in the Middle Route of the South-to-North Water Diversion Project were identified in this study.The results indicate that the nutrient concentrations varied considerably with time,but there was no significant difference among the 30 stations of the main channel.Seasonal temperature difference was the major factor in the large fluctuations of water quality indicators over time.The nutrient loadings varied with the water volume outputs from the main channel to the waterreceiving cities.Atmospheric deposition was an important source of nutrients in the main channel,accounting for 9.13%,20.6%,and 0.635%of the nitrogen,phosphorus,and sulfur input from the Danjiangkou Reservoir,respectively.In 2021,a net accumulation of 988 tons of N,29 tons of P,and 2,540 tons of S,respectively,were present in the main channel.The increase of these external and internal nutrient loadings would cause water quality fluctuation and deterioration in some local sections of the main channel.Our study quantified the spatial and temporal patterns of nutrient transport in the Middle Route and revealed the ecological effects on the aquatic environment,assisting authorities on the project to develop effective water conservation strategies.展开更多
The unsteady flow in the Middle Route South-to-North Water Transfer Channel was simulated numerically using an implicit solution procedure for the Saint Venant equations. An equivalent roughness was used to simulate t...The unsteady flow in the Middle Route South-to-North Water Transfer Channel was simulated numerically using an implicit solution procedure for the Saint Venant equations. An equivalent roughness was used to simulate the effect of many transfer structures on the water levels in the main channel. Various gate operating and control methods were analyzed to study the response to disturbances produced by varying the flow rates through the Tianjin outlet. The results show that when the inflow at the head changes in the same way as the sum of the flow rates through all the outlets, the transition time and the fluctuation of the water levels using the timed gate operation method are less than when using the simultaneous gate operation method, but the variations of the gate openings and flow rates through each control gate are much larger. The flow disturbances produced by the Tianjin outlet can be rectified within several channel sections and the transition time can be greatly shortened by allowing the water levels immediately upstream of the control gates to vary within proscribed ranges, rather than being held constant.展开更多
The water-diverting route project’s characteristics,natural landscapes,and histories and humanism of the Jiangsu Section of the Eastern Route South-to-North Water Diversion Project were systemically analyzed through ...The water-diverting route project’s characteristics,natural landscapes,and histories and humanism of the Jiangsu Section of the Eastern Route South-to-North Water Diversion Project were systemically analyzed through proposing and studying the canal culture routes,the water resources heritage corridors,the landscape and recreation corridors,and the town economic corridors.The station areas along the water-diverting route were scientifically zoned and graded through quantitative and qualitative synthetic methods.Both planning compendiums and construction controlling methods were proposed based on the project grades of points,lines,and areas.Conservation and development of architecture and environment in the large-scale national infrastructure construction were explored systemically.Theories and methods of developing harmonious water-supplying functions,ecological functions,landscape effects,and cultural effects of large-scale water resources were examined.展开更多
The factors influencing the water supply price of a hydraulic project include natural conditions and economic policies. This paper thoroughly demonstrates the water price of South-to-North Water Transfer Project from ...The factors influencing the water supply price of a hydraulic project include natural conditions and economic policies. This paper thoroughly demonstrates the water price of South-to-North Water Transfer Project from the viewpoint of economic policies. It is considered that if the project is assigned as a profitable one and built depending on commercial loan from bank completely or mostly, the water price will be too high to be undertaken by users,and if the project places the public good at first while considering the economic benefit, its investment mainly relies on the state (national or local governments) appropriation and self-raised funds and a little from the bank loan on favorable terms, the price determined according to the principle of satisfying the cost and reasonable profit will be relatively lower and can be undertaken by the users in the North China where water shortage is serious. The problem of higher water price of agricultural irrigation to the north of the Yellow River can be tackled by taking measures such as "compensating agriculture by industry" according to foreign practical experiences and relevant suggestions.展开更多
基金Under the auspices of the National Key Research and Development Program of China(No.2016YFC0500201-01)National Natural Science Foundation of China(No.41671365,41771464)the Annual Project of the Office of the South-to-North Water Diversion Project(No.2018-21)
文摘The Middle Route of the South-to-North Water Diversion Project(MR-SNWDP)in China,with construction beginning in 2003,diverts water from Danjiangkou Reservoir to North China for residential,agriculture and industrial use.The water source area of the MR-SNWDP is the region that is most sensitive to and most affected by the construction of this water diversion project.In this study,we used Landsat Thematic Mapper(TM)and HJ-1 A/B images from 2000 to 2015 by an object-based approach with a hierarchical classification method for mapping land cover in the water source area.The changes in land cover were illuminated by transfer matrixes,single dynamic degree,slope zones and fractional vegetation cover(FVC).The results indicated that the area of cropland decreased by 31%and was replaced mainly by shrub over the past 15 years,whereas forest and settlements showed continuous increases of 29.2% and 77.7%,respectively.The changes in cropland were obvious in all slope zones and decreased most remarkably(–43.8%)in the slope zone above 25°.Compared to the FVC of forest and shrub,significant improvement was exhibited in the FVC of grassland,with a growth rate of 16.6%.We concluded that local policies,including economic development,water conservation and immigration resulting from the construction of the MR-SNWDP,were the main drivers of land cover changes;notably,they stimulated the substantial and rapid expansion of settlements,doubled the wetlands and drove the transformation from cropland to settlements in immigration areas.
文摘This paper assess the eco-environmental benefits that may come from the middle route project of China's South-North Water Transfer Scheme(SNWT) with principles and methods of eco-economics and planning reports of SNWT's middle route project. Some benefits were calculated in monetary units. To make sure that the results can be comparable with normal monetary indices, concrete assessment objects and the parameters are prudently selected according to the major characteristics of the project and its water import region. Primary assessment revealed that in different project construction stages, the benefit could be more than 13 07 billion RMB Yuan in 2010 and 19 79 billion RMB Yuan in 2030, respectively. The monetary value tends to increase with social-economic development. To realize these potential benefits, however, calls for more endeavors.
基金We would like to give our thanks to Water Resources Department of Shandong Province and Water Resources Research Institute of Shandong Province for their help.
文摘Taking 13 water-receiving areas on the East Route of the South-to-North Water Diversion Project(ERSNWDP)in Shandong Province as the study area,and comparing it with Jiangsu Province on the ERSNWDP and the Middle Route of the South-to-North(MRSNWDP),the current water-saving potential of the water-receiving areas within the municipalities of Shandong was analyzed.Different water-saving scenarios were constructed and analyzed with key water-saving indexes in various industries.These indexes include the effective utilization coefficient of farmland irrigation water,total water consumption of industrial sectors with an added value of over 10000 RMB,average leakage rate of the urban public water supply pipe network and the penetration rate of water-saving appliances.Based on the scenarios,comprehensive water-saving potential of the 13 water-receiving area cities was calculated.The results show that the water-saving potential of the study area is at a relative high level.However,some cities still have a certain amount of water-saving potential for agriculture and industry to be elevated.Under the recommended water-saving scenario,the water-saving potential is 1.134 billion m3,accounting for 5.33%of the current total water consumption,of which 460 million m3 is in agriculture,600 million m3 in industry,is and 74.20 million m3 in urban domestic sector.Comprehensive water-saving measures for the study area were proposed from the aspects of agricultural,industrial and domestic water uses.Agricultural and industrial water saving are more significant.The major cities for agricultural water saving include Jining City,Heze City,Weifang City and Jinan City;the focus cities of industrial water saving mainly include Weihai City,Jining City and Qingdao City and etc.;the key water-saving areas for urban use mainly include Zaozhuang City,Jining City and Heze City.
文摘It is well known that there is abundant water resources in basin of the Yangtze River, the first largest river in China, which is mainly located in Southern China. However, water resources is very scarce in the basin of the Yellow River, which is mainly located in Northern China. So the western route project of south-north water transfer scheme (WRP-SNWTS) aims to transfer water from the Yangtze River to the Yellow River. The area of WRP-SNWT, located in the upper reaches of the Yangtze River and the main areas of Sichuan and the marginal areas of the Qinghai-Tibet Plateau, has sufficient water resources but fragile ecology and environment. Therefore, it is necessary for WRP-SNWT to analyze the ecology water required. Based on the planning principles of from low elevation to high elevation, from small to large, from short to long and from easy to difficulty, the WRP-SNWT will be constructed through three stage projects. The western route first stage project of the south-north water transfer scheme (WRFST-SNWTS) is planned to transfer 4×10^9m^3/a from six tributaries of the Yalong river and from Dadu river to Jiaqu of Yellow River.. Daqu river and Niqu river are the branches of Xianshui river. Sequ river, Duke river, Make river and Ake river are the branches of Dadu river, which account for 65-70% of the total river run-off. It need more research and the rest run-off can satisfy channel ecology water required. According to analysis ecological water required which mainly satisfy for aquicolous biology in water-exporting region, such as low air temperature. Fish and aquicolous biology main living from May to August, and rivers are iced up from December to March of next year, ecology water required mainly for fish and aquicolous biology. The flow criterion of Tennant method is modified. The ecology water required of WRFSP-SNWTS is estimated by the flow data of Zhuwo gauging station, Zhuba gauging station, Chuosijia gauging station and Zumuzu gauging station. The result show that the ecology water required calculated by modified Tennant less 1 l percent than that of Tennant. This estimating result can supply more water resources for transferring to Yellow River. Meanwhile, this can supply gist for research transferring water of WRFSP-SNWTS.
文摘This paper presents a study of the middle route of the South-North Water Diversion Project. The middle route runs through the Northern China plain, where the water shortages are the most severe. There is not only a shortage of water for human usage, but also a shortage of ecological water. Although the current plan for the middle route is strictly focused on supplying water for residential and industrial use, the water can also potentially be used for ecological purposes. This paper evaluates the potential ecological benefits that can be brought to the fragile ecology in northern China by the middle route, in addition to the water supplied to residences and industry. The study describes ecological benefits of the middle route project, such as mitigation of groundwater extraction in the region and positive influences on the climate, the ecological uses of the middle route project itself, such as creating artificial niches along the channel and directly using the channel for ecological purposes, and the ecological uses of the water along the middle route such as diversion of the water into dyer channels that have suffered from drought conditions for decades.
基金This study was supported by the National Natural Science Foundation of China (No. 70703034)State Key Laboratory of Urban and Regional Ecology (No.SKLURE 2008-1-02)the National Major Program on Pollution Control and Management of Water Body(No. 2009ZX07318-006)
文摘Payment for ecosystem services (PES) has attracted considerable attention as an economic incentive for promoting natural resource management recently. As emphasis has been placed on using the incentive-based mechanism by the central government, rapid progress on PES research and practice has been achieved. However PES still faces many difficulties. A key issue is the lack of a fully-fledged theory and method to clearly define the design scope, accounting and feasibility of PES criteria. An improved watershed criteria model was developed in light of research on PES practices in China, investigations on the water source area for the Middle Route Project of South-to-North Water Diversion and ecosystem services outflows theory. The basic principle of assessment is the direct and opportunity cost for ecological conservation and environmental protection in the water source area deduct nationally-financed PES and internal effect. Then the scope and the criteria methods were determined, and internal effect was put forward to define benefits brought from water source area. Finally, Shiyan City, which is the main water source area for the Project of Water Diversion, was analyzed by this model and its payment was calculated. The results showed that: (1) during 2003–2050, the total direct cost and opportunity cost would reach up to 262.70 billion and 256.33 billion Chinese Yuan (CNY, 2000 constant prices), i.e., 50.61% and 49.38% of total cost, respectively; (2) Shiyan City would gain 0.23, 0.06 and 0.03 CNY/m3 in 2014–2020, 2021–2030, and 2031–2050, respectively.
基金supported by the National Natural Science Foundation of China (Nos.52270202,and 41877471)the special fund was from the State Key Joint Laboratory of Environment Simulation and Pollution Control (Research Center for Eco-environmental Sciences,Chinese Academy of Sciences) (No.21Z02ESPCR)。
文摘Nutrient levels in the artificial channel constructed for the Middle Route Project are significant indicators of water quality safety and aquatic ecological integrity for this large,interbasin scheme.However,the distribution and transport of nutrients along the channel were poorly understood.Based on a time-series dataset as well as mass balance and material flow analysis methods,the water and nutrient transport fluxes in the Middle Route of the South-to-North Water Diversion Project were identified in this study.The results indicate that the nutrient concentrations varied considerably with time,but there was no significant difference among the 30 stations of the main channel.Seasonal temperature difference was the major factor in the large fluctuations of water quality indicators over time.The nutrient loadings varied with the water volume outputs from the main channel to the waterreceiving cities.Atmospheric deposition was an important source of nutrients in the main channel,accounting for 9.13%,20.6%,and 0.635%of the nitrogen,phosphorus,and sulfur input from the Danjiangkou Reservoir,respectively.In 2021,a net accumulation of 988 tons of N,29 tons of P,and 2,540 tons of S,respectively,were present in the main channel.The increase of these external and internal nutrient loadings would cause water quality fluctuation and deterioration in some local sections of the main channel.Our study quantified the spatial and temporal patterns of nutrient transport in the Middle Route and revealed the ecological effects on the aquatic environment,assisting authorities on the project to develop effective water conservation strategies.
基金Supported by China Postdoctoral Science Foundation (No. 20060390078)
文摘The unsteady flow in the Middle Route South-to-North Water Transfer Channel was simulated numerically using an implicit solution procedure for the Saint Venant equations. An equivalent roughness was used to simulate the effect of many transfer structures on the water levels in the main channel. Various gate operating and control methods were analyzed to study the response to disturbances produced by varying the flow rates through the Tianjin outlet. The results show that when the inflow at the head changes in the same way as the sum of the flow rates through all the outlets, the transition time and the fluctuation of the water levels using the timed gate operation method are less than when using the simultaneous gate operation method, but the variations of the gate openings and flow rates through each control gate are much larger. The flow disturbances produced by the Tianjin outlet can be rectified within several channel sections and the transition time can be greatly shortened by allowing the water levels immediately upstream of the control gates to vary within proscribed ranges, rather than being held constant.
文摘The water-diverting route project’s characteristics,natural landscapes,and histories and humanism of the Jiangsu Section of the Eastern Route South-to-North Water Diversion Project were systemically analyzed through proposing and studying the canal culture routes,the water resources heritage corridors,the landscape and recreation corridors,and the town economic corridors.The station areas along the water-diverting route were scientifically zoned and graded through quantitative and qualitative synthetic methods.Both planning compendiums and construction controlling methods were proposed based on the project grades of points,lines,and areas.Conservation and development of architecture and environment in the large-scale national infrastructure construction were explored systemically.Theories and methods of developing harmonious water-supplying functions,ecological functions,landscape effects,and cultural effects of large-scale water resources were examined.
文摘The factors influencing the water supply price of a hydraulic project include natural conditions and economic policies. This paper thoroughly demonstrates the water price of South-to-North Water Transfer Project from the viewpoint of economic policies. It is considered that if the project is assigned as a profitable one and built depending on commercial loan from bank completely or mostly, the water price will be too high to be undertaken by users,and if the project places the public good at first while considering the economic benefit, its investment mainly relies on the state (national or local governments) appropriation and self-raised funds and a little from the bank loan on favorable terms, the price determined according to the principle of satisfying the cost and reasonable profit will be relatively lower and can be undertaken by the users in the North China where water shortage is serious. The problem of higher water price of agricultural irrigation to the north of the Yellow River can be tackled by taking measures such as "compensating agriculture by industry" according to foreign practical experiences and relevant suggestions.