Based on the latest drilling core, thin section, 3D seismic, well logging data as well as exploration results, the sequence stratigraphy and sedimentary microfacies of the Middle-Lower Ordovician carbonates in Gucheng...Based on the latest drilling core, thin section, 3D seismic, well logging data as well as exploration results, the sequence stratigraphy and sedimentary microfacies of the Middle-Lower Ordovician carbonates in Gucheng area, and their controlling effects on the development of reservoir were examined by the theories and methods of fine carbonate sedimentology.The results show that the Middle-Lower Ordovician in Gucheng area is a set of typical carbonate ramp deposits, which can be divided into 10 microfacies in 4 subfacies as follows: back ramp, inner shallow ramp, outer shallow ramp, and deep ramp. The back ramp subfacies consists of muddy-dolomitic flat and dolomitic lagoon microfacies;it is dominated by lamellar micrite dolomite tight in lithology. The inner shallow ramp subfacies includes dolomitic shoal and dolomitic flat in shoal top and dolomitic flat between shoals microfacies;it is mainly composed of crystal dolomite with metasomatic residual structure, as well as abundant karst vugs and intercrystalline pores. The crystal dolomite has an average porosity of 4.36%. The outer ramp subfacies includes medium-high and low energy grain shoal and inter-shoal microfacies;it is dominated by sandy limestone,oolitic limestone, and micrite limestone with few pores. The deep ramp subfacies is dominated by low-energy argillaceous deposits, with local presences of storm shoal microfacies. The Lower-Middle Ordovician has six third-order sequences from bottom to top, among which sequence(SQ3) represents the third member of Yingying Formation. The main reservoir has three fourth-order high-frequency sequences. Apparently, the favorable reservoir in the study area is jointly controlled by sedimentary microfacies and high frequency sequence in the carbonate ramp. The former controls the primary pore structure, and the latter controls the intensities of karstification exposure and dolomitization in the penecontemporaneous period. The dolomitic shoals and top dolomitic flats of different stages, superimposed and connected into favorable reservoirs of considerable scale like "platform margin", are favorable exploration facies in the carbonate ramp.展开更多
In recent years,the Fuxian area in the southeastern Ordos Basin has undergone significant exploration,with industrial gas flow tested in wells drilled into the Ordovician marine carbonates.Despite this,the gas accumul...In recent years,the Fuxian area in the southeastern Ordos Basin has undergone significant exploration,with industrial gas flow tested in wells drilled into the Ordovician marine carbonates.Despite this,the gas accumulation patterns of this area are not fully understood,posing challenges for further exploration.Our analysis of geological conditions indicates that the Ordovician Majiagou Formation in this area hosts two gas plays:one found in weathering crusts and the other found in interior of the formation.We investigated various typical gas reservoirs in the area,focusing on differentiating the geological conditions and factors controlling gas accumulation in the weathering-crust and interior gas reservoirs.The results suggest three primary gas accumulation patterns in the Majiagou Formation in the Fuxian area:(1)upper gas accumulation in weathering crusts,present in the high parts of landforms such as residual paleo-hills or buried paleo-platform(Pattern I);(2)the stereoscopic pattern with gas accumulation in both weathering crusts and strata interior,arising in high parts of landforms such as residual paleo-hills or buried paleo-platforms(Pattern II);(3)lower gas accumulation in strata interior,occurring in the upper reaches and on both sides of paleo-trenches(Pattern III).This study will serve as a geological basis for future exploration deployment in the Fuxian area.展开更多
The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt, East China, and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting, t...The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt, East China, and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting, through the Middle Triassic continent-continent collision to the Jurassic-Cretaceous intracontinental tectono-magmatic activation. The Carboniferous sedimentary-exhalative processes in the area produced widespread massive sulfides with ages of 303-321 Ma, which partly formed massive pyrite-Cu deposits, but mostly provided significant sulfur and metals to the skarn Cu mineralization associated with the Yanshanian felsic intrusions.To understand the Carboniferous submarine hydrothermal system, an area of about 1046 km^2 was chosen to carry out the geological fluid mapping. Associated with massive sulfide formation, footwall sequences 948 m to 1146 m thick, composed of the Lower Silurian-Upper Devonian sandstone, siltstone and thin-layered shale, were widely altered. This hydrothermal alteration is interpreted to reflect largescale hydrothermal fluid flow associated with the late Paleozoic crustal rifting and subsidence. Three hydrothermal alteration types, i.e., deep-level semiconformable siliclfication (S1), fracture-controlled quartz-sericite-pyrite alteration (S2-3), and upper-level sub-discordant quartz-sericite-chlorite alteration (D3), were developed to form distinct zones in the mapped area. About 50-m thick semiconformable silicification zones are located at -1-km depth below massive sulfides and developed between an impermeable shale caprock (S1) and the underlying Ordovician unaltered limestone. Comparisons with modern geothermal systems suggest that the alteration zones record a sub-seafioor aquifer with the most productive hydrothermal fluid flow. Fracture-controlled quartz-sericite-pyrite alteration formed transgressive zones, which downward crosscut the semiconformable alteration zones, and upwards grade into sub-discordant alteration zones that enveloped no economic stringer- stockwork zones beneath massive sulfides. This transgressive zone likely marks an upfiow path of high- flux fluids from the hydrothermal aquifer. Lateral zonation of the sub-discordant alteration zones and their relationship to overlying massive sulfide lenses suggest lateral flows and diffusive discharging of the hydrothermal fluids in a permeable sandstone sequence. Three large-sized, 14 middle-small massive sulfide deposits, and 40 massive sulfide sites have been mapped in detail. They show regional strata- bound characters and two major styles, i.e., the layered sheet plus strata-bound stringer-style and the mound-style. Associated exhalite and chemical sedimentary rock suites include (1) anhydrite-barite, (2) jasper-chert, (3) Mg-rich mudstone-pyrite shale, (4) barite lens, (5) siderite-Fe-bearing dolomite, and (6) Mn-rich shale-mudstone, which usually comprise three sulfide-exhalite cyclic units in the area.The spatial distribution of these alteration zones (minerals) and associated massive sulfdes and exhalites, and regional variation in δ^34S of hydrothermal pyrite and in δ^18O-δ^34C of hanging wall carbonates, suggest three WNW-extending domains of fluid flow, controlled by the basement faults and syn-depositional faults. Each fluid domain appears to have at least two upflow zones, with estimated even spacing of about 5-8 km in the mapped area. The repeated appearance of sulfide-sulfate or sulfide-carbonate rhythmic units in the area suggests episodically venting of fluids through the upfiow conduits by breaking the overlying seals of the hydrothermal aquifer.展开更多
In the East Asian monsoon region, eolian deposits widely distributed in the middle-lower reaches of the Yantgze River are among the best materials available for studies on Quaternary climate change in the subtropical ...In the East Asian monsoon region, eolian deposits widely distributed in the middle-lower reaches of the Yantgze River are among the best materials available for studies on Quaternary climate change in the subtropical zone of Southern China. Typical eolian deposits in this region include upper Xiashu Loess (XL) and underlying Vermiculated Red Soil (VRS) layers. In this paper, chronological and paleoclimatic studies are conducted on an eolian deposit sequence near Jiujiang (J J) city in northern Jiangxi province. A magnetostratigraphic study, combined with optically stimulated luminescence (OSL) dating, is conducted on the JJ section and provides further evidence that eolian deposits in the middle-lower reaches of the Yangtze River have been formed since the late Early Pleistocene, and that the boundary age between the XL and VRS layers is about 300-400 kaBP. In grain-size records of the JJ section, the median grain-size and content of the 〉30μn size fraction increase sharply after 300-400 kaBP, representing an East Asian winter monsoon intensification event. Further pollen analysis reveals differing pollen assemblages before and after 300-400 kaBP: there is an evident increase in plants adapted to grow in a warm humid environment after 300-400 kaBP, implying an increase in precipitation caused by intensification of the East Asian summer monsoon. Global ice volume and uplift of the Tibet Plateau (TP) are regarded as crucial factors influencing variations of the East Asian monsoon on a long-term scale. The deep-sea JlSO record, which reflects variations in global ice volume, shows no obvious change after 300-400 kaBP. Moreover, the influence of global ice volume changes on the East Asian summer and winter monsoons is inverse; the global ice volume increase (decrease) implies a strengthened (weakened) winter monsoon and weakened (strengthened) summer monsoon. We therefore interpret the coupled intensifications of the East Asian summer and winter monsoons at about 300-400 kaBP to the uplift of the TP in the Middle Pleistocene. This climate event is also documented in eolian deposits from the southern margin of the Chinese Loess Plateau (CLP) and from the desert-loess transitional belt. However, it is not recorded in the loess-paleosol sequences from the central part of the CLP, thereby indicating differing climate responses to TP uplift in different regions, which requires further study.展开更多
The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed i...The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.展开更多
The middle-lower Yangtze area underwent a series of complex tectonic evolution, such as Hercynian extensional rifting, Indosinian foreland basining, and Yanshanian transpression-transtension, resulting in a large dist...The middle-lower Yangtze area underwent a series of complex tectonic evolution, such as Hercynian extensional rifting, Indosinian foreland basining, and Yanshanian transpression-transtension, resulting in a large distinctive Cu-Fe-Au metallogenic belt. In the tectonic evolution, large-scale migration and convergence of fluids toward foreland basins induced during the collisional orogeny of the Yangtze and North China continental blocks were of vital importance for the formation of the metallogenic belt. Through geological surveys of the middle-lower Yangtze area, three lines of evidence of large-scale fluid migration are proposed: (1) The extensive dolomitic and silicic alteration penetrating Cambrian-Triassic strata generally occurs in a region sandwiched between the metallogenic belt along the Yangtze River and the Dabie orogenic belt, and in the alteration domain alternately strong and weak alteration zones extend in a NW direction and are controlled by the fault system of the Dabie orogenic belt; it might record the locus of the activities of long-distance migrating fluids. (2) The textures and structures of very thick Middle-Lower Triassic anhydrock sequences in restricted basins along the river reveal the important contribution of the convergence of regional hot brine in restricted basins and the chemical deposition or their formation. (3) Early-Middle Triassic syndepositional iron carbonate sequences and Fe-Cu-Pb-Zn massive sulfide deposits alternate with anhydrock sequences or are separated from the latter, but all of them occur in the same stratigraphic horizon and are intimately associated with each other, being the product of syndeposition of high-salinity hot brine. According to the geological surveys, combined with previous data, the authors propose a conceptual model of fluid migration-convergence and mineralization during the Dabie collisional orogeny.展开更多
The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the or...The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.展开更多
In order to examine the impacts of water-sediment regulation on regional carbon cycling,we collected water,particulate and sediment samples from the middle-lower Yellow River in late June and early July,2015 and analy...In order to examine the impacts of water-sediment regulation on regional carbon cycling,we collected water,particulate and sediment samples from the middle-lower Yellow River in late June and early July,2015 and analyzed their specific amino acids(AA),DOC,POC,and bacteria abundance.Summarized by 14 specific AA,the total hydrolysable AA(THAA),particulate AA(PAA),and sediment AA(SAA)varied in ranges of 2.29-9.05μmol L^-1,5.22-22.96μmol L^-1,and 81.7-137.19μg g^-1 dry weight.After the regulation,dissolved free AA(DFAA)decreased by 29%while DCAA increased by 72%.These variations suggested that DFAA were further degraded,while DCAA molecules were further activated.Meanwhile,PAA increased almost 4 times as many as those before regulation,and SAA increased as well.After regulation,the amounts of bioactive amino acids(Asp,Glu and Gly)increased in THAA but decreased in PAA,with little changes in SAA.The ratios of Asp/Gly in different phases increased after regulation,indicating the AA contributions were promoted by calcareous organisms rather than by siliceous organisms.Multiple correlation analysis showed that PAA was primary representatives of AA and organic carbon,followed by DCAA and POC.Moreover,bacterial reproduction played a key role in shaping the AA compositions and properties,followed by the redox condition and acid-base balance.The results of this study provided a clear evidence for the effects of water-sediment regulation on regional biogeochemistry of organic carbon in the middle-lower Yellow River.展开更多
The Middle-Lower Yangtze River Metallogenic Belt(MLYB)is known to contain abundant copper and iron porphyry-skarn deposits,with an increasing number of tungsten deposits and scheelite in Fe-Cu deposits being discovere...The Middle-Lower Yangtze River Metallogenic Belt(MLYB)is known to contain abundant copper and iron porphyry-skarn deposits,with an increasing number of tungsten deposits and scheelite in Fe-Cu deposits being discovered in the MLYB during recent decades.The ore genesis of the newly-discovered tungsten mineralization in the MLYB is poorly understood.We investigate four sets of scheelite samples from tungsten,iron and copper deposits,using CL imaging and LA-ICP-MS techniques to reveal internal zonation patterns and trace element compositions.The REE distribution patterns of four studied deposits show varying degrees of LREE enrichment with negative Eu anomalies.The oxygen fugacity of ore-forming fluid increased in Donggushan,while the oxygen fugacity of ore-forming fluid decreased in Ruanjiawan,Guilinzheng and Gaojiabang.The scheelites from the Donggushan,Ruanjiawan,Guilinzheng and Gaojiabang deposits show enrichment in LREEs and HFSE,with Nb/La ratios ranging from 1.217 to 52.455,indicating that the four tungsten deposits are enriched in the volatile fluorine.A plot of(La/Lu)N versus Mo/δEu can be used to distinguish quartz vein type,porphyry and skarn tungsten deposits.This study demonstrates that scheelite grains can be used to infer tungsten mineralization and are effective in identifying magmatic types of tungsten deposits in prospective mining sites.展开更多
Thallium has been used geochemical exploration of gold deposits. However, as an indicator element in searching for hydrothermal the T1 minerals and mineralization are rare in nature. Lorandite T1AsS2, a relatively un...Thallium has been used geochemical exploration of gold deposits. However, as an indicator element in searching for hydrothermal the T1 minerals and mineralization are rare in nature. Lorandite T1AsS2, a relatively uncommon mineral, has been dominantly discovered in some Carlin gold deposits, and minor Sb- Hg, U and Pb-Zn-Ag deposits.展开更多
The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age...The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area.Here,we present new molybdenite Re-Os and titanite and andradite garnet U-Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas.The spatial and paragenetic relationships between the intrusions,alteration,and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite.However,this is not always the case,as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton.This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events.As such,the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area.Previously published zircon U-Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2±1.2 Ma(MSWD=1.4)whereas the Re-Os dating of molybdenite from the study area yielded an isochron age of 137.7±2.5 Ma(MSWD=0.43).The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet,yielding U-Pb ages of 136.3±2.5 Ma(MSWD=3.2)and 135.9±2.7 Ma(MSWD=2.5),respectively.The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma,strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion.The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district.providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area.This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration.This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism,respectively,in areas lacking other dateable minerals(e.g.,molybdenite)or where the relationship between mineralization and magmatism is unclear,for example in areas with multiple stages of magmatism,with complexly zoned plutons,and with distal skarn mineralization.展开更多
The building of Shuikou Hydropower Station in the Minjiang River is the largest one in the region of east China. Its install capacity is 1.4 million kw., and its generated energy of planning is 4.95 billion kwh each y...The building of Shuikou Hydropower Station in the Minjiang River is the largest one in the region of east China. Its install capacity is 1.4 million kw., and its generated energy of planning is 4.95 billion kwh each year. In accordance with a comprehensive survey of the valley of the middle-lower reaches of the Minjiang River and the characteristic of hydrography and in association with the specific type of the hydrography station, we can be sure that no harm will be done to the ecological environment when a hydropower station is built at Shuikou. Not only the deposition of silt within the reservoir must not be very serious, it is also more favorable than before for the irrigation of farmland on plains in the lower reaches of the Minjiang River and inland navigation.In addition, after the completion of the power station, the ecological environment will be the same as before both at the Minjiang River estuary and beyond it.展开更多
Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhous...Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.展开更多
A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,G...A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,Gudongkou and Honghuayuan sections)and Jiangnan regions(Nanba section)was created based on lithofacies and major element analysis.Three siliciclastic(LF1–3)and six carbonate(LF4–9)lithofacies are recognized representing sediments that were deposited in mixed siliciclastic and carbonate ramp environment.The intensity of mixed sedimentation and terrigenous input were evaluated using the elemental proxies Intensity of Mixed sedimentation(IM)and Aluminum Accumulation Rate(Al AR),as well as their mean values during certain time intervals.Mixed sediments are most well-developed along the marginal Yangtze region,strongly impacted by recurrent influx of westerly derived terrigenous materials in response to global eustatic changes and regional tectonic movements,shaping the gently southeast-dipping morphology.Regular terrigenous influx resulted in periods of enhanced primary productivity on the Yangtze Ramp as evidenced by matching biodiversity peaks in planktonic organisms,i.e.,chitinozoans and acritarchs.Brachiopods and other shelly fauna were also able to proliferate as new niches developed along the gently dipping ramp floor with substrate changes.The biodiversification patterns suggest that terrigenous influx controlled in part by regional tectonics played a more important role than previously thought in the development of Great Ordovician Biodiversification Event in South China.展开更多
The evaluation method, model and process for the flood and waterlogging disaster condition by GIS,RS and GPS technology and the method for setting up disaster condition database, dyke database and historical disaster ...The evaluation method, model and process for the flood and waterlogging disaster condition by GIS,RS and GPS technology and the method for setting up disaster condition database, dyke database and historical disaster damage database are presented. An index of flood damage degree(FDD) used to evaluate the relative degree of disaster loss and divide flood and waterlogging area is suggested. The value of flood damage degree can be calculated as follows :taking the various disaster losses of sample area in a base year as standard value and computing the ratios of various disaster loss values in different areas and years to the standard flood disaster loss values, then summing up the weighted ratios. The computed results are the value of flood damage degree in the every year. The macroscopic flood disaster distribution can be evaluated by the values of flood loss degree.展开更多
Under the tectonodynamic process, crustal materials tend to experience two modes of adjustment: (1) structural (physical) adjustment, manifested by folding, faulting, uplifting, downwarping, etc.: (2) compositional ad...Under the tectonodynamic process, crustal materials tend to experience two modes of adjustment: (1) structural (physical) adjustment, manifested by folding, faulting, uplifting, downwarping, etc.: (2) compositional adjustment, represented by element migration, concentration and dispersion, crystalline and dynamic differentiation of crystals, metamorphism, etc. (Yang Kaiqing. 1986; Yang Kaiqing et al., 1986). The dynamic adjustment of crustal materials in the middle-lower reaches of the Yangtze mainly occurred in the Mesozoic under the conditions of intense collision between the North China (Dabie) massif and the Yangtze massif. The structural adjustment refers to various types of deformation within the two massifs and the intensive shortening of the stratigraphic coyer of the Yangtze massif, whereas the compositional adjustment implies the structural remelting of the basement and the ore. and rock- forming processes in the two massifs.展开更多
Micromotion is the daily tiny vibration of the earth</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s surface. Micromotional exploratio...Micromotion is the daily tiny vibration of the earth</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s surface. Micromotional exploration can use the surface wave information of micro motion to study the shallow structure of underground media. In this study, we collected microtremor data at 68 stations in the Middle-Lower Yangtze Metallogenic Belt (MLYMB) and determined the resonant frequency and obtained the distribution of sedimentary thickness in this area by using H/V spectral ratio. According to the results of H/V, the sedimentary layer in the basin is thick, and the predominant frequency of the basin is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. There are no obvious lateral changes in the impedance interface between bedrock and sedimentary layer in this area. The basement of Tongling, Anqing and Luzhou mining areas and their adjacent areas is Kongling-Dongling type basement, which is composed of a set of metamorphic core complex. The predominant frequency is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. The sedimentary thickness gradually thinned from 3800</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the west to 2100</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the East. Moreover, this article used SPAC (spatial autocorrelation) method to obtain the S-wave velocity structure of the mining area near Luzong. The SPAC method reveals that the depth of the interface between the loose sediments and the volcanic rocks is about 600 m in the study area near the Luzhou mining area in the Middle-Lower Yangtze Metallogenic Belt, and the average depth of the interface between the volcanic rock section and the intrusive complex section is about 1000</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. The thickness of the intrusive rock is more than 2500</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. Tourmaline is developed in the interior of the intrusive rock, which may have better exploration value.展开更多
The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because ...The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because of its strong reservoir heterogeneity and complex reservoir-controlling factors.Based on a large volume of core,thin section,logging,seismic,and geochemical data and numerous geological analyses,the reservoir-forming conditions and modes were systematically analyzed to guide the exploration and achieve important breakthroughs in the Yangshuiwu and Wen an slope buried hills.The study revealed that three sets of source rocks of the third and fourth members of the Shahejie Formation from the Paleogene and Carboniferous-Permian were developed in the Jizhong depression,providing sufficient material basis for the formation of buried hill oil and gas reservoirs.The reservoir control mechanism involving the three major factors of“cloud-karst-fault”was clarified,and karst cave,fracture fissure-pore,and cloud pore type reservoir models were established,thereby expanding the exploration potential.Controlled by the superposition of multi-stage tectonic processes during the Indosinian,Yanshanian,and Himalayan,two genetic buried hill trap types of uplift-depression and depression-uplift were formed.Based on the analysis of reservoir-forming factors of the Ordovician buried hill,three buried hill oil and gas reservoir-forming models were identified:low-level tectonic-lithologic composite quasi-layered buried hill,medium-level paleo-storage paleo-block buried hill,and high-level paleo-storage new-block buried hill.Comprehensive evaluations indicate that the reservoir-forming conditions of the low-level tectonic-lithologic composite quasi-layered buried hill in the northern portion of the Jizhong depression are the most favorable and that the Sicundian and Xinzhen buried hills are favorable areas for future exploration.展开更多
Shale samples from the Ordovician Wulalike Formation at the western margin of the Ordos Basin are studied to define the types, microstructures and connectivity of pores as well as the relationships between the pore st...Shale samples from the Ordovician Wulalike Formation at the western margin of the Ordos Basin are studied to define the types, microstructures and connectivity of pores as well as the relationships between the pore structures and gas content of the samples by using experimental techniques such as high-resolution field emission scanning electron microscopy (FESEM), mercury injection capillary pressure (MICP), low-temperature nitrogen adsorption (LTNA), CO_(2) adsorption, and focused ion beam scanning electron microscopy (FIB-SEM). The results show that the shale has 10 different lithofacies, typical mixed sedimentary characteristics, and poorly developed pores. The reservoir space mainly consists of intercrystalline pores, dissolution pores, intergranular pores, and micro-fissures, with organic pores occasionally visible. The pore size is mostly within 0.4–250 nm range but dominated by micropores and mesopores less than 20 nm, with pore numbers peaking at pore sizes of 0.5 nm, 0.6 nm, 0.82 nm, 3 nm, and 10 nm, respectively. The pores are poorly connected and macropores are rarely seen, which may explain the low porosity and low permeability of the samples. Samples with high content of organic matter and felsic minerals are potential reservoirs for oil and gas with their favorable physical properties and high connectivity. The pores less than 5 nm contribute significantly to the specific surface area and serve as important storage space for adsorbed gas.展开更多
The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through ...The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher.展开更多
基金Supported by the National Natural Science Foundation of China(42072171 and 41772103)National Oil and Gas Major Science and Technology Project(2016ZX05007-002)China National Petroleum Corporation Major Science and Technology Project(1016E-0204)。
文摘Based on the latest drilling core, thin section, 3D seismic, well logging data as well as exploration results, the sequence stratigraphy and sedimentary microfacies of the Middle-Lower Ordovician carbonates in Gucheng area, and their controlling effects on the development of reservoir were examined by the theories and methods of fine carbonate sedimentology.The results show that the Middle-Lower Ordovician in Gucheng area is a set of typical carbonate ramp deposits, which can be divided into 10 microfacies in 4 subfacies as follows: back ramp, inner shallow ramp, outer shallow ramp, and deep ramp. The back ramp subfacies consists of muddy-dolomitic flat and dolomitic lagoon microfacies;it is dominated by lamellar micrite dolomite tight in lithology. The inner shallow ramp subfacies includes dolomitic shoal and dolomitic flat in shoal top and dolomitic flat between shoals microfacies;it is mainly composed of crystal dolomite with metasomatic residual structure, as well as abundant karst vugs and intercrystalline pores. The crystal dolomite has an average porosity of 4.36%. The outer ramp subfacies includes medium-high and low energy grain shoal and inter-shoal microfacies;it is dominated by sandy limestone,oolitic limestone, and micrite limestone with few pores. The deep ramp subfacies is dominated by low-energy argillaceous deposits, with local presences of storm shoal microfacies. The Lower-Middle Ordovician has six third-order sequences from bottom to top, among which sequence(SQ3) represents the third member of Yingying Formation. The main reservoir has three fourth-order high-frequency sequences. Apparently, the favorable reservoir in the study area is jointly controlled by sedimentary microfacies and high frequency sequence in the carbonate ramp. The former controls the primary pore structure, and the latter controls the intensities of karstification exposure and dolomitization in the penecontemporaneous period. The dolomitic shoals and top dolomitic flats of different stages, superimposed and connected into favorable reservoirs of considerable scale like "platform margin", are favorable exploration facies in the carbonate ramp.
基金supported the National Natural Science Foundation of China(Nos.:U19B6003,U20B6001)the Class A Strategic Pilot Science and Technology Program of the Chinese Academy of Sciences(No.:XDA14000000)a project entitled Oil and Gas Enrichment Rules and Favorable Target Selection in the Iran-Iraq region initiated by the Sinopec Science and Technology Department.
文摘In recent years,the Fuxian area in the southeastern Ordos Basin has undergone significant exploration,with industrial gas flow tested in wells drilled into the Ordovician marine carbonates.Despite this,the gas accumulation patterns of this area are not fully understood,posing challenges for further exploration.Our analysis of geological conditions indicates that the Ordovician Majiagou Formation in this area hosts two gas plays:one found in weathering crusts and the other found in interior of the formation.We investigated various typical gas reservoirs in the area,focusing on differentiating the geological conditions and factors controlling gas accumulation in the weathering-crust and interior gas reservoirs.The results suggest three primary gas accumulation patterns in the Majiagou Formation in the Fuxian area:(1)upper gas accumulation in weathering crusts,present in the high parts of landforms such as residual paleo-hills or buried paleo-platform(Pattern I);(2)the stereoscopic pattern with gas accumulation in both weathering crusts and strata interior,arising in high parts of landforms such as residual paleo-hills or buried paleo-platforms(Pattern II);(3)lower gas accumulation in strata interior,occurring in the upper reaches and on both sides of paleo-trenches(Pattern III).This study will serve as a geological basis for future exploration deployment in the Fuxian area.
文摘The Tongling area is one of the 7 ore-cluster areas in the Middle-Lower Yangtze metallogenic belt, East China, and has tectonically undergone a long-term geologic history from the late Paleozoic continental rifting, through the Middle Triassic continent-continent collision to the Jurassic-Cretaceous intracontinental tectono-magmatic activation. The Carboniferous sedimentary-exhalative processes in the area produced widespread massive sulfides with ages of 303-321 Ma, which partly formed massive pyrite-Cu deposits, but mostly provided significant sulfur and metals to the skarn Cu mineralization associated with the Yanshanian felsic intrusions.To understand the Carboniferous submarine hydrothermal system, an area of about 1046 km^2 was chosen to carry out the geological fluid mapping. Associated with massive sulfide formation, footwall sequences 948 m to 1146 m thick, composed of the Lower Silurian-Upper Devonian sandstone, siltstone and thin-layered shale, were widely altered. This hydrothermal alteration is interpreted to reflect largescale hydrothermal fluid flow associated with the late Paleozoic crustal rifting and subsidence. Three hydrothermal alteration types, i.e., deep-level semiconformable siliclfication (S1), fracture-controlled quartz-sericite-pyrite alteration (S2-3), and upper-level sub-discordant quartz-sericite-chlorite alteration (D3), were developed to form distinct zones in the mapped area. About 50-m thick semiconformable silicification zones are located at -1-km depth below massive sulfides and developed between an impermeable shale caprock (S1) and the underlying Ordovician unaltered limestone. Comparisons with modern geothermal systems suggest that the alteration zones record a sub-seafioor aquifer with the most productive hydrothermal fluid flow. Fracture-controlled quartz-sericite-pyrite alteration formed transgressive zones, which downward crosscut the semiconformable alteration zones, and upwards grade into sub-discordant alteration zones that enveloped no economic stringer- stockwork zones beneath massive sulfides. This transgressive zone likely marks an upfiow path of high- flux fluids from the hydrothermal aquifer. Lateral zonation of the sub-discordant alteration zones and their relationship to overlying massive sulfide lenses suggest lateral flows and diffusive discharging of the hydrothermal fluids in a permeable sandstone sequence. Three large-sized, 14 middle-small massive sulfide deposits, and 40 massive sulfide sites have been mapped in detail. They show regional strata- bound characters and two major styles, i.e., the layered sheet plus strata-bound stringer-style and the mound-style. Associated exhalite and chemical sedimentary rock suites include (1) anhydrite-barite, (2) jasper-chert, (3) Mg-rich mudstone-pyrite shale, (4) barite lens, (5) siderite-Fe-bearing dolomite, and (6) Mn-rich shale-mudstone, which usually comprise three sulfide-exhalite cyclic units in the area.The spatial distribution of these alteration zones (minerals) and associated massive sulfdes and exhalites, and regional variation in δ^34S of hydrothermal pyrite and in δ^18O-δ^34C of hanging wall carbonates, suggest three WNW-extending domains of fluid flow, controlled by the basement faults and syn-depositional faults. Each fluid domain appears to have at least two upflow zones, with estimated even spacing of about 5-8 km in the mapped area. The repeated appearance of sulfide-sulfate or sulfide-carbonate rhythmic units in the area suggests episodically venting of fluids through the upfiow conduits by breaking the overlying seals of the hydrothermal aquifer.
基金supported by the National Department Public Benefit Research Foundation of China(grant no. 201211077)the Mineral Resources Investigation and Appraisal Project of the Ministry of Land and Resources (grant no.12120114001501)the Fundamental Research Funds for the Central Universities(grant no. 53200859557)
文摘In the East Asian monsoon region, eolian deposits widely distributed in the middle-lower reaches of the Yantgze River are among the best materials available for studies on Quaternary climate change in the subtropical zone of Southern China. Typical eolian deposits in this region include upper Xiashu Loess (XL) and underlying Vermiculated Red Soil (VRS) layers. In this paper, chronological and paleoclimatic studies are conducted on an eolian deposit sequence near Jiujiang (J J) city in northern Jiangxi province. A magnetostratigraphic study, combined with optically stimulated luminescence (OSL) dating, is conducted on the JJ section and provides further evidence that eolian deposits in the middle-lower reaches of the Yangtze River have been formed since the late Early Pleistocene, and that the boundary age between the XL and VRS layers is about 300-400 kaBP. In grain-size records of the JJ section, the median grain-size and content of the 〉30μn size fraction increase sharply after 300-400 kaBP, representing an East Asian winter monsoon intensification event. Further pollen analysis reveals differing pollen assemblages before and after 300-400 kaBP: there is an evident increase in plants adapted to grow in a warm humid environment after 300-400 kaBP, implying an increase in precipitation caused by intensification of the East Asian summer monsoon. Global ice volume and uplift of the Tibet Plateau (TP) are regarded as crucial factors influencing variations of the East Asian monsoon on a long-term scale. The deep-sea JlSO record, which reflects variations in global ice volume, shows no obvious change after 300-400 kaBP. Moreover, the influence of global ice volume changes on the East Asian summer and winter monsoons is inverse; the global ice volume increase (decrease) implies a strengthened (weakened) winter monsoon and weakened (strengthened) summer monsoon. We therefore interpret the coupled intensifications of the East Asian summer and winter monsoons at about 300-400 kaBP to the uplift of the TP in the Middle Pleistocene. This climate event is also documented in eolian deposits from the southern margin of the Chinese Loess Plateau (CLP) and from the desert-loess transitional belt. However, it is not recorded in the loess-paleosol sequences from the central part of the CLP, thereby indicating differing climate responses to TP uplift in different regions, which requires further study.
基金supported by geological survey projects of the China Geological Survey (1212011120863, 12120114039401, 12120114005901 and 12120115029401)
文摘The Tongshankou Cu-Mo deposit, located in southeast Hubei province, is a typical skarn–porphyry type ore deposit closely related to the Tongshankou granodiorite porphyry, characterized by a high Sr/Y ratio.Detailed in situ analyses of the trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry were performed.Scarcely any inherited zircons were observed, and the analyzed zircons yielded highly concordant results with a weighted mean 206Pb/238 U age of 143.5 ± 0.45 Ma(n=20, mean square weighted deviation was 0.75), which was interpreted to represent the crystallization age of the Tongshankou granodiorite porphyry.The chondrite-normalized rare-earth element pattern was characterized by a slope that steeply rises from the light-group rare-earth elements(LREE) to the heavy-group rare-earth elements(HREE) with a positive Ce-anomaly and inconspicuous Eu-anomaly, which was coincident with the pattern of the zircons from the Chuquicamata West porphyry, Chile.The analyzed zircons also had relatively low 176Hf/177 Hf ratios of 0.282526–0.282604.Assuming t=143 Ma, the corresponding calculated initial Hf isotope compositions(εHf(t)) ranged from-5.6 to-2.9.The results of the in situ analysis of trace elements and U–Pb and Lu–Hf isotopes in zircons from the Tongshankou granodiorite porphyry suggest that a deep-seated process involving a thickened-crust/enriched-mantle interaction may play an important role in the generation of high Sr/Y-ratio magma and potentially in the generation of porphyry Cu-Mo systems.
文摘The middle-lower Yangtze area underwent a series of complex tectonic evolution, such as Hercynian extensional rifting, Indosinian foreland basining, and Yanshanian transpression-transtension, resulting in a large distinctive Cu-Fe-Au metallogenic belt. In the tectonic evolution, large-scale migration and convergence of fluids toward foreland basins induced during the collisional orogeny of the Yangtze and North China continental blocks were of vital importance for the formation of the metallogenic belt. Through geological surveys of the middle-lower Yangtze area, three lines of evidence of large-scale fluid migration are proposed: (1) The extensive dolomitic and silicic alteration penetrating Cambrian-Triassic strata generally occurs in a region sandwiched between the metallogenic belt along the Yangtze River and the Dabie orogenic belt, and in the alteration domain alternately strong and weak alteration zones extend in a NW direction and are controlled by the fault system of the Dabie orogenic belt; it might record the locus of the activities of long-distance migrating fluids. (2) The textures and structures of very thick Middle-Lower Triassic anhydrock sequences in restricted basins along the river reveal the important contribution of the convergence of regional hot brine in restricted basins and the chemical deposition or their formation. (3) Early-Middle Triassic syndepositional iron carbonate sequences and Fe-Cu-Pb-Zn massive sulfide deposits alternate with anhydrock sequences or are separated from the latter, but all of them occur in the same stratigraphic horizon and are intimately associated with each other, being the product of syndeposition of high-salinity hot brine. According to the geological surveys, combined with previous data, the authors propose a conceptual model of fluid migration-convergence and mineralization during the Dabie collisional orogeny.
基金supported financially by the National Natural Science Foundation of China(grant 41302062)the Fundamental Research Funds for the Central Universities(grant 2652015053,2011YYL125)the China Geological Survey(grant 12120113069900)
文摘The Datuanshan deposit is one of the largest and most representative stratabound copper deposits in the Tongling area,the largest ore district in the Middle-Lower Yangtze River metallogenic belt.The location of the orebodies is controlled by the interlayer-slipping faults between the Triassic and Permian strata,and all the orebodies are distributed in stratiform shape around the Mesozoic quartz monzodiorite dikes.Based on field evidence and petrographic observations,four mineralization stages in the Datuanshan deposit have been identified:the skarn,early quartz-sulfide,late quartzsulfide and carbonate stages.Chalcopytite is the main copper mineral and mainly formed at the late quartz-sulfide stage.Fluid inclusions at different stages were studied for petrography,microthermometry,laser Raman spectrometry and stable isotopes.Four types of fluid inclusions,including three-phase fluid inclusions(type 1),liquid-rich fluid inclusions(type 2),vapour-rich fluid inclusions(type 3) and pure vapour fluid inclusions(type 4),were observed.The minerals from the skarn,early and late quartz-sulfide stages contain all fluid inclusion types,but only type 2 fluid inclusions were observed at the carbonate stage.Petrographic observations suggest that most of the inclusions studied in this paper are likely primary.The coexistence of different types of fluid inclusions with contrasting homogenization characteristics(to the liquid and vapour phase,respectively) and similar homogenization temperatures(the modes are 440-480℃,380-400℃ and 280-320℃ for the skarn,early and late quartz-sulfide stages,respectively) in the first three stages,strongly suggests that three episodes of fluid boiling occurred during these stages,which is supported by the hydrogen isotope data.Laser Raman spectra identified CH_4 at the skarn and early quartz-sulfide stages.Combined with other geological features,the early ore-forming fluids were inferred to be under a relatively reduced environment.The CO_2 component has been identified at the late quartz-sulfide and carbonate stages,indicating that the late ore-forming fluids were under a relatively oxidized environment,probably as a result of inflow of and mixing with meteoric water.In addition,microthermometric results of fluid inclusions and H-O isotope data mdicate that the ore forming fluids were dominated by magmatic water in the early stages(skarn and early quartz-sulfide stages) and mixed with meteoric water in the late stages(late quartz-sulfide and carbonate stages).The evidence listed above suggests that the chalcopyrite deposition in the Datuanshan deposit probably resulted from the combination of multiepisode fluid boiling and mixing of magmatic and meteoric water.
基金supported by the National Key Research and Development Program of China(No.2018YFC1407 601)the National Natural Science Foundation of China(No.41176064)
文摘In order to examine the impacts of water-sediment regulation on regional carbon cycling,we collected water,particulate and sediment samples from the middle-lower Yellow River in late June and early July,2015 and analyzed their specific amino acids(AA),DOC,POC,and bacteria abundance.Summarized by 14 specific AA,the total hydrolysable AA(THAA),particulate AA(PAA),and sediment AA(SAA)varied in ranges of 2.29-9.05μmol L^-1,5.22-22.96μmol L^-1,and 81.7-137.19μg g^-1 dry weight.After the regulation,dissolved free AA(DFAA)decreased by 29%while DCAA increased by 72%.These variations suggested that DFAA were further degraded,while DCAA molecules were further activated.Meanwhile,PAA increased almost 4 times as many as those before regulation,and SAA increased as well.After regulation,the amounts of bioactive amino acids(Asp,Glu and Gly)increased in THAA but decreased in PAA,with little changes in SAA.The ratios of Asp/Gly in different phases increased after regulation,indicating the AA contributions were promoted by calcareous organisms rather than by siliceous organisms.Multiple correlation analysis showed that PAA was primary representatives of AA and organic carbon,followed by DCAA and POC.Moreover,bacterial reproduction played a key role in shaping the AA compositions and properties,followed by the redox condition and acid-base balance.The results of this study provided a clear evidence for the effects of water-sediment regulation on regional biogeochemistry of organic carbon in the middle-lower Yellow River.
基金funded by grants from the National Key Research and Development Program(2016YFC0600206)the National Natural Science Foundation of China(41872081)+1 种基金the Doctoral initial funding project of Anhui Jianzhu University(2019QDZ33)the Anhui Province Science and Technology Plan Project for Housing Urban-rural Construction(2020-YF35)。
文摘The Middle-Lower Yangtze River Metallogenic Belt(MLYB)is known to contain abundant copper and iron porphyry-skarn deposits,with an increasing number of tungsten deposits and scheelite in Fe-Cu deposits being discovered in the MLYB during recent decades.The ore genesis of the newly-discovered tungsten mineralization in the MLYB is poorly understood.We investigate four sets of scheelite samples from tungsten,iron and copper deposits,using CL imaging and LA-ICP-MS techniques to reveal internal zonation patterns and trace element compositions.The REE distribution patterns of four studied deposits show varying degrees of LREE enrichment with negative Eu anomalies.The oxygen fugacity of ore-forming fluid increased in Donggushan,while the oxygen fugacity of ore-forming fluid decreased in Ruanjiawan,Guilinzheng and Gaojiabang.The scheelites from the Donggushan,Ruanjiawan,Guilinzheng and Gaojiabang deposits show enrichment in LREEs and HFSE,with Nb/La ratios ranging from 1.217 to 52.455,indicating that the four tungsten deposits are enriched in the volatile fluorine.A plot of(La/Lu)N versus Mo/δEu can be used to distinguish quartz vein type,porphyry and skarn tungsten deposits.This study demonstrates that scheelite grains can be used to infer tungsten mineralization and are effective in identifying magmatic types of tungsten deposits in prospective mining sites.
基金supported by the National Science Foundation of China(grants No.41372090 and 41573042)the National Special Research Programs for Non-Profit Trades (grant No.201311136)Basic Scientific Research Operation Cost of State-Leveled Public Welfare Scientific Research Courtyard(grant No.K1203)
文摘Thallium has been used geochemical exploration of gold deposits. However, as an indicator element in searching for hydrothermal the T1 minerals and mineralization are rare in nature. Lorandite T1AsS2, a relatively uncommon mineral, has been dominantly discovered in some Carlin gold deposits, and minor Sb- Hg, U and Pb-Zn-Ag deposits.
基金financially supported by funds from the National Key R&D Program of China(Grant Nos.2016YFC0600209,2016YFC0600206)the National Natural Science Foundation of China(Grant No.41820104007)+1 种基金the Scientific and Technological Program of Land and Resources of Anhui province(Grant No.2016-K-4)the China Scholarship Council(Grant No.201906690036)。
文摘The Magushan skarn Cu-Mo deposit is a representative example of the skarn mineralization occurring within the Xuancheng ore district of the Middle-Lower Yangtze River Metallogenic Belt of eastern China.The precise age of an ore deposit is important for understanding the timing of mineralization relative to other geological events in a region and to fully place the formation of a mineral deposit within the geological context of other processes that occur within the study area.Here,we present new molybdenite Re-Os and titanite and andradite garnet U-Pb ages for the Magushan deposit and use these data to outline possible approaches for identifying genetic relationships in geologically complex areas.The spatial and paragenetic relationships between the intrusions,alteration,and mineralization within the study area indicates that the formation of the Magushan deposit is genetically associated with the porphyritic granodiorite.However,this is not always the case,as some areas contain complexly zoned plutons with multiple phases of intrusion or mineralization may be distal from or may not have any clear spatial relationship to a pluton.This means that it may not be possible to determine whether the mineralization formed as a result of single or multiple magmatic/hydrothermal events.As such,the approaches presented in this study provide an approach that allows the identification of any geochronological relationships between mineralization and intrusive events in areas more complex than the study area.Previously published zircon U-Pb data for the mineralization-related porphyritic granodiorite in this area yielded an age of 134.2±1.2 Ma(MSWD=1.4)whereas the Re-Os dating of molybdenite from the study area yielded an isochron age of 137.7±2.5 Ma(MSWD=0.43).The timing of the mineralizing event in the study area was further examined by the dating of magmatic accessory titanite and skarn-related andradite garnet,yielding U-Pb ages of 136.3±2.5 Ma(MSWD=3.2)and 135.9±2.7 Ma(MSWD=2.5),respectively.The dating of magmatic and hydrothermal activity within the Magushan area yields ages around 136 Ma,strongly suggesting that the mineralization in this area formed as a result of the emplacement of the intrusion.The dates presented in this study also provide the first indication of the timing of mineralization within the Xuancheng district.providing evidence of a close genetic relationship between the formation of the mineralization within the Xuancheng district and the Early Cretaceous magmatism that occurred in this area.This in turn suggests that other Early Cretaceous intrusive rocks within this region are likely to be associated with mineralization and should be considered highly prospective for future mineral exploration.This study also indicates that the dating of garnet and titanite can also provide reliable geochronological data and evidence of the timing of mineralization and magmatism,respectively,in areas lacking other dateable minerals(e.g.,molybdenite)or where the relationship between mineralization and magmatism is unclear,for example in areas with multiple stages of magmatism,with complexly zoned plutons,and with distal skarn mineralization.
文摘The building of Shuikou Hydropower Station in the Minjiang River is the largest one in the region of east China. Its install capacity is 1.4 million kw., and its generated energy of planning is 4.95 billion kwh each year. In accordance with a comprehensive survey of the valley of the middle-lower reaches of the Minjiang River and the characteristic of hydrography and in association with the specific type of the hydrography station, we can be sure that no harm will be done to the ecological environment when a hydropower station is built at Shuikou. Not only the deposition of silt within the reservoir must not be very serious, it is also more favorable than before for the irrigation of farmland on plains in the lower reaches of the Minjiang River and inland navigation.In addition, after the completion of the power station, the ecological environment will be the same as before both at the Minjiang River estuary and beyond it.
基金This study was financially supported by the National Natural Science Foundation of China(U19B6003)Frontier Project of Chinese Academy of Sciences(XDA14010201)National Key Natural Science Foundation of China(91755211).
文摘Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration.
基金funded by National Natural Science Foundation of China(Grant Nos.42102130,41972011)Natural Science Foundation of Jiangsu Province(Grant No.BK20191101)+2 种基金Chinese Academy of Sciences(Grant No.XDB26000000)China Scholarship Council(Grant No.202004910207)State Key Laboratory of Palaeobiology and Stratigraphy。
文摘A robust stratigraphic framework and a coherent depositional ramp model for the Zitai,Dawan,Meitan and Ningkuo formations of Floian–Darriwilian age(Early–Middle Ordovician)in the Yangtze(Daoba,Xiangshuidong,Daling,Gudongkou and Honghuayuan sections)and Jiangnan regions(Nanba section)was created based on lithofacies and major element analysis.Three siliciclastic(LF1–3)and six carbonate(LF4–9)lithofacies are recognized representing sediments that were deposited in mixed siliciclastic and carbonate ramp environment.The intensity of mixed sedimentation and terrigenous input were evaluated using the elemental proxies Intensity of Mixed sedimentation(IM)and Aluminum Accumulation Rate(Al AR),as well as their mean values during certain time intervals.Mixed sediments are most well-developed along the marginal Yangtze region,strongly impacted by recurrent influx of westerly derived terrigenous materials in response to global eustatic changes and regional tectonic movements,shaping the gently southeast-dipping morphology.Regular terrigenous influx resulted in periods of enhanced primary productivity on the Yangtze Ramp as evidenced by matching biodiversity peaks in planktonic organisms,i.e.,chitinozoans and acritarchs.Brachiopods and other shelly fauna were also able to proliferate as new niches developed along the gently dipping ramp floor with substrate changes.The biodiversification patterns suggest that terrigenous influx controlled in part by regional tectonics played a more important role than previously thought in the development of Great Ordovician Biodiversification Event in South China.
文摘The evaluation method, model and process for the flood and waterlogging disaster condition by GIS,RS and GPS technology and the method for setting up disaster condition database, dyke database and historical disaster damage database are presented. An index of flood damage degree(FDD) used to evaluate the relative degree of disaster loss and divide flood and waterlogging area is suggested. The value of flood damage degree can be calculated as follows :taking the various disaster losses of sample area in a base year as standard value and computing the ratios of various disaster loss values in different areas and years to the standard flood disaster loss values, then summing up the weighted ratios. The computed results are the value of flood damage degree in the every year. The macroscopic flood disaster distribution can be evaluated by the values of flood loss degree.
文摘Under the tectonodynamic process, crustal materials tend to experience two modes of adjustment: (1) structural (physical) adjustment, manifested by folding, faulting, uplifting, downwarping, etc.: (2) compositional adjustment, represented by element migration, concentration and dispersion, crystalline and dynamic differentiation of crystals, metamorphism, etc. (Yang Kaiqing. 1986; Yang Kaiqing et al., 1986). The dynamic adjustment of crustal materials in the middle-lower reaches of the Yangtze mainly occurred in the Mesozoic under the conditions of intense collision between the North China (Dabie) massif and the Yangtze massif. The structural adjustment refers to various types of deformation within the two massifs and the intensive shortening of the stratigraphic coyer of the Yangtze massif, whereas the compositional adjustment implies the structural remelting of the basement and the ore. and rock- forming processes in the two massifs.
文摘Micromotion is the daily tiny vibration of the earth</span><span style="font-family:Verdana;">’</span><span style="font-family:Verdana;">s surface. Micromotional exploration can use the surface wave information of micro motion to study the shallow structure of underground media. In this study, we collected microtremor data at 68 stations in the Middle-Lower Yangtze Metallogenic Belt (MLYMB) and determined the resonant frequency and obtained the distribution of sedimentary thickness in this area by using H/V spectral ratio. According to the results of H/V, the sedimentary layer in the basin is thick, and the predominant frequency of the basin is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. There are no obvious lateral changes in the impedance interface between bedrock and sedimentary layer in this area. The basement of Tongling, Anqing and Luzhou mining areas and their adjacent areas is Kongling-Dongling type basement, which is composed of a set of metamorphic core complex. The predominant frequency is 0.05</span><span style="font-family:""> </span><span style="font-family:Verdana;">-</span><span style="font-family:""> </span><span style="font-family:Verdana;">0.1</span><span style="font-family:""> </span><span style="font-family:Verdana;">Hz. The sedimentary thickness gradually thinned from 3800</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the west to 2100</span><span style="font-family:""> </span><span style="font-family:Verdana;">m in the East. Moreover, this article used SPAC (spatial autocorrelation) method to obtain the S-wave velocity structure of the mining area near Luzong. The SPAC method reveals that the depth of the interface between the loose sediments and the volcanic rocks is about 600 m in the study area near the Luzhou mining area in the Middle-Lower Yangtze Metallogenic Belt, and the average depth of the interface between the volcanic rock section and the intrusive complex section is about 1000</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. The thickness of the intrusive rock is more than 2500</span><span style="font-family:""> </span><span style="font-family:Verdana;">m. Tourmaline is developed in the interior of the intrusive rock, which may have better exploration value.
基金major science and technology project of PetroChina“Research and application of key technologies for sustainable,effective and stable production exploration and development of North China Oilfield(2017e-15)”。
文摘The buried hill in the Jizhong depression contains abundant petroleum reserves and are important production areas.The Ordovician buried hill has restricted the discovery of new oil and gas exploration targets because of its strong reservoir heterogeneity and complex reservoir-controlling factors.Based on a large volume of core,thin section,logging,seismic,and geochemical data and numerous geological analyses,the reservoir-forming conditions and modes were systematically analyzed to guide the exploration and achieve important breakthroughs in the Yangshuiwu and Wen an slope buried hills.The study revealed that three sets of source rocks of the third and fourth members of the Shahejie Formation from the Paleogene and Carboniferous-Permian were developed in the Jizhong depression,providing sufficient material basis for the formation of buried hill oil and gas reservoirs.The reservoir control mechanism involving the three major factors of“cloud-karst-fault”was clarified,and karst cave,fracture fissure-pore,and cloud pore type reservoir models were established,thereby expanding the exploration potential.Controlled by the superposition of multi-stage tectonic processes during the Indosinian,Yanshanian,and Himalayan,two genetic buried hill trap types of uplift-depression and depression-uplift were formed.Based on the analysis of reservoir-forming factors of the Ordovician buried hill,three buried hill oil and gas reservoir-forming models were identified:low-level tectonic-lithologic composite quasi-layered buried hill,medium-level paleo-storage paleo-block buried hill,and high-level paleo-storage new-block buried hill.Comprehensive evaluations indicate that the reservoir-forming conditions of the low-level tectonic-lithologic composite quasi-layered buried hill in the northern portion of the Jizhong depression are the most favorable and that the Sicundian and Xinzhen buried hills are favorable areas for future exploration.
基金funded by a National Science and Technology Major Project(No.2016ZX05007)Chinese Academy of Sciences(CAS)Strategic Leading Science&Technology Program(No.XDA14010000)CNPC's"Fourteenth Five-Year Plan"forward-looking basic strategic major scientific and technological project(No.2021DJ3102).
文摘Shale samples from the Ordovician Wulalike Formation at the western margin of the Ordos Basin are studied to define the types, microstructures and connectivity of pores as well as the relationships between the pore structures and gas content of the samples by using experimental techniques such as high-resolution field emission scanning electron microscopy (FESEM), mercury injection capillary pressure (MICP), low-temperature nitrogen adsorption (LTNA), CO_(2) adsorption, and focused ion beam scanning electron microscopy (FIB-SEM). The results show that the shale has 10 different lithofacies, typical mixed sedimentary characteristics, and poorly developed pores. The reservoir space mainly consists of intercrystalline pores, dissolution pores, intergranular pores, and micro-fissures, with organic pores occasionally visible. The pore size is mostly within 0.4–250 nm range but dominated by micropores and mesopores less than 20 nm, with pore numbers peaking at pore sizes of 0.5 nm, 0.6 nm, 0.82 nm, 3 nm, and 10 nm, respectively. The pores are poorly connected and macropores are rarely seen, which may explain the low porosity and low permeability of the samples. Samples with high content of organic matter and felsic minerals are potential reservoirs for oil and gas with their favorable physical properties and high connectivity. The pores less than 5 nm contribute significantly to the specific surface area and serve as important storage space for adsorbed gas.
基金Supported by the PetroChina Science and Technology Project(2022KT1205).
文摘The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher.